Tag Archives: Google Cloud Platform

Recent advances in deep long-horizon forecasting

Time-series forecasting is an important research area that is critical to several scientific and industrial applications, like retail supply chain optimization, energy and traffic prediction, and weather forecasting. In retail use cases, for example, it has been observed that improving demand forecasting accuracy can meaningfully reduce inventory costs and increase revenue.

Modern time-series applications can involve forecasting hundreds of thousands of correlated time-series (e.g., demands of different products for a retailer) over long horizons (e.g., a quarter or year away at daily granularity). As such, time-series forecasting models need to satisfy the following key criterias:

  1. Ability to handle auxiliary features or covariates: Most use-cases can benefit tremendously from effectively using covariates, for instance, in retail forecasting, holidays and product specific attributes or promotions can affect demand.
  2. Suitable for different data modalities: It should be able to handle sparse count data, e.g., intermittent demand for a product with low volume of sales while also being able to model robust continuous seasonal patterns in traffic forecasting.

A number of neural network–based solutions have been able to show good performance on benchmarks and also support the above criterion. However, these methods are typically slow to train and can be expensive for inference, especially for longer horizons.

In “Long-term Forecasting with TiDE: Time-series Dense Encoder”, we present an all multilayer perceptron (MLP) encoder-decoder architecture for time-series forecasting that achieves superior performance on long horizon time-series forecasting benchmarks when compared to transformer-based solutions, while being 5–10x faster. Then in “On the benefits of maximum likelihood estimation for Regression and Forecasting”, we demonstrate that using a carefully designed training loss function based on maximum likelihood estimation (MLE) can be effective in handling different data modalities. These two works are complementary and can be applied as a part of the same model. In fact, they will be available soon in Google Cloud AI’s Vertex AutoML Forecasting.


TiDE: A simple MLP architecture for fast and accurate forecasting

Deep learning has shown promise in time-series forecasting, outperforming traditional statistical methods, especially for large multivariate datasets. After the success of transformers in natural language processing (NLP), there have been several works evaluating variants of the Transformer architecture for long horizon (the amount of time into the future) forecasting, such as FEDformer and PatchTST. However, other work has suggested that even linear models can outperform these transformer variants on time-series benchmarks. Nonetheless, simple linear models are not expressive enough to handle auxiliary features (e.g., holiday features and promotions for retail demand forecasting) and non-linear dependencies on the past.

We present a scalable MLP-based encoder-decoder model for fast and accurate multi-step forecasting. Our model encodes the past of a time-series and all available features using an MLP encoder. Subsequently, the encoding is combined with future features using an MLP decoder to yield future predictions. The architecture is illustrated below.

TiDE model architecture for multi-step forecasting.

TiDE is more than 10x faster in training compared to transformer-based baselines while being more accurate on benchmarks. Similar gains can be observed in inference as it only scales linearly with the length of the context (the number of time-steps the model looks back) and the prediction horizon. Below on the left, we show that our model can be 10.6% better than the best transformer-based baseline (PatchTST) on a popular traffic forecasting benchmark, in terms of test mean squared error (MSE). On the right, we show that at the same time our model can have much faster inference latency than PatchTST.

Left: MSE on the test set of a popular traffic forecasting benchmark. Right: inference time of TiDE and PatchTST as a function of the look-back length.

Our research demonstrates that we can take advantage of MLP’s linear computational scaling with look-back and horizon sizes without sacrificing accuracy, while transformers scale quadratically in this situation.


Probabilistic loss functions

In most forecasting applications the end user is interested in popular target metrics like the mean absolute percentage error (MAPE), weighted absolute percentage error (WAPE), etc. In such scenarios, the standard approach is to use the same target metric as the loss function while training. In “On the benefits of maximum likelihood estimation for Regression and Forecasting”, accepted at ICLR, we show that this approach might not always be the best. Instead, we advocate using the maximum likelihood loss for a carefully chosen family of distributions (discussed more below) that can capture inductive biases of the dataset during training. In other words, instead of directly outputting point predictions that minimize the target metric, the forecasting neural network predicts the parameters of a distribution in the chosen family that best explains the target data. At inference time, we can predict the statistic from the learned predictive distribution that minimizes the target metric of interest (e.g., the mean minimizes the MSE target metric while the median minimizes the WAPE). Further, we can also easily obtain uncertainty estimates of our forecasts, i.e., we can provide quantile forecasts by estimating the quantiles of the predictive distribution. In several use cases, accurate quantiles are vital, for instance, in demand forecasting a retailer might want to stock for the 90th percentile to guard against worst-case scenarios and avoid lost revenue.

The choice of the distribution family is crucial in such cases. For example, in the context of sparse count data, we might want to have a distribution family that can put more probability on zero, which is commonly known as zero-inflation. We propose a mixture of different distributions with learned mixture weights that can adapt to different data modalities. In the paper, we show that using a mixture of zero and multiple negative binomial distributions works well in a variety of settings as it can adapt to sparsity, multiple modalities, count data, and data with sub-exponential tails.

A mixture of zero and two negative binomial distributions. The weights of the three components, a1, a2 and a3, can be learned during training.

We use this loss function for training Vertex AutoML models on the M5 forecasting competition dataset and show that this simple change can lead to a 6% gain and outperform other benchmarks in the competition metric, weighted root mean squared scaled error (WRMSSE).


M5 Forecasting WRMSSE
Vertex AutoML 0.639 +/- 0.007
Vertex AutoML with probabilistic loss       0.581 +/- 0.007
DeepAR 0.789 +/- 0.025
FEDFormer 0.804 +/- 0.033

Conclusion

We have shown how TiDE, together with probabilistic loss functions, enables fast and accurate forecasting that automatically adapts to different data distributions and modalities and also provides uncertainty estimates for its predictions. It provides state-of-the-art accuracy among neural network–based solutions at a fraction of the cost of previous transformer-based forecasting architectures, for large-scale enterprise forecasting applications. We hope this work will also spur interest in revisiting (both theoretically and empirically) MLP-based deep time-series forecasting models.


Acknowledgements

This work is the result of a collaboration between several individuals across Google Research and Google Cloud, including (in alphabetical order): Pranjal Awasthi, Dawei Jia, Weihao Kong, Andrew Leach, Shaan Mathur, Petros Mol, Shuxin Nie, Ananda Theertha Suresh, and Rose Yu.

Source: Google AI Blog


Migrating from App Engine Memcache to Cloud Memorystore (Module 13)

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Introduction and background

The previous Module 12 episode of the Serverless Migration Station video series demonstrated how to add App Engine Memcache usage to an existing app that has transitioned from the webapp2 framework to Flask. Today's Module 13 episode continues its modernization by demonstrating how to migrate that app from Memcache to Cloud Memorystore. Moving from legacy APIs to standalone Cloud services makes apps more portable and provides an easier transition from Python 2 to 3. It also makes it possible to shift to other Cloud compute platforms should that be desired or advantageous. Developers benefit from upgrading to modern language releases and gain added flexibility in application-hosting options.

While App Engine Memcache provides a basic, low-overhead, serverless caching service, Cloud Memorystore "takes it to the next level" as a standalone product. Rather than a proprietary caching engine, Cloud Memorystore gives users the option to select from a pair of open source engines, Memcached or Redis, each of which provides additional features unavailable from App Engine Memcache. Cloud Memorystore is typically more cost efficient at-scale, offers high availability, provides automatic backups, etc. On top of this, one Memorystore instance can be used across many applications as well as incorporates improvements to memory handling, configuration tuning, etc., gained from experience managing a huge fleet of Redis and Memcached instances.

While Memcached is more similar to Memcache in usage/features, Redis has a much richer set of data structures that enable powerful application functionality if utilized. Redis has also been recognized as the most loved database by developers in StackOverflow's annual developers survey, and it's a great skill to pick up. For these reasons, we chose Redis as the caching engine for our sample app. However, if your apps' usage of App Engine Memcache is deeper or more complex, a migration to Cloud Memorystore for Memcached may be a better option as a closer analog to Memcache.

Migrating to Cloud Memorystore for Redis featured video

Performing the migration

The sample application registers individual web page "visits," storing visitor information such as IP address and user agent. In the original app, the most recent visits are cached into Memcache for an hour and used for display if the same user continuously refreshes their browser during this period; caching is a one way to counter this abuse. New visitors or cache expiration results new visits as well as updating the cache with the most recent visits. Such functionality must be preserved when migrating to Cloud Memorystore for Redis.

Below is pseudocode representing the core part of the app that saves new visits and queries for the most recent visits. Before, you can see how the most recent visits are cached into Memcache. After completing the migration, the underlying caching infrastructure has been swapped out in favor of Memorystore (via language-specific Redis client libraries). In this migration, we chose Redis version 5.0, and we recommend the latest versions, 5.0 and 6.x at the time of this writing, as the newest releases feature additional performance benefits, fixes to improve availability, and so on. In the code snippets below, notice how the calls between both caching systems are nearly identical. The bolded lines represent the migration-affected code managing the cached data.

Switching from App Engine Memcache to Cloud Memorystore for Redis

Wrap-up

The migration covered begins with the Module 12 sample app ("START"). Migrating the caching system to Cloud Memorystore and other requisite updates results in the Module 13 sample app ("FINISH") along with an optional port to Python 3. To practice this migration on your own to help prepare for your own migrations, follow the codelab to do it by-hand while following along in the video.

While the code migration demonstrated seems straightforward, the most critical change is that Cloud Memorystore requires dedicated server instances. For this reason, a Serverless VPC connector is also needed to connect your App Engine app to those Memorystore instances, requiring more dedicated servers. Furthermore, neither Cloud Memorystore nor Cloud VPC are free services, and neither has an "Always free" tier quota. Before moving forward this migration, check the pricing documentation for Cloud Memorystore for Redis and Serverless VPC access to determine cost considerations before making a commitment.

One key development that may affect your decision: In Fall 2021, the App Engine team extended support of many of the legacy bundled services like Memcache to next-generation runtimes, meaning you are no longer required to migrate to Cloud Memorystore when porting your app to Python 3. You can continue using Memcache even when upgrading to 3.x so long as you retrofit your code to access bundled services from next-generation runtimes.

A move to Cloud Memorystore and today's migration techniques will be here if and when you decide this is the direction you want to take for your App Engine apps. All Serverless Migration Station content (codelabs, videos, source code [when available]) can be accessed at its open source repo. While our content initially focuses on Python users, we plan to cover other language runtimes, so stay tuned. For additional video content, check out our broader Serverless Expeditions series.

South African developers build web application to help local athletes

Posted by Aniedi Udo-Obong, Sub-Saharan Africa Regional Lead, Google Developer Groups

Lesego Ndlovu and Simon Mokgotlhoa have stayed friends since they were eight years old, trading GameBoy cartridges and playing soccer. They live three houses away from each other in Soweto, the biggest township in South Africa, with over one million residents. The two friends have always been fascinated by technology, and by the time the duo attended university, they wanted to start a business together that would also help their community.

Lesego Ndlovu and Simon Mokgotlhoa sitting at a desk on their computers

After teaching themselves to code and attending Google Developer Groups (GDG) events in Johannesburg, they built a prototype and launched a chapter of their own (GDG Soweto) to teach other new developers how to code and build technology careers.

Building an app to help their community

Lesego and Simon wanted to build an application that would help the talented soccer players in their community get discovered and recruited by professional soccer teams. To do that, they had to learn to code.

Lesego Ndlovu and Simon Mokgotlhoa holding their phones towards the screen showcasing the Ball Talent app

“We always played soccer, and we saw talented players not get discovered, so, given our interest in sports and passion for technology, we wanted to make something that could change that narrative,” Lesego says. “We watched videos on the Chrome Developers YouTube channel and learned HTML, CSS, and JavaScript, but we didn’t know how to make an app, deliver a product, or start a business. Our tech journey became a business journey. We learned about the code as the business grew. It’s been a great journey.”

After many all-nighters learning frontend development using HTML, CSS, and JavaScript, and working on their project, they built BallTalent, a Progressive Web App (PWA), that helps local soccer players in their neighborhood get discovered by professional soccer clubs. They record games in their neighborhood and upload them to the app, so clubs can identify new talent.

“We tested our prototype with people, and it seemed like they really loved it, which pushed us to keep coding and improving on the project,” says Simon. “The application is currently focused on soccer, but it’s built it in a way that it can focus on other sports.”

In 2019, when BallTalent launched, the project placed in the top 5 of one of South Africa’s most prestigious competitions, Diageo Social Tech Startup Challenge. BallTalent has helped local soccer players match with professional teams, benefiting the community. Simon and Lesego plan to release version two soon, with a goal of expanding to other sports.

Learning to code with web technologies and resources

Lesego and Simon chose to watch the Chrome Developers YouTube channel to learn to code, because it was free, accessible, and taught programming in ways that were easy to understand. Preferring to continue to use free Google tools because of their availability and ease of use, Lesego and Simon used Google developer tools on Chrome to build and test the BallTalent app, which is hosted on Google Cloud Platform.

BallTalent Shows Youth Talent to the Worlds Best Scouts and Clubs

They used NodeJS as their backend runtime environment to stay within the Google ecosystem–NodeJS is powered by the V8 JavaScript engine, which is developed by the Chromium Project. They used a service worker codelab from Google to allow users to install the BallTalent PWA and see partial content, even without an internet connection.

We are focused on HTML, CSS, JavaScript, frontend frameworks like Angular, and Cloud tools like Firebase, to be able to equip people with the knowledge of how to set up an application,” says Simon.

Moving gif of soccer players playing on a soccer field

BallTalent shares sample footage of a previous match: Mangaung United Vs Bizana Pondo Chiefs, during the ABC Motsepe Play Offs

“Google has been with us the whole way,” says Simon.

Contributing to the Google Developer community

Because of their enthusiasm for web technologies and positive experience learning to code using Google tools, Lesego and Simon were enthusiastic about joining a Google Developer Community. They became regular members at GDG Johannesburg and went to DevFest South Africa in 2018, where they got inspired to start their own GDG chapter in Soweto. The chapter focuses on frontend development to meet the needs of a largely beginner developer membership and has grown to 500+ members.

Looking forward to continued growth

The duo is now preparing to launch the second version of their BallTalent app, which gives back to their community by pairing local soccer talent with professional teams seeking players. In addition, they’re teaching new developers in their township how to build their own apps, building community and creating opportunities for new developers. Google Developer Groups are local community groups for developers interested in learning new skills, teaching others, and connecting with other developers. We encourage you to join us, and if you’re interested in becoming a GDG organizer like Simon and Lesego, we encourage you to apply.

How to use App Engine Memcache in Flask apps (Module 12)

Posted by Wesley Chun

Background

In our ongoing Serverless Migration Station series aimed at helping developers modernize their serverless applications, one of the key objectives for Google App Engine developers is to upgrade to the latest language runtimes, such as from Python 2 to 3 or Java 8 to 17. Another objective is to help developers learn how to move away from App Engine legacy APIs (now called "bundled services") to Cloud standalone equivalent services. Once this has been accomplished, apps are much more portable, making them flexible enough to:

In today's Module 12 video, we're going to start our journey by implementing App Engine's Memcache bundled service, setting us up for our next move to a more complete in-cloud caching service, Cloud Memorystore. Most apps typically rely on some database, and in many situations, they can benefit from a caching layer to reduce the number of queries and improve response latency. In the video, we add use of Memcache to a Python 2 app that has already migrated web frameworks from webapp2 to Flask, providing greater portability and execution options. More importantly, it paves the way for an eventual 3.x upgrade because the Python 3 App Engine runtime does not support webapp2. We'll cover both the 3.x and Cloud Memorystore ports next in Module 13.

Got an older app needing an update? We can help with that.

Adding use of Memcache

The sample application registers individual web page "visits," storing visitor information such as the IP address and user agent. In the original app, these values are stored immediately, and then the most recent visits are queried to display in the browser. If the same user continuously refreshes their browser, each refresh constitutes a new visit. To discourage this type of abuse, we cache the same user's visit for an hour, returning the same cached list of most recent visits unless a new visitor arrives or an hour has elapsed since their initial visit.

Below is pseudocode representing the core part of the app that saves new visits and queries for the most recent visits. Before, you can see how each visit is registered. After the update, the app attempts to fetch these visits from the cache. If cached results are available and "fresh" (within the hour), they're used immediately, but if cache is empty, or a new visitor arrives, the current visit is stored as before, and this latest collection of visits is cached for an hour. The bolded lines represent the new code that manages the cached data.

Adding App Engine Memcache usage to sample app

Wrap-up

Today's "migration" began with the Module 1 sample app. We added a Memcache-based caching layer and arrived at the finish line with the Module 12 sample app. To practice this on your own, follow the codelab doing it by-hand while following the video. The Module 12 app will then be ready to upgrade to Cloud Memorystore should you choose to do so.

In Fall 2021, the App Engine team extended support of many of the bundled services to next-generation runtimes, meaning you are no longer required to migrate to Cloud Memorystore when porting your app to Python 3. You can continue using Memcache in your Python 3 app so long as you retrofit the code to access bundled services from next-generation runtimes.

If you do want to move to Cloud Memorystore, stay tuned for the Module 13 video or try its codelab to get a sneak peek. All Serverless Migration Station content (codelabs, videos, source code [when available]) can be accessed at its open source repo. While our content initially focuses on Python users, we hope to one day cover other language runtimes, so stay tuned. For additional video content, check out our broader Serverless Expeditions series.

How can App Engine users take advantage of Cloud Functions?

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Introduction

Recently, we discussed containerizing App Engine apps for Cloud Run, with or without Docker. But what about Cloud Functions… can App Engine users take advantage of that platform somehow? Back in the day, App Engine was always the right decision, because it was the only option. With Cloud Functions and Cloud Run joining in the serverless product suite, that's no longer the case.

Back when App Engine was the only choice, it was selected to host small, single-function apps. Yes, when it was the only option. Other developers have created huge monolithic apps for App Engine as well… because it was also the only option. Fast forward to today where code follows more service-oriented or event-driven architectures. Small apps can be moved to Cloud Functions to simplify the code and deployments while large apps could be split into smaller components, each running on Cloud Functions.

Refactoring App Engine apps for Cloud Functions

Small, single-function apps can be seen as a microservice, an API endpoint "that does something," or serve some utility likely called as a result of some event in a larger multi-tiered application, say to update a database row or send a customer email message. App Engine apps require some kind web framework and routing mechanism while Cloud Function equivalents can be freed from much of those requirements. Refactoring these types of App Engine apps for Cloud Functions will like require less overhead, helps ease maintenance, and allow for common components to be shared across applications.

Large, monolithic applications are often made up of multiple pieces of functionality bundled together in one big package, such as requisitioning a new piece of equipment, opening a customer order, authenticating users, processing payments, performing administrative tasks, and so on. By breaking this monolith up into multiple microservices into individual functions, each component can then be reused in other apps, maintenance is eased because software bugs will identify code closer to their root origins, and developers won't step on each others' toes.

Migration to Cloud Functions

In this latest episode of Serverless Migration Station, a Serverless Expeditions mini-series focused on modernizing serverless apps, we take a closer look at this product crossover, covering how to migrate App Engine code to Cloud Functions. There are several steps you need to take to prepare your code for Cloud Functions:

  • Divest from legacy App Engine "bundled services," e.g., Datastore, Taskqueue, Memcache, Blobstore, etc.
  • Cloud Functions supports modern runtimes; upgrade to Python 3, Java 11, or PHP 7
  • If your app is a monolith, break it up into multiple independent functions. (You can also keep a monolith together and containerize it for Cloud Run as an alternative.)
  • Make appropriate application updates to support Cloud Functions

    The first three bullets are outside the scope of this video and its codelab, so we'll focus on the last one. The changes needed for your app include the following:

    1. Remove unneeded and/or unsupported configuration
    2. Remove use of the web framework and supporting routing code
    3. For each of your functions, assign an appropriate name and install the request object it will receive when it is called.

    Regarding the last point, note that you can have multiple "endpoints" coming into a single function which processes the request path, calling other functions to handle those routes. If you have many functions in your app, separate functions for every endpoint becomes unwieldy; if large enough, your app may be more suited for Cloud Run. The sample app in this video and corresponding code sample only has one function, so having a single endpoint for that function works perfectly fine here.

    This migration series focuses on our earliest users, starting with Python 2. Regarding the first point, the app.yaml file is deleted. Next, almost all Flask resources are removed except for the template renderer (the app still needs to output the same HTML as the original App Engine app). All app routes are removed, and there's no instantiation of the Flask app object. Finally for the last step, the main function is renamed more appropriately to visitme() along with a request object parameter.

    This "migration module" starts with the (Python 3 version of the) Module 2 sample app, applies the steps above, and arrives at the migrated Module 11 app. Implementing those required changes is illustrated by this code "diff:"

    Migration of sample app to Cloud Functions

    Next steps

    If you're interested in trying this migration on your own, feel free to try the corresponding codelab which leads you step-by-step through this exercise and use the video for additional guidance.

    All migration modules, their videos (when published), codelab tutorials, START and FINISH code, etc., can be found in the migration repo. We hope to also one day cover other legacy runtimes like Java 8 as well as content for the next-generation Cloud Functions service, so stay tuned. If you're curious whether it's possible to write apps that can run on App Engine, Cloud Functions, or Cloud Run with no code changes at all, the answer is yes. Hope this content is useful for your consideration when modernizing your own serverless applications!

Migrating App Engine push queues to Cloud Tasks

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Banner image that shows the Cloud Task logo

Introduction

The previous Module 7 episode of Serverless Migration Station gave developers an idea of how App Engine push tasks work and how to implement their use in an existing App Engine ndb Flask app. In this Module 8 episode, we migrate this app from the App Engine Datastore (ndb) and Task Queue (taskqueue) APIs to Cloud NDB and Cloud Tasks. This makes your app more portable and provides a smoother transition from Python 2 to 3. The same principle applies to upgrading other legacy App Engine apps from Java 8 to 11, PHP 5 to 7, and up to Go 1.12 or newer.

Over the years, many of the original App Engine services such as Datastore, Memcache, and Blobstore, have matured to become their own standalone products, for example, Cloud Datastore, Cloud Memorystore, and Cloud Storage, respectively. The same is true for App Engine Task Queues, whose functionality has been split out to Cloud Tasks (push queues) and Cloud Pub/Sub (pull queues), now accessible to developers and applications outside of App Engine.

Migrating App Engine push queues to Cloud Tasks video

Migrating to Cloud NDB and Cloud Tasks

The key updates being made to the application:

  1. Add support for Google Cloud client libraries in the app's configuration
  2. Switch from App Engine APIs to their standalone Cloud equivalents
  3. Make required library adjustments, e.g., add use of Cloud NDB context manager
  4. Complete additional setup for Cloud Tasks
  5. Make minor updates to the task handler itself

The bulk of the updates are in #3 and #4 above, and those are reflected in the following "diff"s for the main application file:

Screenshot shows primary differences in code when switching to Cloud NDB & Cloud Tasks

Primary differences switching to Cloud NDB & Cloud Tasks

With these changes implemented, the web app works identically to that of the Module 7 sample, but both the database and task queue functionality have been completely swapped to using the standalone/unbundled Cloud NDB and Cloud Tasks libraries… congratulations!

Next steps

To do this exercise yourself, check out our corresponding codelab which leads you step-by-step through the process. You can use this in addition to the video, which can provide guidance. You can also review the push tasks migration guide for more information. Arriving at a fully-functioning Module 8 app featuring Cloud Tasks sets the stage for a larger migration ahead in Module 9. We've accomplished the most important step here, that is, getting off of the original App Engine legacy bundled services/APIs. The Module 9 migration from Python 2 to 3 and Cloud NDB to Cloud Firestore, plus the upgrade to the latest version of the Cloud Tasks client library are all fairly optional, but they represent a good opportunity to perform a medium-sized migration.

All migration modules, their videos (when available), codelab tutorials, and source code, can be found in the migration repo. While the content focuses initially on Python users, we will cover other legacy runtimes soon so stay tuned.

How to use App Engine push queues in Flask apps

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Banner image that shows the Cloud Task logo

Introduction

Since its original launch in 2008, many of the core Google App Engine services such as Datastore, Memcache, and Blobstore, have matured to become their own standalone products: for example, Cloud Datastore, Cloud Memorystore, and Cloud Storage, respectively. The same is true for App Engine Task Queues with Cloud Tasks. Today's Module 7 episode of Serverless Migration Station reviews how App Engine push tasks work, by adding this feature to an existing App Engine ndb Flask app.

App Engine push queues in Flask apps video

That app is where we left off at the end of Module 1, migrating its web framework from App Engine webapp2 to Flask. The app registers web page visits, creating a Datastore Entity for each. After a new record is created, the ten most recent visits are displayed to the end-user. If the app only shows the latest visits, there is no reason to keep older visits, so the Module 7 exercise adds a push task that deletes all visits older than the oldest one shown. Tasks execute asynchronously outside the normal application flow.

Key updates

The following are the changes being made to the application:

  1. Add use of App Engine Task Queues (taskqueue) API
  2. Determine oldest visit displayed, logging and saving that timestamp
  3. Create task to delete old visits
  4. Update web page template to display timestamp threshold
  5. Log how many and which visits (by Entity ID) are deleted

Except for #4 which occurs in the HTML template file, these updates are reflected in the "diff"s for the main application file:

Screenshot of App Engine push tasks application source code differences

Adding App Engine push tasks application source code differences

With these changes implemented, the web app now shows the end-user which visits will be deleted by the new push task:

Screenshot of VisitMe example showing last ten site visits. A red circle around older visits being deleted

Sample application output

Next steps

To do this exercise yourself, check out our corresponding codelab which leads you step-by-step through the process. You can use this in addition to the video, which can provide guidance. You can also review the push queue documentation for more information. Arriving at a fully-functioning Module 7 app featuring App Engine push tasks sets the stage for migrating it to Cloud Tasks (and Cloud NDB) ahead in Module 8.

All migration modules, their videos (when available), codelab tutorials, and source code, can be found in the migration repo. While the content focuses initially on Python users, we will cover other legacy runtimes soon so stay tuned.

Exploring serverless with a nebulous app: Deploy the same app to App Engine, Cloud Functions, or Cloud Run

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Banner image that shows the App Engine, Cloud Functions, and Cloud Run logos

Introduction

Google Cloud offers three distinct ways of running your code or application in a serverless way, each serving different use cases. Google App Engine, our first Cloud product, was created to give users the ability to deploy source-based web applications or mobile backends directly to the cloud without the need of thinking about servers or scaling. Cloud Functions came later for scenarios where you may not have an entire app, great for one-off utility functions or event-driven microservices. Cloud Run is our latest fully-managed serverless product that gives developers the flexibility of containers along with the convenience of serverless.

As all are serverless compute platforms, users recognize they share some similarities along with clear differences, and often, they ask:

  1. How different is deploying code to App Engine, Cloud Functions, or Cloud Run?
  2. Is it challenging to move from one to another if I feel the other may better fit my needs?

We're going to answer these questions today by sharing a unique application with you, one that can be deployed to all three platforms without changing any application code. All of the necessary changes are done in configuration.

More motivation

Another challenge for developers can be trying to learn how to use another Cloud product, such as this request, paraphrased from a user:

  1. I have a Google App Engine app
  2. I want to call the Cloud Translation API from that app

Sounds simple enough. This user went straight to the App Engine and Translation API documentation where they were able to get started with the App Engine Quickstart to get their app up and going, then found the Translation API setup page and started looking into permissions needed to access the API. However, they got stuck at the Identity and Access Management (IAM) page on roles, being overwhelmed at all the options but no clear path forward. In light of this, let's add a third question to preceding pair outlined earlier:

  1. How do you access Cloud APIs from a Cloud serverless platform?
Without knowing what that user was going to build, let's just implement a barebones translator, an "MVP" (minimally viable product) version of a simple "My Google Translate" Python Flask app using the Translation API, one of Google Cloud's AI/ML "building block" APIs. These APIs are backed by pre-trained machine learning models, giving developers with little or no background in AI/ML the ability to leverage the benefits of machine learning with only API calls.

The application

The app consists of a simple web page prompting the user for a phrase to translate from English to Spanish. The translated results along with the original phrase are presented along with an empty form for a follow-up translation if desired. While the majority of this app's deployments are in Python 3, there are still many users working on upgrading from Python 2, so some of those deployments are available to help with migration planning. Taking this into account, this app can be deployed (at least) eight different ways:
  1. Local (or hosted) Flask server (Python 2)
  2. Local (or hosted) Flask server (Python 3)
  3. Google App Engine (Python 2)
  4. Google App Engine (Python 3)
  5. Google Cloud Functions (Python 3)
  6. Google Cloud Run (Python 2 via Docker)
  7. Google Cloud Run (Python 3 via Docker)
  8. Google Cloud Run (Python 3 via Cloud Buildpacks)
The following is a brief glance at the files and which configurations they're for: Screenshot of Nebulous serverless sample app files

Nebulous serverless sample app files

Diving straight into the application, let's look at its primary function, translate():
@app.route('/', methods=['GET', 'POST'])
def translate(gcf_request=None):
local_request = gcf_request if gcf_request else request
text = translated = None
if local_request.method == 'POST':
text = local_request.form['text'].strip()
if text:
data = {
'contents': [text],
'parent': PARENT,
'target_language_code': TARGET[0],
}
rsp = TRANSLATE.translate_text(request=data)
translated = rsp.translations[0].translated_text
context = {
'orig': {'text': text, 'lc': SOURCE},
'trans': {'text': translated, 'lc': TARGET},
}
return render_template('index.html', **context)

Core component (translate()) of sample application


Some key app components:
  • Upon an initial request (GET), an HTML template is rendered featuring a simple form with an empty text field for the text to translate.
  • The form POSTs back to the app, and in this case, grabs the text to translate, sends the request to the Translation API, receives and displays the results to the user along with an empty form for another translation.
  • There is a special "ifdef" for Cloud Functions near the top to receive a request object because a web framework isn't used like you'd have with App Engine or Cloud Run, so Cloud Functions provides one for this reason.
The app runs identically whether running locally or deployed to App Engine, Cloud Functions, or Cloud Run. The magic is all in the configuration. The requirements.txt file* is used in all configurations, whether to install third-party packages locally, or to direct the Cloud Build system to automatically install those libraries during deployment. Beyond requirements.txt, things start to differ:
  1. App Engine has an app.yaml file and possibly an appengine_config.py file.
  2. Cloud Run has either a Dockerfile (Docker) or Procfile (Cloud Buildpacks), and possibly a service.yaml file.
  3. Cloud Functions, the "simplest" of the three, has no configuration outside of a package requirements file (requirements.txt, package.json, etc.).
The following is what you should expect to see after completing one translation request: Screenshot of My Google Translate (1990s Edition) in Incognito Window

"My Google Translate" MVP app (Cloud Run edition)

Next steps

The sample app can be run locally or on your own hosting server, but now you also know how to deploy it to each of Cloud's serverless platforms and what those subtle differences are. You also have a sense of the differences between each platform as well as what it takes to switch from one to another. For example, if your organization is moving to implement containerization into your software development workflow, you can migrate your existing App Engine apps to Cloud Run using Docker or using Cloud Buildpacks if you don't want to think about containers or Dockerfiles. Lastly, you now know how to access Cloud APIs from these platforms. Lastly, you now know how to access Cloud APIs from these platforms.

The user described earlier was overwhelmed at all the IAM roles and options available because this type of detail is required to provide the most security options for accessing Cloud services, but when prototyping, the fastest on-ramp is to use the default service account that comes with Cloud serverless platforms. These help you get that prototype working while allowing you to learn more about IAM roles and required permissions. Once you've progressed far enough to consider deploying to production, you can then follow the best practice of "least privileges" and create your own (user-managed) service accounts with the minimal permissions required so your application functions properly.

To dive in, the code and codelabs (free, self-paced, hands-on tutorials) for each deployment are available in its open source repository. An active Google Cloud billing account is required to deploy this application to each of our serverless platforms even though you can do all of them without incurring charges. More information can be found in the "Cost" section of the repo's README. We hope this sample app teaches you more about the similarities and differences between our plaforms, shows you how you can "shift" applications comfortably between them, and provides a light introduction to another Cloud API. Also check out my colleague's post featuring similar content for Node.js.

An easier way to move your App Engine apps to Cloud Run

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Blue header

An easier yet still optional migration

In the previous episode of the Serverless Migration Station video series, developers learned how to containerize their App Engine code for Cloud Run using Docker. While Docker has gained popularity over the past decade, not everyone has containers integrated into their daily development workflow, and some prefer "containerless" solutions but know that containers can be beneficial. Well today's video is just for you, showing how you can still get your apps onto Cloud Run, even If you don't have much experience with Docker, containers, nor Dockerfiles.

App Engine isn't going away as Google has expressed long-term support for legacy runtimes on the platform, so those who prefer source-based deployments can stay where they are so this is an optional migration. Moving to Cloud Run is for those who want to explicitly move to containerization.

Migrating to Cloud Run with Cloud Buildpacks video

So how can apps be containerized without Docker? The answer is buildpacks, an open-source technology that makes it fast and easy for you to create secure, production-ready container images from source code, without a Dockerfile. Google Cloud Buildpacks adheres to the buildpacks open specification and allows users to create images that run on all GCP container platforms: Cloud Run (fully-managed), Anthos, and Google Kubernetes Engine (GKE). If you want to containerize your apps while staying focused on building your solutions and not how to create or maintain Dockerfiles, Cloud Buildpacks is for you.

In the last video, we showed developers how to containerize a Python 2 Cloud NDB app as well as a Python 3 Cloud Datastore app. We targeted those specific implementations because Python 2 users are more likely to be using App Engine's ndb or Cloud NDB to connect with their app's Datastore while Python 3 developers are most likely using Cloud Datastore. Cloud Buildpacks do not support Python 2, so today we're targeting a slightly different audience: Python 2 developers who have migrated from App Engine ndb to Cloud NDB and who have ported their apps to modern Python 3 but now want to containerize them for Cloud Run.

Developers familiar with App Engine know that a default HTTP server is provided by default and started automatically, however if special launch instructions are needed, users can add an entrypoint directive in their app.yaml files, as illustrated below. When those App Engine apps are containerized for Cloud Run, developers must bundle their own server and provide startup instructions, the purpose of the ENTRYPOINT directive in the Dockerfile, also shown below.

Starting your web server with App Engine (app.yaml) and Cloud Run with Docker (Dockerfile) or Buildpacks (Procfile)

Starting your web server with App Engine (app.yaml) and Cloud Run with Docker (Dockerfile) or Buildpacks (Procfile)

In this migration, there is no Dockerfile. While Cloud Buildpacks does the heavy-lifting, determining how to package your app into a container, it still needs to be told how to start your service. This is exactly what a Procfile is for, represented by the last file in the image above. As specified, your web server will be launched in the same way as in app.yaml and the Dockerfile above; these config files are deliberately juxtaposed to expose their similarities.

Other than this swapping of configuration files and the expected lack of a .dockerignore file, the Python 3 Cloud NDB app containerized for Cloud Run is nearly identical to the Python 3 Cloud NDB App Engine app we started with. Cloud Run's build-and-deploy command (gcloud run deploy) will use a Dockerfile if present but otherwise selects Cloud Buildpacks to build and deploy the container image. The user experience is the same, only without the time and challenges required to maintain and debug a Dockerfile.

Get started now

If you're considering containerizing your App Engine apps without having to know much about containers or Docker, we recommend you try this migration on a sample app like ours before considering it for yours. A corresponding codelab leading you step-by-step through this exercise is provided in addition to the video which you can use for guidance.

All migration modules, their videos (when available), codelab tutorials, and source code, can be found in the migration repo. While our content initially focuses on Python users, we hope to one day also cover other legacy runtimes so stay tuned. Containerization may seem foreboding, but the goal is for Cloud Buildpacks and migration resources like this to aid you in your quest to modernize your serverless apps!

Containerizing Google App Engine apps for Cloud Run

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Google App Engine header

An optional migration

Serverless Migration Station is a video mini-series from Serverless Expeditions focused on helping developers modernize their applications running on a serverless compute platform from Google Cloud. Previous episodes demonstrated how to migrate away from the older, legacy App Engine (standard environment) services to newer Google Cloud standalone equivalents like Cloud Datastore. Today's product crossover episode differs slightly from that by migrating away from App Engine altogether, containerizing those apps for Cloud Run.

There's little question the industry has been moving towards containerization as an application deployment mechanism over the past decade. However, Docker and use of containers weren't available to early App Engine developers until its flexible environment became available years later. Fast forward to today where developers have many more options to choose from, from an increasingly open Google Cloud. Google has expressed long-term support for App Engine, and users do not need to containerize their apps, so this is an optional migration. It is primarily for those who have decided to add containerization to their application deployment strategy and want to explicitly migrate to Cloud Run.

If you're thinking about app containerization, the video covers some of the key reasons why you would consider it: you're not subject to traditional serverless restrictions like development language or use of binaries (flexibility); if your code, dependencies, and container build & deploy steps haven't changed, you can recreate the same image with confidence (reproducibility); your application can be deployed elsewhere or be rolled back to a previous working image if necessary (reusable); and you have plenty more options on where to host your app (portability).

Migration and containerization

Legacy App Engine services are available through a set of proprietary, bundled APIs. As you can surmise, those services are not available on Cloud Run. So if you want to containerize your app for Cloud Run, it must be "ready to go," meaning it has migrated to either Google Cloud standalone equivalents or other third-party alternatives. For example, in a recent episode, we demonstrated how to migrate from App Engine ndb to Cloud NDB for Datastore access.

While we've recently begun to produce videos for such migrations, developers can already access code samples and codelab tutorials leading them through a variety of migrations. In today's video, we have both Python 2 and 3 sample apps that have divested from legacy services, thus ready to containerize for Cloud Run. Python 2 App Engine apps accessing Datastore are most likely to be using Cloud NDB whereas it would be Cloud Datastore for Python 3 users, so this is the starting point for this migration.

Because we're "only" switching execution platforms, there are no changes at all to the application code itself. This entire migration is completely based on changing the apps' configurations from App Engine to Cloud Run. In particular, App Engine artifacts such as app.yaml, appengine_config.py, and the lib folder are not used in Cloud Run and will be removed. A Dockerfile will be implemented to build your container. Apps with more complex configurations in their app.yaml files will likely need an equivalent service.yaml file for Cloud Run — if so, you'll find this app.yaml to service.yaml conversion tool handy. Following best practices means there'll also be a .dockerignore file.

App Engine and Cloud Functions are sourced-based where Google Cloud automatically provides a default HTTP server like gunicorn. Cloud Run is a bit more "DIY" because users have to provide a container image, meaning bundling our own server. In this case, we'll pick gunicorn explicitly, adding it to the top of the existing requirements.txt required packages file(s), as you can see in the screenshot below. Also illustrated is the Dockerfile where gunicorn is started to serve your app as the final step. The only differences for the Python 2 equivalent Dockerfile are: a) require the Cloud NDB package (google-cloud-ndb) instead of Cloud Datastore, and b) start with a Python 2 base image.

Image of The Python 3 requirements.txt and Dockerfile

The Python 3 requirements.txt and Dockerfile

Next steps

To walk developers through migrations, we always "START" with a working app then make the necessary updates that culminate in a working "FINISH" app. For this migration, the Python 2 sample app STARTs with the Module 2a code and FINISHes with the Module 4a code. Similarly, the Python 3 app STARTs with the Module 3b code and FINISHes with the Module 4b code. This way, if something goes wrong during your migration, you can always rollback to START, or compare your solution with our FINISH. If you are considering this migration for your own applications, we recommend you try it on a sample app like ours before considering it for yours. A corresponding codelab leading you step-by-step through this exercise is provided in addition to the video which you can use for guidance.

All migration modules, their videos (when published), codelab tutorials, START and FINISH code, etc., can be found in the migration repo. We hope to also one day cover other legacy runtimes like Java 8 so stay tuned. We'll continue with our journey from App Engine to Cloud Run ahead in Module 5 but will do so without explicit knowledge of containers, Docker, or Dockerfiles. Modernizing your development workflow to using containers and best practices like crafting a CI/CD pipeline isn't always straightforward; we hope content like this helps you progress in that direction!