Tag Archives: apis

Migrating from App Engine ndb to Cloud NDB

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Migrating to standalone services

Today we're introducing the first video showing long-time App Engine developers how to migrate from the App Engine ndb client library that connects to Datastore. While the legacy App Engine ndb service is still available for Datastore access, new features and continuing innovation are going into Cloud Datastore, so we recommend Python 2 users switch to standalone product client libraries like Cloud NDB.

This video and its corresponding codelab show developers how to migrate the sample app introduced in a previous video and gives them hands-on experience performing the migration on a simple app before tackling their own applications. In the immediately preceding "migration module" video, we transitioned that app from App Engine's original webapp2 framework to Flask, a popular framework in the Python community. Today's Module 2 content picks up where that Module 1 leaves off, migrating Datastore access from App Engine ndb to Cloud NDB.

Migrating to Cloud NDB opens the doors to other modernizations, such as moving to other standalone services that succeed the original App Engine legacy services, (finally) porting to Python 3, breaking up large apps into microservices for Cloud Functions, or containerizing App Engine apps for Cloud Run.

Moving to Cloud NDB

App Engine's Datastore matured to becoming its own standalone product in 2013, Cloud Datastore. Cloud NDB is the replacement client library designed for App Engine ndb users to preserve much of their existing code and user experience. Cloud NDB is available in both Python 2 and 3, meaning it can help expedite a Python 3 upgrade to the second generation App Engine platform. Furthermore, Cloud NDB gives non-App Engine apps access to Cloud Datastore.

As you can see from the screenshot below, one key difference between both libraries is that Cloud NDB provides a context manager, meaning you would use the Python with statement in a similar way as opening files but for Datastore access. However, aside from moving code inside with blocks, no other changes are required of the original App Engine ndb app code that accesses Datastore. Of course your "YMMV" (your mileage may vary) depending on the complexity of your code, but the goal of the team is to provide as seamless of a transition as possible as well as to preserve "ndb"-style access.

The difference between the App Engine ndb and Cloud NDB versions of the sample app

The "diffs" between the App Engine ndb and Cloud NDB versions of the sample app

Next steps

To try this migration yourself, hit up the corresponding codelab and use the video for guidance. This Module 2 migration sample "STARTs" with the Module 1 code completed in the previous codelab (and video). Users can use their solution or grab ours in the Module 1 repo folder. The goal is to arrive at the end with an identical, working app that operates just like the Module 1 app but uses a completely different Datastore client library. You can find this "FINISH" code sample in the Module 2a folder. If something goes wrong during your migration, you can always rollback to START, or compare your solution with our FINISH. Bonus content migrating to Python 3 App Engine can also be found in the video and codelab, resulting in a second FINISH, the Module 2b folder.

All of these learning modules, corresponding videos (when published), codelab tutorials, START and FINISH code, etc., can be found in the migration repo. We hope to also one day cover other legacy runtimes like Java 8 and others, so stay tuned! Developers should also check out the official Cloud NDB migration guide which provides more migration details, including key differences between both client libraries.

Ahead in Module 3, we will continue the Cloud NDB discussion and present our first optional migration, helping users move from Cloud NDB to the native Cloud Datastore client library. If you can't wait, try out its codelab found in the table at the repo above. Migrations aren't always easy; we hope this content helps you modernize your apps and shows we're focused on helping existing users as much as new ones.

Migrating from App Engine webapp2 to Flask

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud
graphic showing movement with arrows,. settings, lines, and more

Migrating web framework

The Google Cloud team recently introduced a series of codelabs (free, self-paced, hands-on tutorials) and corresponding videos designed to help users on one of our serverless compute platforms modernize their apps, with an initial focus on our earliest users running their apps on Google App Engine. We kick off this content by showing users how to migrate from App Engine's webapp2 web framework to Flask, a popular framework in the Python community.

While users have always been able to use other frameworks with App Engine, webapp2 comes bundled with App Engine, making it the default choice for many developers. One new requirement in App Engine's next generation platform (which launched in 2018) is that web frameworks must do their own routing, which unfortunately, means that webapp2 is no longer supported, so here we are. The good news is that as a result, modern App Engine is more flexible, lets users to develop in a more idiomatic fashion, and makes their apps more portable.

For example, while webapp2 apps can run on App Engine, Flask apps can run on App Engine, your servers, your data centers, or even on other clouds! Furthermore, Flask has more users, more published resources, and is better supported. If Flask isn't right for you, you can select from other WSGI-compliant frameworks such as Django, Pyramid, and others.

Video and codelab content

In this "Module 1" episode of Serverless Migration Station (part of the Serverless Expeditions series) Google engineer Martin Omander and I explore this migration and walk developers through it step-by-step.

In the previous video, we introduced developers to the baseline Python 2 App Engine NDB webapp2 sample app that we're taking through each of the migrations. In the video above, users see that the majority of the changes are in the main application handler, MainHandler:

The diffs between the webapp2 and Flask versions of the sample app

The "diffs" between the webapp2 and Flask versions of the sample app

Upon (re)deploying the app, users should see no visible changes to the output from the original version:

VisitMe application sample output

VisitMe application sample output

Next steps

Today's video picks up from where we left off: the Python 2 baseline app in its Module 0 repo folder. We call this the "START". By the time the migration has completed, the resulting source code, called "FINISH", can be found in the Module 1 repo folder. If you mess up partway through, you can rewind back to the START, or compare your solution with ours, FINISH. We also hope to one day provide a Python 3 version as well as cover other legacy runtimes like Java 8, PHP 5, and Go 1.11 and earlier, so stay tuned!

All of the migration learning modules, corresponding videos (when published), codelab tutorials, START and FINISH code, etc., can all be found in the migration repo. The next video (Module 2) will cover migrating from App Engine's ndb library for Datastore to Cloud NDB. We hope you find all these resources helpful in your quest to modernize your serverless apps!

Introducing "Serverless Migration Station" Learning Modules

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud
graphic showing movement with arrows,. settings, lines, and more

Helping users modernize their serverless apps

Earlier this year, the Google Cloud team introduced a series of codelabs (free, online, self-paced, hands-on tutorials) designed for technical practitioners modernizing their serverless applications. Today, we're excited to announce companion videos, forming a set of "learning modules" made up of these videos and their corresponding codelab tutorials. Modernizing your applications allows you to access continuing product innovation and experience a more open Google Cloud. The initial content is designed with App Engine developers in mind, our earliest users, to help you take advantage of the latest features in Google Cloud. Here are some of the key migrations and why they benefit you:

  • Migrate to Cloud NDB: App Engine's legacy ndb library used to access Datastore is tied to Python 2 (which has been sunset by its community). Cloud NDB gives developers the same NDB-style Datastore access but is Python 2-3 compatible and allows Datastore to be used outside of App Engine.
  • Migrate to Cloud Run: There has been a continuing shift towards containerization, an app modernization process making apps more portable and deployments more easily reproducible. If you appreciate App Engine's easy deployment and autoscaling capabilities, you can get the same by containerizing your App Engine apps for Cloud Run.
  • Migrate to Cloud Tasks: while the legacy App Engine taskqueue service is still available, new features and continuing innovation are going into Cloud Tasks, its standalone equivalent letting users create and execute App Engine and non-App Engine tasks.


The "Serverless Migration Station" videos are part of the long-running Serverless Expeditions series you may already be familiar with. In each video, Google engineer Martin Omander and I explore a variety of different modernization techniques. Viewers will be given an overview of the task at hand, a deeper-dive screencast takes a closer look at the code or configuration files, and most importantly, illustrates to developers the migration steps necessary to transform the same sample app across each migration.

Sample app

The baseline sample app is a simple Python 2 App Engine NDB and webapp2 application. It registers every web page visit (saving visiting IP address and browser/client type) and displays the most recent queries. The entire application is shown below, featuring Visit as the data Kind, the store_visit() and fetch_visits() functions, and the main application handler, MainHandler.


import os
import webapp2
from google.appengine.ext import ndb
from google.appengine.ext.webapp import template

class Visit(ndb.Model):
'Visit entity registers visitor IP address & timestamp'
visitor = ndb.StringProperty()
timestamp = ndb.DateTimeProperty(auto_now_add=True)

def store_visit(remote_addr, user_agent):
'create new Visit entity in Datastore'
Visit(visitor='{}: {}'.format(remote_addr, user_agent)).put()

def fetch_visits(limit):
'get most recent visits'
return (v.to_dict() for v in Visit.query().order(
-Visit.timestamp).fetch(limit))

class MainHandler(webapp2.RequestHandler):
'main application (GET) handler'
def get(self):
store_visit(self.request.remote_addr, self.request.user_agent)
visits = fetch_visits(10)
tmpl = os.path.join(os.path.dirname(__file__), 'index.html')
self.response.out.write(template.render(tmpl, {'visits': visits}))

app = webapp2.WSGIApplication([
('/', MainHandler),
], debug=True)

Baseline sample application code

Upon deploying this application to App Engine, users will get output similar to the following:

image of a website with text saying VisitMe example

VisitMe application sample output

This application is the subject of today's launch video, and the main.py file above along with other application and configuration files can be found in the Module 0 repo folder.

Next steps

Each migration learning module covers one modernization technique. A video outlines the migration while the codelab leads developers through it. Developers will always get a starting codebase ("START") and learn how to do a specific migration, resulting in a completed codebase ("FINISH"). Developers can hit the reset button (back to START) if something goes wrong or compare their solutions to ours (FINISH). The hands-on experience helps users build muscle-memory for when they're ready to do their own migrations.

All of the migration learning modules, corresponding Serverless Migration Station videos (when published), codelab tutorials, START and FINISH code, etc., can all be found in the migration repo. While there's an initial focus on Python 2 and App Engine, you'll also find content for Python 3 users as well as non-App Engine users. We're looking into similar content for other legacy languages as well so stay tuned. We hope you find all these resources helpful in your quest to modernize your serverless apps!

Modernizing your Google App Engine applications

Posted by Wesley Chun, Developer Advocate, Google Cloud

Modernizing your Google App Engine applications header

Next generation service

Since its initial launch in 2008 as the first product from Google Cloud, Google App Engine, our fully-managed serverless app-hosting platform, has been used by many developers worldwide. Since then, the product team has continued to innovate on the platform: introducing new services, extending quotas, supporting new languages, and adding a Flexible environment to support more runtimes, including the ability to serve containerized applications.

With many original App Engine services maturing to become their own standalone Cloud products along with users' desire for a more open cloud, the next generation App Engine launched in 2018 without those bundled proprietary services, but coupled with desired language support such as Python 3 and PHP 7 as well as introducing Node.js 8. As a result, users have more options, and their apps are more portable.

With the sunset of Python 2, Java 8, PHP 5, and Go 1.11, by their respective communities, Google Cloud has assured users by expressing continued long-term support of these legacy runtimes, including maintaining the Python 2 runtime. So while there is no requirement for users to migrate, developers themselves are expressing interest in updating their applications to the latest language releases.

Google Cloud has created a set of migration guides for users modernizing from Python 2 to 3, Java 8 to 11, PHP 5 to 7, and Go 1.11 to 1.12+ as well as a summary of what is available in both first and second generation runtimes. However, moving from bundled to unbundled services may not be intuitive to developers, so today we're introducing additional resources to help users in this endeavor: App Engine "migration modules" with hands-on "codelab" tutorials and code examples, starting with Python.

Migration modules

Each module represents a single modernization technique. Some are strongly recommended, others less so, and, at the other end of the spectrum, some are quite optional. We will guide you as far as which ones are more important. Similarly, there's no real order of modules to look at since it depends on which bundled services your apps use. Yes, some modules must be completed before others, but again, you'll be guided as far as "what's next."

More specifically, modules focus on the code changes that need to be implemented, not changes in new programming language releases as those are not within the domain of Google products. The purpose of these modules is to help reduce the friction developers may encounter when adapting their apps for the next-generation platform.

Central to the migration modules are the codelabs: free, online, self-paced, hands-on tutorials. The purpose of Google codelabs is to teach developers one new skill while giving them hands-on experience, and there are codelabs just for Google Cloud users. The migration codelabs are no exception, teaching developers one specific migration technique.

Developers following the tutorials will make the appropriate updates on a sample app, giving them the "muscle memory" needed to do the same (or similar) with their applications. Each codelab begins with an initial baseline app ("START"), leads users through the necessary steps, then concludes with an ending code repo ("FINISH") they can compare against their completed effort. Here are some of the initial modules being announced today:

  • Web framework migration from webapp2 to Flask
  • Updating from App Engine ndb to Google Cloud NDB client libraries for Datastore access
  • Upgrading from the Google Cloud NDB to Cloud Datastore client libraries
  • Moving from App Engine taskqueue to Google Cloud Tasks
  • Containerizing App Engine applications to execute on Cloud Run

Examples

What should you expect from the migration codelabs? Let's preview a pair, starting with the web framework: below is the main driver for a simple webapp2-based "guestbook" app registering website visits as Datastore entities:

class MainHandler(webapp2.RequestHandler):
'main application (GET) handler'
def get(self):
store_visit(self.request.remote_addr, self.request.user_agent)
visits = fetch_visits(LIMIT)
tmpl = os.path.join(os.path.dirname(__file__), 'index.html')
self.response.out.write(template.render(tmpl, {'visits': visits}))

A "visit" consists of a request's IP address and user agent. After visit registration, the app queries for the latest LIMIT visits to display to the end-user via the app's HTML template. The tutorial leads developers a migration to Flask, a web framework with broader support in the Python community. An Flask equivalent app will use decorated functions rather than webapp2's object model:

@app.route('/')
def root():
'main application (GET) handler'
store_visit(request.remote_addr, request.user_agent)
visits = fetch_visits(LIMIT)
return render_template('index.html', visits=visits)

The framework codelab walks users through this and other required code changes in its sample app. Since Flask is more broadly used, this makes your apps more portable.

The second example pertains to Datastore access. Whether you're using App Engine's ndb or the Cloud NDB client libraries, the code to query the Datastore for the most recent limit visits may look like this:

def fetch_visits(limit):
'get most recent visits'
query = Visit.query()
visits = query.order(-Visit.timestamp).fetch(limit)
return (v.to_dict() for v in visits)

If you decide to switch to the Cloud Datastore client library, that code would be converted to:

def fetch_visits(limit):
'get most recent visits'
query = DS_CLIENT.query(kind='Visit')
query.order = ['-timestamp']
return query.fetch(limit=limit)

The query styles are similar but different. While the sample apps are just that, samples, giving you this kind of hands-on experience is useful when planning your own application upgrades. The goal of the migration modules is to help you separate moving to the next-generation service and making programming language updates so as to avoid doing both sets of changes simultaneously.

As mentioned above, some migrations are more optional than others. For example, moving away from the App Engine bundled ndb library to Cloud NDB is strongly recommended, but because Cloud NDB is available for both Python 2 and 3, it's not necessary for users to migrate further to Cloud Datastore nor Cloud Firestore unless they have specific reasons to do so. Moving to unbundled services is the primary step to giving users more flexibility, choices, and ultimately, makes their apps more portable.

Next steps

For those who are interested in modernizing their apps, a complete table describing each module and links to corresponding codelabs and expected START and FINISH code samples can be found in the migration module repository. We are also working on video content based on these migration modules as well as producing similar content for Java, so stay tuned.

In addition to the migration modules, our team has also setup a separate repo to support community-sourced migration samples. We hope you find all these resources helpful in your quest to modernize your App Engine apps!

High Performance Game Audio with Oboe

Posted by Dan Galpin

High Performance Game Audio with Oboe graphic

We've added the Oboe C++ audio library to the Android Game SDK. Oboe's support of high-performance, low-latency audio across the widest range of Android devices is the right choice for most game developers.

Single API

On Android devices running Android 8.1 (API level 27) and higher, Oboe takes advantage of the improved performance and features of AAudio while maintaining backward compatibility (using OpenSL ES) with Android 4.1 (API level 16) and higher. Oboe also adds key features on top of the platform APIs to improve the audio developer experience, such as resampling, format conversion, and dynamic latency tuning. It performs audio data transformations, such as channel count conversion, when necessary to improve performance on selected devices, and has workarounds for other device-specific behaviors that improve the robustness of your audio code. In short, Oboe is now the recommended way to write audio code in C/C++ on Android.

Integrating Oboe

There are two primary ways to incorporate Oboe library prebuilts into your project. If you're using the Android Gradle plugin version 4.1.0 or higher along with CMake, and are using or can enable shared STL, enabling Oboe is as easy as adding Oboe to your Gradle dependencies, enabling prefabs, and adding a few lines to your CMakeLists file.

You can also integrate Oboe by statically linking using the Android Game SDK. Begin by downloading the library and checking it into your source control system. You need to be using minSdkVersion of 16 or higher with NDK release 18 or higher. Then, to specify the version of the game SDK to link in that's been compiled for the given ABI, API level, NDK, and STL combination, add a compiler include path in this form:

gamesdk/libs/[architecture]_API[apiLevel]_NDK[ndkVersion]_[stlVersion]_Release
Example: gamesdk/libs/arm64-v8a_API24_NDK18_cpp_static_Release

Then add -loboe_static to your linker command. Since you don't need to bundle the liboboe.so shared library, static linking gives you a smaller code footprint. If the ABI, API level, NDK, and STL combination doesn't have a precompiled version available for your settings, you can alternately link against the shared library. We have more guidance, including how to configure CMake for static libraries, in our developer documentation.

Oboe Basics

To output audio, you begin by creating a stream with the required properties, including a callback that is used when the stream requires new data.

oboe::AudioStreamBuilder builder;
builder.setPerformanceMode(oboe::PerformanceMode::LowLatency)
  ->setSharingMode(oboe::SharingMode::Exclusive)
  ->setDataCallback(myCallback)
  ->setFormat(oboe::AudioFormat::Float);

You'll then populate the audio data inside of the callback. If the stream creates successfully, that means you got the requested stream type. If you didn't specify these types, you'll have to query to see what format was returned.

class MyCallback : public oboe::AudioStreamDataCallback {
public:
    oboe::DataCallbackResult
    onAudioReady(oboe::AudioStream *audioStream, void *audioData, int32_t numFrames) {
        // We requested AudioFormat::Float
        auto *outputData = static_cast<float *>(audioData);
        // TODO: populate audioData here
        return oboe::DataCallbackResult::Continue;
    }
};

For full details on using Oboe, check out the documentation, code samples and API reference. There's even a codelab which shows you how to build a simple rhythm-based game.

If you have any issues, please file them here. We'd love to hear from you.

Building a Google Workspace Add-on with Adobe

Posted by Jon Harmer, Product Manager, Google Cloud

We recently introduced Google Workspace, which seamlessly brings together messaging, meetings, docs, and tasks and is a great way for teams to create, communicate, and collaborate. Google Workspace has what you need to get anything done, all in one place. This includes giving developers the ability to extend Google Workspace’s standard functionality like with Google Workspace Add-ons, launched earlier this year.

Google Workspace Add-ons, at launch, allowed a developer to build a single integration for Google Workspace that surfaces across Gmail, Google Drive, and Google Calendar. We recently announced that we added to the functionality of Google Workspace Add-ons by enabling more of the Google Workspace applications with the newer add-on framework, Google Docs, Google Sheets, and Google Slides. With Google Workspace Add-ons, developers can scale their presence across multiple touchpoints in which users can engage, and simplifies processes for building and managing add-ons.

One of our early developers for Google Workspace Add-ons has been Adobe. Adobe has been working to integrate Creative Cloud Libraries into Google Workspace. Using Google Workspace Add-ons, Adobe was able to quickly design a Creative Cloud Libraries experience that felt native to Google Workspace. “With the new add-ons framework, we were able to improve the overall performance and unify our Google Workspace and Gmail Add-ons.” said Ryan Stewart, Director of Product Management at Adobe. “This means a much better experience for our customers and much higher productivity for our developers. We were able to quickly iterate with the updated framework controls and easily connect it to the Creative Cloud services.”

One of the big differences between the Gmail integration and the Google Workspace integration is how it lets users work with Libraries. With Gmail, they’re sharing links to Libraries, but with Docs and Slides, they can add Library elements to their document or presentation. So by offering all of this in a single integration, we are able to provide a more complete Libraries experience. Being able to offer that breadth of experiences in a consistent way for users is exciting for our team.

Adobe’s Creative Cloud Libraries API announced at Adobe MAX, was also integral to integrating Creative Cloud with Google Workspace, letting developers retrieve, browse, create, and get renditions of the creative elements in libraries.

Adobe’s new Add-on for Google Workspace lets you add brand colors, character styles and graphics from Creative Cloud Libraries to Google Workspace apps like Docs and Slides. You can also save styles and assets back to Creative Cloud.

With Google Workspace Add-ons, we understand that teams require many applications to get work done, and we believe that process should be simple, and those productivity applications should connect all of a company’s workstreams. With Google Workspace Add-ons, teams can bring their favorite workplace apps like Adobe Creative Cloud into Google Workspace, enabling a more productive day-to-day experience for design and marketing teams. With quick access to Creative Cloud Libraries, the Adobe Creative Cloud Add-on for Google Workspace lets eveyone easily access and share assets in Gmail and apply brand colors, character styles, and graphics to Google Docs and Slides to keep deliverables consistent and on-brand. There’s a phased rollout to users, first with Google Docs, then Slides, so if you don’t see it in the Add-on yet, stay tuned as it is coming soon.

For developers, Google Workspace Add-ons lets you build experiences that not only let your customers manage their work, but also simplify how they work.

To learn more about Google Workspace Add-ons, please visit our Google Workspace developer documentation.

Automate & Extend with Apps Script (Google Cloud for Student Developers)

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud


In the previous episode of our new Google Cloud for Student Developers video series, we introduced G Suite REST APIs, showing how to enhance your applications by integrating with Gmail, Drive, Calendar, Docs, Sheets, and Slides. However, not all developers prefer the lower-level style of programming requiring the use of HTTP, OAuth2, and processing the request-response cycle of API usage. Building apps that access Google technologies is open to everyone at any level, not just advanced software engineers.

Enhancing career readiness of non-engineering majors helps make our services more inclusive and helps democratize API functionality to a broader audience. For the budding data scientist, business analyst, DevOps staff, or other technical professionals who don't code every day as part of their profession, Google Apps Script was made just for you. Rather than thinking about development stacks, HTTP, or authorization, you access Google APIs with objects.

This video blends a standard "Hello World" example with various use cases where Apps Script shines, including cases of automation, add-ons that extend the functionality of G Suite editors like Docs, Sheets, and Slides, accessing other Google or online services, and custom functions for Google Sheets—the ability to add new spreadsheet functions.

One featured example demonstrates the power to reach multiple Google technologies in an expressive way: lots of work, not much code. What may surprise readers is that this entire app, written by a colleague years ago, is comprised of just 4 lines of code:

function sendMap() {
var sheet = SpreadsheetApp.getActiveSheet();
var address = sheet.getRange('A1').getValue();
var map = Maps.newStaticMap().addMarker(address);
GmailApp.sendEmail('[email protected]',
'Map', 'See below.', {attachments:[map]});
}

Apps Script shields its users from the complexities of authorization and "API service endpoints." Developers only need an object to interface with a service; in this case, SpreadsheetApp to access Google Sheets, and similarly, Maps for Google Maps plus GmailApp for Gmail. Viewers can build this sample line-by-line with its corresponding codelab (a self-paced, hands-on tutorial). This example helps student (and professional) developers...

  1. Build something useful that can be extended into much more
  2. Learn how to accomplish several tasks without a lot of code
  3. Imagine what else is possible with G Suite developer tools

For further exploration, check out this video as well as this one which introduces Apps Script and presents the same code sample with more details. (Note the second video emails the map's link, but the app has been updated to attach it instead; the code has been updated everywhere else.) You may also access the code at its open source repository. If that's not enough, learn about other ways you can use Apps Script from its video library. Finally, stay tuned for the next pair of episodes which will cover full sample apps, one with G Suite REST APIs, and another with Apps Script.

We look forward to seeing what you build with Google Cloud.

Evolving automations into applications using Apps Script

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Editor’s Note: Guest authors Diego Moreno and Sophia Deng (@sophdeng) are from Gigster, a firm that builds dynamic teams made of top global talent who create industry-changing custom software.

Prelude: Data input & management … three general choices

Google Cloud provides multiple services for gathering and managing data. Google Forms paired with Google Sheets are quite popular as they require no engineering resources while being incredibly powerful, providing storage of up to 5 million rows of data and built-in analytics for small team projects.

At the other end of the spectrum, to support a high volume of users or data, Google Cloud provides advanced serverless platforms like Google App Engine (web app-hosting) and Google Cloud Functions (function/service-hosting) that can use Google Cloud Firestore for fast and scalable data storage. These are perfect for professional engineering teams that need autoscaling to respond to any level of user traffic and data input. Such apps can also be packaged into a container and deployed serverlessly on Google Cloud Run.

However, it's quite possible your needs are right in-between. Today, we're happy to present the Gigster story and their innovative use of Google Apps Script—a highly-accessible service conventionally relegated to simple macro and add-on development, but which Gigster used to its advantage, building robust systems to transform their internal operations. Apps Script is also serverless, meaning Gigster didn't have to manage any servers for their application nor did they need to find a place to host its source code.

The Gigster story

Gigster enables distributed teams of software engineers, product managers and designers to build software applications for enterprise clients. Over the past five years, Gigster has delivered thousands of projects, all with distributed software teams. Our group, the Gigster Staffing Operations Team, is responsible for assembling these teams from Gigster’s network of over 1,000 freelancers.

Two years ago, our team began building custom software to automate the multi-stage and highly manual team staffing process. Building internal software has allowed the same-size Staffing Operations Team (3 members!) to enjoy a 60x reduction in time spent staffing each role.

The Apps Script ecosystem has emerged as the most critical component in our toolkit for building this internal software, due to its versatility and ease of deployment. We want to share how one piece of the staffing process has evolved to become more powerful over time thanks to Apps Script. Ultimately, we hope that sharing this journey enables all types of teams to build their own tools and unlock new possibilities.

End-to-end automation in Google Sheets

Staffing is an operationally intensive procedure. Just finding willing and able candidates requires numerous steps:

  1. Gathering and formatting customer requirements.
  2. Communicating with candidates through multiple channels.
  3. Logging candidate responses.
  4. Processing paperwork for placement

To add complexity, many of these steps require working with different third-party applications. For awhile, we performed every step manually, tracking every piece of data generated in one central Sheet (the “Staffing Broadcast Google Sheet”). At a certain point, this back-and-forth work to log data from numerous applications became unsustainable. Although we leveraged Google Sheets features like Data Validation rules and filters, the Staffing Broadcast Sheet could not alleviate the high degree of manual processes that were required of the team.

centralized Staffing Broadcast Google Sheet

The centralized Staffing Broadcast Google Sheet provided organization, but required a high degree of manual entry for tracking candidate decisions.

The key transformation was integrating Sheets data with third-party APIs via Apps Script. This enabled us to cut out the most time-consuming operations. We no longer had to flip between applications to message candidates, wait for their replies, and then manually track responses.

To interact with these APIs, we built a user interface directly into the Staffing Broadcast Google Sheet. By introducing an information module, as well as drop-down lists and buttons, we were able to define a small set of manual actions versus the much wider list of tasks the tool would perform automatically across multiple applications.

integrating Apps Script with third-party APIs

By integrating Google Apps Script with third-party APIs and creating a user interface, we evolved the Staffing Broadcast Tool to centralize and automate almost every step of the staffing process.

doPost() is the key function in our staffing tool that facilitates third-party services triggering our Apps Script automations. Below is a snippet of how we listened to candidates' responses from a third-party messaging application. In this case, queueing the third-party message in a Google Sheet so it can be processed with improved error-handling.

/**
* Receive POST requests and record to queue.
*/
doPost(e) {
var payload = e.postData.contents;
SpreadsheetApp.openById(SPREADSHEET_ID)
.getSheetByName("Unprocessed")
.appendRow([payload]);
return ContentService.createTextOutput(""); // Return 200
}

Almost all manual work associated with finding candidates was automated through the combination of integrations with third-party APIs and having a user interface to perform a small, defined set of actions. Our team’s day-to-day became shockingly simple: select candidates to receive messages within the Staffing Broadcast Tool, then click the “Send Broadcast” button. That’s it. The tool handled everything else.

Leveraging Sheets as our foundation, we fundamentally transformed our spreadsheet into a custom software application. The spreadsheet went from a partially automated datastore to a tool that provided an end-to-end automated solution, requiring only the click of a few buttons to execute.

Evolution into a standalone application

While satisfied, we understood that having our application live in Google Sheets had its limitations, namely, it was difficult for multiple team members to simultaneously use the tool. Using doGet(), the sibling to doPost(), we began building an HTML frontend to the Staffing Broadcast Tool. In addition to resolving difficulties related to multiple users being in a spreadsheet, it also allowed us to build an easier-to-use and more responsive tool by leveraging Bootstrap & jQuery.

Having multiple users in a single Google Sheet can create conflicts, but Apps Script allowed us to build a responsive web app leveraging common libraries like Bootstrap & jQuery that eliminated those problems while providing an improved user experience.

When other teams at Gigster got wind of what we built, it was easy to grant access to others beyond the Staffing Operations Team. Since Apps Script is part of the G Suite developer ecosystem, we relied on Google’s security policies to help deploy our tools to larger audiences.

While this can be done through Google’s conventional sharing tools, it can also be done with built-in Apps Script functions like Session.getActiveUser() that allow us to restrict access to specific Google users. In our case, those within our organization plus a few select users.

To this day, we continue to use this third version of the Staffing Broadcast Tool in our daily operations as it supports 100% of all client projects at Gigster.

Conclusion

By fundamentally transforming the Staffing Broadcast Tool with Apps Script, Gigster’s Staffing Operations Team increased its efficiency while supporting the growth of our company. Inspired by these business benefits, we applied this application-building approach using Apps Script for multiple tools, including candidate searching, new user onboarding, and countless automations.

Our team’s psychological shift about how we view what we are capable of, especially as a non-engineering team, has been the most valuable part of this journey. By leveraging an already familiar ecosystem to build our own software, we have freed team members to become more self-sufficient and valuable to our customers.

To get started on your Apps Script journey, we recommend you check out the Apps Script Fundamentals playlist and the official documentation. And if you're a freelancer looking to build software applications for clients, we’re always looking for talented software engineers, product managers or designers to join Gigster’s Talent Network.

Thank you to Sandrine Bitton, the third member of the Staffing Operations Team, for all her help in the development of the Staffing Broadcast Tool.

Code that final mile: from big data analysis to slide presentation

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Google Cloud Platform (GCP) provides infrastructure, serverless products, and APIs that help you build, innovate, and scale. G Suite provides a collection of productivity tools, developer APIs, extensibility frameworks and low-code platforms that let you integrate with G Suite applications, data, and users. While each solution is compelling on its own, users can get more power and flexibility by leveraging both together.

In the latest episode of the G Suite Dev Show, I'll show you one example of how you can take advantage of powerful GCP tools right from G Suite applications. BigQuery, for example, can help you surface valuable insight from massive amounts of data. However, regardless of "the tech" you use, you still have to justify and present your findings to management, right? You've already completed the big data analysis part, so why not go that final mile and tap into G Suite for its strengths? In the sample app covered in the video, we show you how to go from big data analysis all the way to an "exec-ready" presentation.

The sample application is meant to give you an idea of what's possible. While the video walks through the code a bit more, let's give all of you a high-level overview here. Google Apps Script is a G Suite serverless development platform that provides straightforward access to G Suite APIs as well as some GCP tools such as BigQuery. The first part of our app, the runQuery() function, issues a query to BigQuery from Apps Script then connects to Google Sheets to store the results into a new Sheet (note we left out CONSTANT variable definitions for brevity):

function runQuery() {
// make BigQuery request
var request = {query: BQ_QUERY};
var queryResults = BigQuery.Jobs.query(request, PROJECT_ID);
var jobId = queryResults.jobReference.jobId;
queryResults = BigQuery.Jobs.getQueryResults(PROJECT_ID, jobId);
var rows = queryResults.rows;

// put results into a 2D array
var data = new Array(rows.length);
for (var i = 0; i < rows.length; i++) {
var cols = rows[i].f;
data[i] = new Array(cols.length);
for (var j = 0; j < cols.length; j++) {
data[i][j] = cols[j].v;
}
}

// put array data into new Sheet
var spreadsheet = SpreadsheetApp.create(QUERY_NAME);
var sheet = spreadsheet.getActiveSheet();
var headers = queryResults.schema.fields;
sheet.appendRow(headers); // header row
sheet.getRange(START_ROW, START_COL,
rows.length, headers.length).setValues(data);

// return Sheet object for later use
return spreadsheet;
}

It returns a handle to the new Google Sheet which we can then pass on to the next component: using Google Sheets to generate a Chart from the BigQuery data. Again leaving out the CONSTANTs, we have the 2nd part of our app, the createColumnChart() function:

function createColumnChart(spreadsheet) {
// create & put chart on 1st Sheet
var sheet = spreadsheet.getSheets()[0];
var chart = sheet.newChart()
.setChartType(Charts.ChartType.COLUMN)
.addRange(sheet.getRange(START_CELL + ':' + END_CELL))
.setPosition(START_ROW, START_COL, OFFSET, OFFSET)
.build();
sheet.insertChart(chart);

// return Chart object for later use
return chart;
}

The chart is returned by createColumnChart() so we can use that plus the Sheets object to build the desired slide presentation from Apps Script with Google Slides in the 3rd part of our app, the createSlidePresentation() function:

function createSlidePresentation(spreadsheet, chart) {
// create new deck & add title+subtitle
var deck = SlidesApp.create(QUERY_NAME);
var [title, subtitle] = deck.getSlides()[0].getPageElements();
title.asShape().getText().setText(QUERY_NAME);
subtitle.asShape().getText().setText('via GCP and G Suite APIs:\n' +
'Google Apps Script, BigQuery, Sheets, Slides');

// add new slide and insert empty table
var tableSlide = deck.appendSlide(SlidesApp.PredefinedLayout.BLANK);
var sheetValues = spreadsheet.getSheets()[0].getRange(
START_CELL + ':' + END_CELL).getValues();
var table = tableSlide.insertTable(sheetValues.length, sheetValues[0].length);

// populate table with data in Sheets
for (var i = 0; i < sheetValues.length; i++) {
for (var j = 0; j < sheetValues[0].length; j++) {
table.getCell(i, j).getText().setText(String(sheetValues[i][j]));
}
}

// add new slide and add Sheets chart to it
var chartSlide = deck.appendSlide(SlidesApp.PredefinedLayout.BLANK);
chartSlide.insertSheetsChart(chart);

// return Presentation object for later use
return deck;
}

Finally, we need a driver application that calls all three one after another, the createColumnChart() function:

function createBigQueryPresentation() {
var spreadsheet = runQuery();
var chart = createColumnChart(spreadsheet);
var deck = createSlidePresentation(spreadsheet, chart);
}

We left out some detail in the code above but hope this pseudocode helps kickstart your own project. Seeking a guided tutorial to building this app one step-at-a-time? Do our codelab at g.co/codelabs/bigquery-sheets-slides. Alternatively, go see all the code by hitting our GitHub repo at github.com/googlecodelabs/bigquery-sheets-slides. After executing the app successfully, you'll see the fruits of your big data analysis captured in a presentable way in a Google Slides deck:

This isn't the end of the story as this is just one example of how you can leverage both platforms from Google Cloud. In fact, this was one of two sample apps featured in our Cloud NEXT '18 session this summer exploring interoperability between GCP & G Suite which you can watch here:

Stay tuned as more examples are coming. We hope these videos plus the codelab inspire you to build on your own ideas.

Hangouts Chat alerts & notifications… with asynchronous messages

Posted by Wesley Chun (@wescpy), Developer Advocate, G Suite

While most chatbots respond to user requests in a synchronous way, there are scenarios when bots don't perform actions based on an explicit user request, such as for alerts or notifications. In today's DevByte video, I'm going to show you how to send messages asynchronously to rooms or direct messages (DMs) in Hangouts Chat, the team collaboration and communication tool in G Suite.

What comes to mind when you think of a bot in a chat room? Perhaps a user wants the last quarter's European sales numbers, or maybe, they want to look up local weather or the next movie showtime. Assuming there's a bot for whatever the request is, a user will either send a direct message (DM) to that bot or @mention the bot from within a chat room. The bot then fields the request (sent to it by the Hangouts Chat service), performs any necessary magic, and responds back to the user in that "space," the generic nomenclature for a room or DM.

Our previous DevByte video for the Hangouts Chat bot framework shows developers what bots and the framework are all about as well as how to build one of these types of bots, in both Python and JavaScript. However, recognize that these bots are responding synchronously to a user request. This doesn't suffice when users want to be notified when a long-running background job has completed, when a late bus or train will be arriving soon, or when one of their servers has just gone down. Recognize that such alerts can come from a bot but also perhaps a monitoring application. In the latest episode of the G Suite Dev Show, learn how to integrate this functionality in either type of application.

From the video, you can see that alerts and notifications are "out-of-band" messages, meaning they can come in at any time. The Hangouts Chat bot framework provides several ways to send asynchronous messages to a room or DM, generically referred to as a "space." The first is the HTTP-based REST API. The other way is using what are known as "incoming webhooks."

The REST API is used by bots to send messages into a space. Since a bot will never be a human user, a Google service account is required. Once you create a service account for your Hangouts Chat bot in the developers console, you can download its credentials needed to communicate with the API. Below is a short Python sample snippet that uses the API to send a message asynchronously to a space.

from apiclient import discovery
from httplib2 import Http
from oauth2client.service_account import ServiceAccountCredentials

SCOPES = 'https://www.googleapis.com/auth/chat.bot'
creds = ServiceAccountCredentials.from_json_keyfile_name(
'svc_acct.json', SCOPES)
CHAT = discovery.build('chat', 'v1', http=creds.authorize(Http()))

room = 'spaces/<ROOM-or-DM>'
message = {'text': 'Hello world!'}
CHAT.spaces().messages().create(parent=room, body=message).execute()

The alternative to using the API with services accounts is the concept of incoming webhooks. Webhooks are a quick and easy way to send messages into any room or DM without configuring a full bot, i.e., monitoring apps. Webhooks also allow you to integrate your custom workflows, such as when a new customer is added to the corporate CRM (customer relationship management system), as well as others mentioned above. Below is a Python snippet that uses an incoming webhook to communicate into a space asynchronously.

import requests
import json

URL = 'https://chat.googleapis.com/...&thread_key=T12345'
message = {'text': 'Hello world!'}
requests.post(URL, data = json.dumps(message))

Since incoming webhooks are merely endpoints you HTTP POST to, you can even use curl to send a message to a Hangouts Chat space from the command-line:

curl \
-X POST \
-H 'Content-Type: application/json' \
'https://chat.googleapis.com/...&thread_key=T12345' \
-d '{"text": "Hello!"}'

To get started, take a look at the Hangouts Chat developer documentation, especially the specific pages linked to above. We hope this video helps you take your bot development skills to the next level by showing you how to send messages to the Hangouts Chat service asynchronously.