Posted by Scott Huffman, Vice President, Engineering and Josh Woodward, Senior Director, Product Management
We’re seeing a new wave of generative AI applications that are transforming the way people interact with technology – from games and dialog agents to creative brainstorming and coding tools. At Google, we want to continue making AI accessible by empowering all developers to start building the next generation of applications with generative AI by providing easy-to-use APIs and tools.
Earlier today, we announced the PaLM API, a new developer offering that makes it easy and safe to experiment with Google’s large language models. Alongside the API, we’re releasing MakerSuite, a tool that lets developers start prototyping quickly and easily. We’ll be making these tools available to select developers through a Private Preview, and stay tuned for our waitlist soon.
Access Google’s large language models using the PaLM API
The PaLM API is a simple entry point for Google’s large language models, which can be used for a variety of applications. It will provide developers access to models that are optimized for multi-turn use cases, such as content generation and chat, and general purpose models that are optimized for use cases such as summarization, classification, and more. Starting today, we’re making an efficient model available in terms of size and capabilities, and we’ll add other models and sizes soon.
Start building quickly
We’ve spent the last several years building and deploying large language models—from bringing MUM to Search to exploring applications with LaMDA in the AI Test Kitchen. We learned a lot about generative AI development workflows and how fragmented they can be. Developers have to use different tools to accomplish tasks like crafting and iterating on a prompt, generating synthetic data, and tuning a custom model.
That’s why we’re releasing MakerSuite, a tool that simplifies this workflow. With MakerSuite, you’ll be able to iterate on prompts, augment your dataset with synthetic data, and easily tune custom models. When you’re ready to move to code, MakerSuite will let you export your prompt as code in your favorite languages and frameworks, like Python and Node.js.
Tune a model
Generative models offer developers powerful out-of-the-box functionality. But for specialized tasks, tuning leads to better results. Our tooling will enable developers to leverage parameter-efficient tuning techniques to create models customized to their use case. And with MakerSuite, you’ll be able to quickly test and iterate on your tuned model right in the browser.
Augment your dataset with synthetic data
High-quality data is crucial when developing with AI, and developers are often limited by the data they have. Our tooling will allow you to generate additional data based on a few examples, and then you’ll be able to manage and manipulate the data from there. This synthetic data can be used in various scenarios, such as tuning or evaluations.
Generate state of the art embeddings
We’ve been excited by the range of applications developers have found for embeddings, from semantic search to recommendations and classification. With embeddings generated through the PaLM API, developers will be able to build applications with their own data or on top of external data sources. Embeddings can also be used in downstream applications built with TensorFlow, Keras, JAX, and other open-source libraries.
Build responsibly and safely
We built our models according to Google’s AI Principles to give developers a responsible AI foundation to start from. We know that control is necessary so developers can define and enforce responsibility and safety in the context of their own applications. Our tools will give developers an easy way to test and adjust safety dimensions to best suit each unique application and use case.
Scale your generative AI application
These developer tools will make it easy to start prototyping and building generative AI applications, but when you need scale, we want to make sure you have the support you need. Google's infrastructure supports the PaLM API and MakerSuite, so you don’t have to worry about hosting or serving. For developers who want to scale their ideas and get enterprise-grade support, security and compliance, and service level agreement (SLA), they can go to Google Cloud Vertex AI and access the same models, along with a host of advanced capabilities such as enterprise search and conversation AI.
It’s an exciting time in AI for developers and we want to continue to make sure we build AI tools that help make your lives easier. We plan to onboard new developers, roll out new features, and make this technology available to the broader developer community soon. During this time, we’ll listen to feedback, learn, and improve these tools to meet developers where they are.
Posted by Danny Driess, Student Researcher, and Pete Florence, Research Scientist, Robotics at Google
Recent years have seen tremendous advances across machine learning domains, from models that can explain jokes or answer visual questions in a variety of languages to those that can produce images based on text descriptions. Such innovations have been possible due to the increase in availability of large scale datasets along with novel advances that enable the training of models on these data. While scaling of robotics models has seen somesuccess, it is outpaced by other domains due to a lack of datasets available on a scale comparable to large text corpora or image datasets.
Today we introduce PaLM-E, a new generalist robotics model that overcomes these issues by transferring knowledge from varied visual and language domains to a robotics system. We began with PaLM, a powerful large language model, and “embodied” it (the “E” in PaLM-E), by complementing it with sensor data from the robotic agent. This is the key difference from prior efforts to bring large language models to robotics — rather than relying on only textual input, with PaLM-E we train the language model to directly ingest raw streams of robot sensor data. The resulting model not only enables highly effective robot learning, but is also a state-of-the-art general-purpose visual-language model, while maintaining excellent language-only task capabilities.
An embodied language model, and also a visual-language generalist
On the one hand, PaLM-E was primarily developed to be a model for robotics, and it solves a variety of taskson multiple types of robots and for multiple modalities (images, robot states, and neural scene representations). At the same time, PaLM-E is a generally-capable vision-and-language model. It can perform visual tasks, such as describing images, detecting objects, or classifying scenes, and is also proficient at language tasks, like quoting poetry, solving math equations or generating code.
PaLM-E combines our most recent large language model, PaLM, together with one of our most advanced vision models, ViT-22B. The largest instantiation of this approach, built on PaLM-540B, is called PaLM-E-562B and sets a new state of the art on the visual-language OK-VQA benchmark, without task-specific fine-tuning, and while retaining essentially the same general language performance as PaLM-540B.
How does PaLM-E work?
Technically, PaLM-E works by injecting observations into a pre-trained language model. This is realized by transforming sensor data, e.g., images, into a representation through a procedure that is comparable to how words of natural language are processed by a language model.
Language models rely on a mechanism to represent text mathematically in a way that neural networks can process. This is achieved by first splitting the text into so-called tokens that encode (sub)words, each of which is associated with a high-dimensional vector of numbers, the token embedding. The language model is then able to apply mathematical operations (e.g., matrix multiplication) on the resulting sequence of vectors to predict the next, most likely word token. By feeding the newly predicted word back to the input, the language model can iteratively generate a longer and longer text.
The inputs to PaLM-E are text and other modalities — images, robot states, scene embeddings, etc. — in an arbitrary order, which we call "multimodal sentences". For example, an input might look like, "What happened between <img_1> and <img_2>?", where <img_1> and <img_2> are two images. The output is text generated auto-regressively by PaLM-E, which could be an answer to a question, or a sequence of decisions in text form.
PaLM-E model architecture, showing how PaLM-E ingests different modalities (states and/or images) and addresses tasks through multimodal language modeling.
The idea of PaLM-E is to train encoders that convert a variety of inputs into the same space as the natural word token embeddings. These continuous inputs are mapped into something that resembles "words" (although they do not necessarily form discrete sets). Since both the word and image embeddings now have the same dimensionality, they can be fed into the language model.
We initialize PaLM-E for training with pre-trained models for both the language (PaLM) and vision components (Vision Transformer, a.k.a. ViT). All parameters of the model can be updated during training.
Transferring knowledge from large-scale training to robots
PaLM-E offers a new paradigm for training a generalist model, which is achieved by framing robot tasks and vision-language tasks together through a common representation: taking images and text as input, and outputting text. A key result is that PaLM-E attains significant positiveknowledge transfer from both the vision and language domains, improving the effectiveness of robot learning.
Positive transfer of knowledge from general vision-language tasks results in more effective robot learning, shown for three different robot embodiments and domains.
Results show that PaLM-E can address a large set of robotics, vision and language tasks simultaneously without performance degradation compared to training individual models on individual tasks. Further, the visual-language data actually significantly improves the performance of the robot tasks. This transfer enables PaLM-E to learn robotics tasks efficiently in terms of the number of examples it requires to solve a task.
Results
We evaluate PaLM-E on three robotic environments, two of which involve real robots, as well as general vision-language tasks such as visual question answering (VQA), image captioning, and general language tasks. When PaLM-E is tasked with making decisions on a robot, we pair it with a low-levellanguage-to-action policy to translate text into low-level robot actions.
In the first example below, a person asks a mobile robot to bring a bag of chips to them. To successfully complete the task, PaLM-E produces a plan to find the drawer and open it and then responds to changes in the world by updating its plan as it executes the task. In the second example, the robot is asked to grab a green block. Even though the block has not been seen by that robot, PaLM-E still generates a step-by-step plan that generalizes beyond the training data of that robot.
PaLM-E controls a mobile robot operating in a kitchen environment. Left: The task is to get a chip bag. PaLM-E shows robustness against adversarial disturbances, such as putting the chip bag back into the drawer. Right: The final steps of executing a plan to retrieve a previously unseen block (green star). This capability is facilitated by transfer learning from the vision and language models.
In the second environment below, the same PaLM-E model solves very long-horizon, precise tasks, such as “sort the blocks by colors into corners,” on a different type of robot. It directly looks at the images and produces a sequence of shorter textually-represented actions — e.g., “Push the blue cube to the bottom right corner,” “Push the blue triangle there too.” — long-horizon tasks that were out of scope for autonomous completion, even in our own most recent models. We also demonstrate the ability to generalize to new tasks not seen during training time (zero-shot generalization), such as pushing red blocks to the coffee cup.
PaLM-E controlling a tabletop robot to successfully complete long-horizon tasks.
The third robot environment is inspired by the field of task and motion planning (TAMP), which studies combinatorially challenging planning tasks (rearranging objects) that confront the robot with a very high number of possible action sequences. We show that with a modest amount of training data from an expert TAMP planner, PaLM-E is not only able to also solve these tasks, but it also leverages visual and language knowledge transfer in order to more effectively do so.
PaLM-E produces plans for a task and motion planning environment.
As a visual-language generalist, PaLM-E is a competitive model, even compared with the best vision-language-only models, including Flamingo and PaLI. In particular, PaLM-E-562B achieves the highest number ever reported on the challenging OK-VQA dataset, which requires not only visual understanding but also external knowledge of the world. Further, this result is reached with a generalist model, without fine-tuning specifically on only that task.
PaLM-E exhibits capabilities like visual chain-of-thought reasoning in which the model breaks down its answering process in smaller steps, an ability that has so far only been demonstrated in the language-only domain. The model also demonstrates the ability to perform inference on multiple images although being trained on only single-image prompts. The image of the New York Knicks and Boston Celtics is under the terms CC-by-2.0 and was posted to Flickr by kowarski. The image of Kobe Bryant is in the Public Domain. The other images were taken by us.
Conclusion
PaLM-E pushes the boundaries of how generally-capable models can be trained to simultaneously address vision, language and robotics while also being capable of transferring knowledge from vision and language to the robotics domain. There are additional topics investigated in further detail in the paper, such as how to leverage neural scene representations with PaLM-E and also the extent to which PaLM-E, with greater model scale, experiences less catastrophic forgetting of its language capabilities.
PaLM-E not only provides a path towards building more capable robots that benefit from other data sources, but might also be a key enabler to other broader applications using multimodal learning, including the ability to unify tasks that have so far seemed separate.
Acknowledgements
This work was done in collaboration across several teams at Google, including the Robotics at Google team and the Brain team, and with TU Berlin. Co-authors: Igor Mordatch, Andy Zeng, Aakanksha Chowdhery, Klaus Greff, Mehdi S. M. Sajjadi, Daniel Duckworth, Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Fei Xia, Brian Ichter, Karol Hausman, Tianhe Yu, Quan Vuong, Yevgen Chebotar, Wenlong Huang, Pierre Sermanet, Sergey Levine, Vincent Vanhoucke, and Marc Toussiant. Danny is a PhD student advised by Marc Toussaint at TU Berlin. We also would like to thank several other colleagues for their advice and help, including Xi Chen, Etienne Pot, Sebastian Goodman, Maria Attarian, Ted Xiao, Keerthana Gopalakrishnan, Kehang Han, Henryk Michalewski, Neil Houlsby, Basil Mustafa, Justin Gilmer, Yonghui Wu, Erica Moreira, Victor Gomes, Tom Duerig, Mario Lucic, Henning Meyer, and Kendra Byrne.
Posted by Minji Yoon, Research Intern, and Bryan Perozzi, Research Scientist, Google Research, Graph Mining Team
Industrial applications of machine learning are commonly composed of various items that have differing data modalities or feature distributions. Heterogeneous graphs (HGs) offer a unified view of these multimodal data systems by defining multiple types of nodes (for each data type) and edges (for the relation between data items). For instance, e-commerce networks might have [user, product, review] nodes or video platforms might have [channel, user, video, comment] nodes. Heterogeneous graph neural networks (HGNNs) learn node embeddings summarizing each node’s relationships into a vector. However, in real world HGs, there is often a label imbalance issue between different node types. This means that label-scarce node types cannot exploit HGNNs, which hampers the broader applicability of HGNNs.
In “Zero-shot Transfer Learning within a Heterogeneous Graph via Knowledge Transfer Networks”, presented at NeurIPS 2022, we propose a model called a Knowledge Transfer Network (KTN), which transfers knowledge from label-abundant node types to zero-labeled node types using the rich relational information given in a HG. We describe how we pre-train a HGNN model without the need for fine-tuning. KTNs outperform state-of-the-art transfer learning baselines by up to 140% on zero-shot learning tasks, and can be used to improve many existing HGNN models on these tasks by 24% (or more).
KTNs transform labels from one type of information (squares) through a graph to another type (stars).
What is a heterogeneous graph?
A HG is composed of multiple node and edge types. The figure below shows an e-commerce network presented as a HG. In e-commerce, “users” purchase “products” and write “reviews”. A HG presents this ecosystem using three node types [user, product, review] and three edge types [user-buy-product, user-write-review, review-on-product]. Individual products, users, and reviews are then presented as nodes and their relationships as edges in the HG with the corresponding node and edge types.
E-commerce heterogeneous graph.
In addition to all connectivity information, HGs are commonly given with input node attributes that summarize each node’s information. Input node attributes could have different modalities across different node types. For instance, images of products could be given as input node attributes for the product nodes, while text can be given as input attributes to review nodes. Node labels (e.g., the category of each product or the category that most interests each user) are what we want to predict on each node.
HGNNs and label scarcity issues
HGNNs compute node embeddings that summarize each node’s local structures (including the node and its neighbor’s information). These node embeddings are utilized by a classifier to predict each node’s label. To train a HGNN model and a classifier to predict labels for a specific node type, we require a good amount of labels for the type.
A common issue in industrial applications of deep learning is label scarcity, and with their diverse node types, HGNNs are even more likely to face this challenge. For instance, publicly available content node types (e.g., product nodes) are abundantly labeled, whereas labels for user or account nodes may not be available due to privacy restrictions. This means that in most standard training settings, HGNN models can only learn to make good inferences for a few label-abundant node types and can usually not make any inferences for any remaining node types (given the absence of any labels for them).
Transfer learning on heterogeneous graphs
Zero-shot transfer learning is a technique used to improve the performance of a model on a target domain with no labels by using the knowledge learned by the model from another related source domain with adequately labeled data. To apply transfer learning to solve this label scarcity issue for certain node types in HGs, the target domain would be the zero-labeled node types. Then what would be the source domain? Previouswork commonly sets the source domain as the same type of nodes located in a different HG, assuming those nodes are abundantly labeled. This graph-to-graph transfer learning approach pre-trains a HGNN model on the external HG and then runs the model on the original (label-scarce) HG.
However, these approaches are not applicable in many real-world scenarios for three reasons. First, any external HG that could be used in a graph-to-graph transfer learning setting would almost surely be proprietary, thus, likely unavailable. Second, even if practitioners could obtain access to an external HG, it is unlikely the distribution of that source HG would match their target HG well enough to apply transfer learning. Finally, node types suffering from label scarcity are likely to suffer the same issue on other HGs (e.g., privacy issues on user nodes).
Our approach: Transfer learning between node types within a heterogeneous graph
Here, we shed light on a more practical source domain, other node types with abundant labels located on the same HG. Instead of using extra HGs, we transfer knowledge within a single HG (assumed to be fully owned by the practitioners) across different types of nodes. More specifically, we pre-train a HGNN model and a classifier on a label-abundant (source) node type, then reuse the models on the zero-labeled (target) node types located in the same HG without additional fine-tuning. The one requirement is that the source and target node types share the same label set (e.g., in the e-commerce HG, product nodes have a label set describing product categories, and user nodes share the same label set describing their favorite shopping categories).
Why is it challenging?
Unfortunately, we cannot directly reuse the pre-trained HGNN and classifier on the target node type. One crucial characteristic of HGNN architectures is that they are composed of modules specialized to each node type to fully learn the multiplicity of HGs. HGNNs use distinct sets of modules to compute embeddings for each node type. In the figure below, blue- and red-colored modules are used to compute node embeddings for the source and target node types, respectively.
HGNNs are composed of modules specialized to each node type and use distinct sets of modules to compute embeddings of different node types. More details can be found in the paper.
While pre-training HGNNs on the source node type, source-specific modules in the HGNNs are well trained, however target-specific modules are under-trained as they have only a small amount of gradients flowing into them. This is shown below, where we see that the L2 norm of gradients for target node types (i.e., Mtt) are much lower than for source types (i.e., Mss). In this case a HGNN model outputs poor node embeddings for the target node type, which results in poor task performance.
In HGNNs, target type-specific modules receive zero or only a small amount of gradients during pre-training on the source node type, leading to poor performance on the target node type.
KTN: Trainable cross-type transfer learning for HGNNs
Our work focuses on transforming the (poor) target node embeddings computed by a pre-trained HGNN model to follow the distribution of the source node embeddings. Then the classifier, pre-trained on the source node type, can be reused for the target node type. How can we map the target node embeddings to the source domain? To answer this question, we investigate how HGNNs compute node embeddings to learn the relationship between source and target distributions.
HGNNs aggregate connected node embeddings to augment a target node’s embeddings in each layer. In other words, the node embeddings for both source and target node types are updated using the same input — the previous layer’s node embeddings of any connected node types. This means that they can be represented by each other. We prove this relationship theoretically and find there is a mapping matrix (defined by HGNN parameters) from the target domain to the source domain (more details in Theorem 1 in the paper). Based on this theorem, we introduce an auxiliary neural network, which we refer to as a Knowledge Transfer Network (KTN), that receives the target node embeddings and then transforms them by multiplying them with a (trainable) mapping matrix. We then define a regularizer that is minimized along with the performance loss in the pre-training phase to train the KTN. At test time, we map the target embeddings computed from the pre-trained HGNN to the source domain using the trained KTN for classification.
In HGNNs, the final node embeddings of both source and target types are computed from different mathematical functions (f(): source, g(): target) which use the same input — the previous layer’s node embeddings.
Experimental results
To examine the effectiveness of KTNs, we ran 18 different zero-shot transfer learning tasks on two public heterogeneous graphs, Open Academic Graph and Pubmed. We compare KTN with eight state-of-the-art transfer learning methods (DAN, JAN, DANN, CDAN, CDAN-E, WDGRL, LP, EP). Shown below, KTN consistently outperforms all baselines on all tasks, beating transfer learning baselines by up to 140% (as measured by Normalized Discounted Cumulative Gain, a ranking metric).
Zero-shot transfer learning on Open Academic Graph (OAG-CS) and Pubmed datasets. The colors represent different categories of transfer learning baselines against which the results are compared. Yellow: Use statistical properties (e.g., mean, variance) of distributions. Green: Use adversarial models to transfer knowledge. Orange: Transfer knowledge directly via graph structure using label propagation.
Most importantly, KTN can be applied to almost all HGNN models that have node and edge type-specific parameters and improve their zero-shot performance on target domains. As shown below, KTN improves accuracy on zero-labeled node types across six different HGNN models(R-GCN, HAN, HGT, MAGNN, MPNN, H-MPNN) by up to 190%.
KTN can be applied to six different HGNN models and improve their zero-shot performance on target domains.
Takeaways
Various ecosystems in industry can be presented as heterogeneous graphs. HGNNs summarize heterogeneous graph information into effective representations. However, label scarcity issues on certain types of nodes prevent the wider application of HGNNs. In this post, we introduced KTN, the first cross-type transfer learning method designed for HGNNs. With KTN, we can fully exploit the richness of heterogeneous graphs via HGNNs regardless of label scarcity. See the paper for more details.
Acknowledgements
This paper is joint work with our co-authors John Palowitch (Google Research), Dustin Zelle (Google Research), Ziniu Hu (Intern, Google Research), and Russ Salakhutdinov (CMU). We thank Tom Small for creating the animated figure in this blog post.
Posted by Lyanne Alfaro, DevRel Program Manager, Google Developer Studio
In honor of Women’s History Month, it’s our pleasure to feature members across the Women Techmakers ecosystem for March’s Developer Journey profiles. These are community leaders who have explored, navigated and built using Google tools. They are active members of the broader Google Developers community.
In March, the WTM program will also celebrate International Women’s Day, centered on the theme “Dare To Be,” celebrating the courage and strength that this community demonstrates, made of thought leaders who are creating a world where women can thrive in tech. You can find more about the Women Techmakers program during IWD here.
Ezinne Osuamadi
Women Techmakers Mentor and Ambassador Waldorf, Germany (A proud Nigerian!) Software Developer/ Technical Product Manager Twitter Linkedln Instagram
What Google tools have you used to build?
Android Studio, Firebase, Google Play Services, Google Analytics. I'm a mobile developer and recently started getting my hands on technical product management and agile product owner. The tools I use for development are Android as the framework and Android Studio as the integrated development environment.
Which tool has been your favorite to use? Why?
I would say Flutter. The Flutter toolkit has a layered architecture that allows for full customization. The fact that Flutter comes with fully-customizable widgets allows you to build native interfaces in minutes. I also love the fact that some of these widgets’ features like scrolling, navigation, icons, and fonts provide a full native performance on both iOS and Android. Flutter is one code base and it makes building mobile applications much easier. I don't have to build a separate app for Android, and another separate app for IOS. Another Flutter feature I like so much is the “hot reload.” It allows me to easily build UIs, add new features, and fix bugs faster. It also allows easy compilation of Flutter code to native ARM machine code using Dart native compilers.
Please share with us about something you’ve built in the past using Google tools.
The first app I built was for one of my former employers. It happened almost three years ago, and it was the first project I worked on when I started learning Flutter. I was super excited about it. It was a timesheet app targeted specifically for employees. The sole purpose of the app is for employees to be able to schedule tasks and also give a time slot to each task.
What advice would you give someone starting in their developer journey?
From my experience running an NGO called Ladies Crushing IT Africa and organizing a couple of tech events, I would say this: Don’t go into software development if you are not passionate or interested in it. Going into development because you think they pay developers well or because your friends are earning money from it is a wrong reason to start your development journey. A tech career journey should be about what you want to be in the future. Does it align with your future goals and objectives? How or what are strategies in achieving that path? Also note that the path to becoming a successful developer is a process. It is not all roses, and there are times when debugging will make it look difficult. But you should be resilient and diligent in making the most out of it when you encounter difficulties. It is always about continuous improvement. Never stop learning to keep yourself up to date with latest technologies and development tools.
Patty O’Callaghan
GDG Glasgow and Women Techmakers Ambassador Glasgow, Scotland Tech Lead @ Charles River Laboratories Twitter Linkedln What Google tools have you used to build?
I use the Chrome DevTools daily. I find them very helpful. I also enjoy working on projects using TensorFlow.JS and Firebase.
Which tool has been your favorite to use? Why?
I would have to say TensorFlow.JS and its pre-made models are my favorite. I enjoy the fact that I can build cool machine learning projects directly in the browser. Even developers unfamiliar with this technology can quickly build, train, and deploy machine learning models using just a few lines of code. Some kids at my code club have used TensorFlow.JS for amazing projects, like building class attendance applications using facial recognition, or a site that checks correct form while practicing karate at home, and another for studying with the help of an AI agent.
Please share with us about something you’ve built in the past using Google tools.
I've worked on several side-projects using TensorFlow.JS for my workshops. One of my favorites is an emotion recognition app, using the Teachable Machine. Additionally, for work, I used TF.JS to develop a machine learning solution that suggests taxonomies for articles based on their content. It analyzes over 30 taxonomies to find the best match for the given article.
What advice would you give someone starting in their developer journey?
First of all, focus on learning the fundamentals of programming. A strong foundation will benefit you in the long run. Practice coding regularly and find a mentor or a community to help you along the way. For example, contributing to an open-source project is an excellent way to learn. And remember: Making mistakes is a natural part of the learning process, so don't get discouraged if you encounter difficulties. Keep pushing forward!
Firestore has been our favorite due to its scalability and real-time data capabilities, through websockets and triggers, the data flexibility, plus query capabilities. This is how we’ve built out our modern event-driven architecture to allow for a completely real-time application providing immediate data and collaboration across our entire white label application suite.
Please share with us about something you’ve built in the past using Google tools.
We built the WeTransact Innovation Platform: From Idea to ROI which offers a learning-based distributed social platform for learning, collaborating and presenting yourself and your innovations.
For customers, we’ve created a White Label SaaS Platform, licensed by universities, incubators, developer groups and any program looking to provide education, collaboration, and AI assisted auto generated presentation and communication tools. Our platform combines features similar to LinkedIn, Coursera, AngelList and Zoom in one simple and modern unified platform for communities to make collaboration & lifelong learning globally accessible to everyone. The WeTransact platform accelerates & scales your program’s impact to solve the world's biggest problems better together.
Here’s just a few other ways we’ve used Google tools:
What advice would you give someone starting in their developer journey?
There’s a few pieces of advice we’d offer! Among them is to start early. Find a friend who is already developing or shares your passion. Find an open source project that inspires you or represents something you're passionate about. Dig in, change stuff, break stuff and then learn why. Search is your best friend – use it to always question and reset your assumptions, learn new approaches, and practice not getting stuck in a “boilerplate” or “standard” solution to each problem. It’s not about memorizing – technology changes every day and you should too. Finally, know that it’s about the process and the journey, not the destination.
The ML Olympiad is an associated Kaggle Community Competitions hosted by ML GDE, TFUG, 3rd-party ML communities, supported by Google Developers. The ML Developer Programs team and the communities successfully ran the first round of the campaign in 2022 and are now launching the second round. The goal of this campaign is to provide ML training opportunities for developers by leveraging Kaggle’s features.
ML Olympiad Community Competitions
17 ML Olympiad community competitions are currently open. Visit the ML Olympiad page to participate.
Posted by Zvika Ben-Haim and Omer Nevo, Software Engineers, Google Research
As global temperatures rise, wildfires around the world are becoming more frequent and more dangerous. Their effects are felt by many communities as people evacuate their homes or suffer harm even from proximity to the fire and smoke.
As part of Google’s mission to help people access trusted information in critical moments, we use satellite imagery and machine learning (ML) to track wildfires and inform affected communities. Our wildfire tracker was recently expanded. It provides updated fire boundary information every 10–15 minutes, is more accurate than similar satellite products, and improves on our previous work. These boundaries are shown for large fires in the continental US, Mexico, and most of Canada and Australia. They are displayed, with additional information from local authorities, on Google Search and Google Maps, allowing people to keep safe and stay informed about potential dangers near them, their homes or loved ones.
Wildfire boundary tracking requires balancing spatial resolution and update frequency. The most scalable method to obtain frequent boundary updates is to use geostationary satellites, i.e., satellites that orbit the earth once every 24 hours. These satellites remain at a fixed point above Earth, providing continual coverage of the area surrounding that point. Specifically, our wildfire tracker models use the GOES-16 and GOES-18 satellites to cover North America, and the Himawari-9 and GK2A satellites to cover Australia. These provide continent-scale images every 10 minutes. The spatial resolution is 2km at nadir (the point directly below the satellite), and lower as one moves away from nadir. The goal here is to provide people with warnings as soon as possible, and refer them to authoritative sources for spatially precise, on-the-ground data, as necessary.
Smoke plumes obscuring the 2018 Camp Fire in California. [Image from NASA Worldview]
Determining the precise extent of a wildfire is nontrivial, since fires emit massive smoke plumes, which can spread far from the burn area and obscure the flames. Clouds and other meteorological phenomena further obscure the underlying fire. To overcome these challenges, it is common to rely on infrared (IR) frequencies, particularly in the 3–4 μm wavelength range. This is because wildfires (and similar hot surfaces) radiate considerably at this frequency band, and these emissions diffract with relatively minor distortions through smoke and other particulates in the atmosphere. This is illustrated in the figure below, which shows a multispectral image of a wildfire in Australia. The visible channels (blue, green, and red) mostly show the triangular smoke plume, while the 3.85 μm IR channel shows the ring-shaped burn pattern of the fire itself. Even with the added information from the IR bands, however, determining the exact extent of the fire remains challenging, as the fire has variable emission strength, and multiple other phenomena emit or reflect IR radiation.
Himawari-8 hyperspectral image of a wildfire. Note the smoke plume in the visible channels (blue, green, and red), and the ring indicating the current burn area in the 3.85μm band.
Model
Prior work on fire detection from satellite imagery is typically based on physics-based algorithms for identifying hotspots from multispectral imagery. For example, the National Oceanic and Atmospheric Administration (NOAA) fire product identifies potential wildfire pixels in each of the GOES satellites, primarily by relying on the 3.9 μm and 11.2 μm frequencies (with auxiliary information from two other frequency bands).
In our wildfire tracker, the model is trained on all satellite inputs, allowing it to learn the relative importance of different frequency bands. The model receives a sequence of the three most recent images from each band so as to compensate for temporary obstructions such as cloud cover. Additionally, the model receives inputs from two geostationary satellites, achieving a super-resolution effect whereby the detection accuracy improves upon the pixel size of either satellite. In North America, we also supply the aforementioned NOAA fire product as input. Finally, we compute the relative angles of the sun and the satellites, and provide these as additional input to the model.
All inputs are resampled to a uniform 1 km–square grid and fed into a convolutional neural network (CNN). We experimented with several architectures and settled on a CNN followed by a 1x1 convolutional layer to yield separate classification heads for fire and cloud pixels (shown below). The number of layers and their sizes are hyperparameters, which are optimized separately for Australia and North America. When a pixel is identified as a cloud, we override any fire detection since heavy clouds obscure underlying fires. Even so, separating the cloud classification task improves the performance of fire detection as we incentivize the system to better identify these edge cases.
CNN architecture for the Australia model; a similar architecture was used for North America. Adding a cloud classification head improves fire classification performance.
To train the network, we used thermal anomalies data from the MODIS and VIIRS polar-orbiting satellites as labels. MODIS and VIIRS have higher spatial accuracy (750–1000 meters) than the geostationary satellites we use as inputs. However, they cover a given location only once every few hours, which occasionally causes them to miss rapidly-advancing fires. Therefore, we use MODIS and VIIRS to construct a training set, but at inference time we rely on the high-frequency imagery from geostationary satellites.
Even when limiting attention to active fires, most pixels in an image are not currently burning. To reduce the model's bias towards non-burning pixels, we upsampled fire pixels in the training set and applied focal loss to encourage improvements in the rare misclassified fire pixels.
The progressing boundary of the 2022 McKinney fire, and a smaller nearby fire.
Evaluation
High-resolution fire signals from polar-orbiting satellites are a plentiful source for training data. However, such satellites use sensors that are similar to geostationary satellites, which increases the risk of systemic labeling errors (e.g., cloud-related misdetections) being incorporated into the model. To evaluate our wildfire tracker model without such bias, we compared it against fire scars (i.e., the shape of the total burnt area) measured by local authorities. Fire scars are obtained after a fire has been contained and are more reliable than real-time fire detection techniques. We compare each fire scar to the union of all fire pixels detected in real time during the wildfire to obtain an image such as the one shown below. In this image, green represents correctly identified burn areas (true positive), yellow represents unburned areas detected as burn areas (false positive), and red represents burn areas that were not detected (false negative).
Example evaluation for a single fire. Pixel size is 1km x 1km.
We compare our models to official fire scars using the precision and recall metrics. To quantify the spatial severity of classification errors, we take the maximum distance between a false positive or false negative pixel and the nearest true positive fire pixel. We then average each metric across all fires. The results of the evaluation are summarized below. Most severe misdetections were found to be a result of errors in the official data, such as a missing scar for a nearby fire.
Test set metrics comparing our models to official fire scars.
We performed two additional experiments on wildfires in the United States (see table below). First, we evaluated an earlier model that relies only on NOAA's GOES-16 and GOES-17 fire products. Our model outperforms this approach in all metrics considered, demonstrating that the raw satellite measurements can be used to enhance the existing NOAA fire product.
Next, we collected a new test set consisting of all large fires in the United States in 2022. This test set was not available during training because the model launched before the fire season began. Evaluating the performance on this test set shows performance in line with expectations from the original test set.
Comparison between models on fires in the United States.
Conclusion
Boundary tracking is part of Google’s wider commitment to bring accurate and up-to-date information to people in critical moments. This demonstrates how we use satellite imagery and ML to track wildfires, and provide real time support to affected people in times of crisis. In the future, we plan to keep improving the quality of our wildfire boundary tracking, to expand this service to more countries and continue our work helping fire authorities access critical information in real time.
Acknowledgements
This work is a collaboration between teams from Google Research, Google Maps and Crisis Response, with support from our partnerships and policy teams. We would also like to thank the fire authorities whom we partner with around the world.
Posted by Shayne Longpre, Student Researcher, and Adam Roberts, Senior Staff Software Engineer, Google Research, Brain Team
Language models are now capable of performing many new natural language processing (NLP) tasks by reading instructions, often that they hadn’t seen before. The ability to reason on new tasks is mostly credited to training models on a wide variety of unique instructions, known as “instruction tuning”, which was introduced by FLAN and extended in T0, Super-Natural Instructions, MetaICL, and InstructGPT. However, much of the data that drives these advances remain unreleased to the broader research community.
In “The Flan Collection: Designing Data and Methods for Effective Instruction Tuning”, we closely examine and release a newer and more extensive publicly available collection of tasks, templates, and methods for instruction tuning to advance the community’s ability to analyze and improve instruction-tuning methods. This collection was first used in Flan-T5 and Flan-PaLM, for which the latter achieved significant improvements over PaLM. We show that training a model on this collection yields improved performance over comparable public collections on all tested evaluation benchmarks, e.g., a 3%+ improvement on the 57 tasks in the Massive Multitask Language Understanding (MMLU) evaluation suite and 8% improvement on BigBench Hard (BBH). Analysis suggests the improvements stem both from the larger and more diverse set of tasks and from applying a set of simple training and data augmentation techniques that are cheap and easy to implement: mixing zero-shot, few-shot, and chain of thought prompts at training, enriching tasks with input inversion, and balancing task mixtures. Together, these methods enable the resulting language models to reason more competently over arbitrary tasks, even those for which it hasn’t seen any fine-tuning examples. We hope making these findings and resources publicly available will accelerate research into more powerful and general-purpose language models.
Public instruction tuning data collections
Since 2020, several instruction tuning task collections have been released in rapid succession, shown in the timeline below. Recent research has yet to coalesce around a unified set of techniques, with different sets of tasks, model sizes, and input formats all represented. This new collection, referred to below as “Flan 2022”, combines prior collections from FLAN, P3/T0, and Natural Instructions with new dialog, program synthesis, and complex reasoning tasks.
A timeline of public instruction tuning collections, including: UnifiedQA, CrossFit, Natural Instructions, FLAN, P3/T0, MetaICL, ExT5, Super-Natural Instructions, mT0, Unnatural Instructions, Self-Instruct, and OPT-IML Bench. The table describes the release date, the task collection name, the model name, the base model(s) that were finetuned with this collection, the model size, whether the resulting model is Public (green) or Not Public (red), whether they train with zero-shot prompts (“ZS”), few-shot prompts (“FS”), chain-of-thought prompts (“CoT”) together (“+”) or separately (“/”), the number of tasks from this collection in Flan 2022, the total number of examples, and some notable methods, related to the collections, used in these works. Note that the number of tasks and examples vary under different assumptions and so are approximations. Counts for each are reported using task definitions from the respective works.
In addition to scaling to more instructive training tasks, The Flan Collection combines training with different types of input-output specifications, including just instructions (zero-shot prompting), instructions with examples of the task (few-shot prompting), and instructions that ask for an explanation with the answer (chain of thought prompting). Except for InstructGPT, which leverages a collection of proprietary data, Flan 2022 is the first work to publicly demonstrate the strong benefits of mixing these prompting settings together during training. Instead of a trade-off between the various settings, mixing prompting settings during training improves all prompting settings at inference time, as shown below for both tasks held-in and held-out from the set of fine-tuning tasks.
Training jointly with zero-shot and few-shot prompt templates improves performance on both held-in and held-out tasks. The stars indicate the peak performance in each setting. Red lines denote the zero-shot prompted evaluation, lilac denotes few-shot prompted evaluation.
Evaluating instruction tuning methods
To understand the overall effects of swapping one instruction tuning collection for another, we fine-tune equivalently-sized T5 models on popular public instruction-tuning collections, including Flan 2021, T0++, and Super-Natural Instructions. Each model is then evaluated on a set of tasks that are already included in each of the instruction tuning collections, a set of five chain-of-thought tasks, and then a set of 57 diverse tasks from the MMLU benchmark, both with zero-shot and few-shot prompts. In each case, the new Flan 2022 model, Flan-T5, outperforms these prior works, demonstrating a more powerful general-purpose NLP reasoner.
Comparing public instruction tuning collections on held-in, chain-of-thought, and held-out evaluation suites, such as BigBench Hard and MMLU. All models except OPT-IML-Max (175B) are trained by us, using T5-XL with 3B parameters. Green text indicates improvement over the next best comparable T5-XL (3B) model.
Single task fine-tuning
In applied settings, practitioners usually deploy NLP models fine-tuned specifically for one target task, where training data is already available. We examine this setting to understand how Flan-T5 compares to T5 models as a starting point for applied practitioners. Three settings are compared: fine-tuning T5 directly on the target task, using Flan-T5 without further fine-tuning on the target task, and fine-tuning Flan-T5 on the target task. For both held-in and held-out tasks, fine-tuning Flan-T5 offers an improvement over fine-tuning T5 directly. In some instances, usually where training data is limited for a target task, Flan-T5 without further fine-tuning outperforms T5 with direct fine-tuning.
Flan-T5 outperforms T5 on single-task fine-tuning. We compare single-task fine-tuned T5 (blue bars), single-task fine-tuned Flan-T5 (red), and Flan-T5 without any further fine-tuning (beige).
An additional benefit of using Flan-T5 as a starting point is that training is significantly faster and cheaper, converging more quickly than T5 fine-tuning, and usually peaking at higher accuracies. This suggests less task-specific training data may be necessary to achieve similar or better results on a particular task.
Flan-T5 converges faster than T5 on single-task fine-tuning, for each of five held-out tasks from Flan fine-tuning. Flan-T5’s learning curve is indicated with the solid lines, and T5’s learning curve with the dashed line. All tasks are held-out during Flan finetuning.
There are significant energy efficiency benefits for the NLP community to adopt instruction-tuned models like Flan-T5 for single task fine-tuning, rather than conventional non-instruction-tuned models. While pre-training and instruction fine-tuning are financially and computationally expensive, they are a one-time cost, usually amortized over millions of subsequent fine-tuning runs, which can become more costly in aggregate, for the most prominent models. Instruction-tuned models offer a promising solution in significantly reducing the amount of fine-tuning steps needed to achieve the same or better performance.
Conclusion
The new Flan instruction tuning collection unifies the most popular prior public collections and their methods, while adding new templates and simple improvements like training with mixed prompt settings. The resulting method outperforms Flan, P3, and Super-Natural Instructions on held-in, chain of thought, MMLU, and BBH benchmarks by 3–17% across zero-shot and few-shot variants. Results suggest this new collection serves as a more performant starting point for researchers and practitioners interested in both generalizing to new instructions or fine-tuning on a single new task.
Acknowledgements
It was a privilege to work with Jason Wei, Barret Zoph, Le Hou, Hyung Won Chung, Tu Vu, Albert Webson, Denny Zhou, and Quoc V Le on this project.
Posted by Nari Yoon, Hee Jung, DevRel Community Manager / Soonson Kwon, DevRel Program Manager
Let’s explore highlights and accomplishments of vast Google Machine Learning communities over the last quarter of 2022. We are enthusiastic and grateful about all the activities by the global network of ML communities. Here are the highlights!
ML at DevFest 2022
A large number of members of ML GDE, TFUG, and 3P ML communities participated in DevFests 2022 worldwide covering various ML topics with Google products. Machine Learning with Jax: Zero to Hero (DevFest Conakry) by ML GDE Yannick Serge Obam Akou (Cameroon) and Easy ML on Google Cloud (DevFest Med) by ML GDE Nathaly Alarcon Torrico (Bolivia) hosted great sessions.
ML Community Summit 2022
ML Community Summit 2022 was hosted on Oct 22-23, 2022, in Bangkok, Thailand. Twenty-five most active community members (ML GDE or TFUG organizer) were invited and shared their past activities and thoughts on Google’s ML products. A video sketch from ML Developer Programs team and a blog posting by ML GDE Margaret Maynard-Reid (United States) help us revisit the moments.
TensorFlow
MAXIM in TensorFlow by ML GDE Sayak Paul (India) shows his implementation of the MAXIM family of models in TensorFlow.
Building Computer Vision Model using TensorFlow: Part 2 by TFUG Pune for the developers who want to deep dive into training an object detection model on Google Colab, inspecting the TF Lite model, and deploying the model on an Android application. ML GDE Nitin Tiwari (India) covered detailed aspects for end-to-end training and deployment of object model detection.
Advent of Code 2022 in pure TensorFlow (days 1-5) by ML GDE Paolo Galeone (Italy) solving the Advent of Code (AoC) puzzles using only TensorFlow. The articles contain a description of the solutions of the Advent of Code puzzles 1-5, in pure TensorFlow.
A hands-on course on TensorFlow Lite projects on Android by ML GDE Xiaoxing Wang (China) is the book mainly introducing the application of TensorFlow Lite in Android development. The content focuses on applying three typical ML applications in Android development.
Build tensorflow-lite-select-tf-ops.aar and tensorflow-lite.aar files with Colab by ML GDE George Soloupis (Greece) guides how you can shrink the final size of your Android application’s .apk by building tensorflow-lite-select-tf-ops.aar and tensorflow-lite.aar files without the need of Docker or personal PC environment.
TensorFlow Lite and MediaPipe Application by ML GDE XuHua Hu (China) explains how to use TFLite to deploy an ML model into an application on devices. He shared experiences with developing a motion sensing game with MediaPipe, and how to solve problems that we may meet usually.
Train and Deploy TensorFlow models in Go by ML GDE Paolo Galeone (Italy) delivered the basics of the TensorFlow Go bindings, the limitations, and how the tfgo library simplifies their usage.
Let’s Generate Images with Keras based Stable Diffusion by ML GDE Chansung Park (Korea) delivered how to generate images with given text and what stable diffusion is. He also talked about Keras-based stable diffusion, basic building blocks, and the advantages of using Keras-based stable diffusion.
How startups can benefit from TFX by ML GDE Hannes Hapke (United States) explains how the San Francisco-based FinTech startup Digits has benefitted from applying TFX early, how TFX helps Digits grow, and how other startups can benefit from TFX too.
Hyperparameter Tuning and ML Pipeline by ML GDE Chansung Park (Korea) explained hyperparam tuning, why it is important; Introduction to KerasTuner, basic usage; how to visualize hyperparam tuning results with TensorBoard; and integration within ML pipeline with TFX.
Introduction to JAX with Flax (slides) by ML GDE Phillip Lippe (Netherlands) reviewed from the basics of the requirements we have on a DL framework to what JAX has to offer. Further, he focused on the powerful function-oriented view JAX offers and how Flax allows you to use them in training neural networks.
JAX Streams: Exploring JAX 0.4 by ML GDE David Cardozo (Canada) and Cristian Garcia (Colombia) showed a review of new features (specifically Shared Arrays) in the recent release of JAX and demonstrated live coding.
Better Hardware Provisioning for ML Experiments on GCP by ML GDE Sayak Paul (India) discussed the pain points of provisioning hardware (especially for ML experiments) and how we can get better provision hardware with code using Vertex AI Workbench instances and Terraform.
MLOps workshop with TensorFlow and Vertex AI by TFUG Chennai targeted beginners and intermediate-level practitioners to give hands-on experience on the E2E MLOps pipeline with GCP. In the workshop, they shared the various stages of an ML pipeline, the top tools to build a solution, and how to design a workflow using an open-source framework like ZenML.
More practical time-series model with BQML by ML GDE JeongMin Kwon (Korea) introduced BQML and time-series modeling and showed some practical applications with BQML ARIMA+ and Python implementations.
Vertex AI Forecast - Demand Forecasting with AutoML by ML GDE Rio Kurihara (Japan) presented a time series forecast overview, time series fusion transformers, and the benefits and desired features of AutoML.
Research & Ecosystem
AI in Healthcare by ML GDE Sara EL-ATEIF (Morocco) introduced AI applications in healthcare and the challenges facing AI in its adoption into the health system.
Women in AI APAC finished their journey at ML Paper Reading Club. During 10 weeks, participants gained knowledge on outstanding machine learning research, learned the latest techniques, and understood the notion of “ML research” among ML engineers. See their session here.
Chat with ML GDE Vikram & Chat with ML GDE Aakash by ML GDE Margaret Maynard-Reid (United States) shared the stories of ML GDEs’ including how they became ML GDE and how they proceeded with their ML projects.
Anatomy of Capstone ML Projects 🫀by ML GDE Sayak Paul (India) discussed working on capstone ML projects that will stay with you throughout your career. He covered various topics ranging from problem selection to tightening up the technical gotchas to presentation. And in Improving as an ML Practitioner he shared his learning from experience in the field working on several aspects.
MLOps Development Environment by ML GDE Vinicius Caridá (Brazil) aims to build a full development environment where you can write your own pipelines connecting MLFLow, Airflow, GCP and Streamlit, and build amazing MLOps pipelines to practice your skills.
Posted by Sreenivas Gollapudi, Senior Staff Research Scientist, and Kostas Kollias, Staff Research Scientist, Google Research, Algorithms & Optimization Team
In many computing applications the system needs to make decisions to serve requests that arrive in an online fashion. Consider, for instance, the example of a navigation app that responds to driver requests. In such settings there is inherent uncertainty about important aspects of the problem. For example, the preferences of the driver with respect to features of the route are often unknown and the delays of road segments can be uncertain. The field of online machine learning studies such settings and provides various techniques for decision-making problems under uncertainty.
A navigation engine has to decide how to route this user’s request. The satisfaction of the user will depend on the (uncertain) congestion of the two routes and unknown preferences of the user on various features, such as how scenic, safe, etc., the route is.
A very well known problem in this framework is the multi-armed bandit problem, in which the system has a set of n available options (arms) from which it is asked to choose in each round (user request), e.g., a set of precomputed alternative routes in navigation. The user’s satisfaction is measured by a reward that depends on unknown factors such as user preferences and road segment delays. An algorithm’s performance over T rounds is compared against the best fixed action in hindsight by means of the regret (the difference between the reward of the best arm and the reward obtained by the algorithm over all T rounds). In the experts variant of the multi-armed bandit problem, all rewards are observed after each round and not just the one played by the algorithm.
An instance of the experts problem. The table presents the rewards obtained by following each of the 3 experts at each round = 1, 2, 3, 4. The best expert in hindsight (and hence the benchmark to compare against) is the middle one, with total reward 21. If, for example, we had selected expert 1 in the first two rounds and expert 3 in the last two rounds (recall that we need to select before observing the rewards of each round), we would have extracted reward 17, which would give a regret equal to 21 - 17 = 4.
These problems have been extensively studied, and existing algorithms can achieve sublinear regret. For example, in the multi-armed bandit problem, the best existing algorithms can achieve regret that is of the order √T. However, these algorithms focus on optimizing for worst-case instances, and do not account for the abundance of available data in the real world that allows us to train machine learned models capable of aiding us in algorithm design.
In “Online Learning and Bandits with Queried Hints” (presented at ITCS 2023), we show how an ML model that provides us with a weak hint can significantly improve the performance of an algorithm in bandit-like settings. Many ML models are trained accurately using relevant past data. In the routing application, for example, specific past data can be used to estimate road segment delays and past feedback from drivers can be used to learn the quality of certain routes. Models trained with such data can, in certain cases, give very accurate feedback. However, our algorithms achieve strong guarantees even when the feedback from the model is in the form of a less explicit weak hint. Specifically, we merely ask that the model predict which of two options will be better. In the navigation application this is equivalent to having the algorithm pick two routes and query an ETA model for which of the two is faster, or presenting the user with two routes with different characteristics and letting them pick the one that is best for them. By designing algorithms that leverage such a hint we can: Improve the regret of the bandits setting on an exponential scale in terms of dependence on T and improve the regret of the experts setting from order of √T to become independent of T. Specifically, our upper bound only depends on the number of experts n and is at most log(n).
Algorithmic Ideas
Our algorithm for the bandits setting utilizes the well known upper confidence bound (UCB) algorithm. The UCB algorithm maintains, as a score for each arm, the average reward observed on that arm so far and adds to it an optimism parameter that becomes smaller with the number of times the arm has been pulled, thus balancing between exploration and exploitation. Our algorithm applies the UCB scores on pairs of arms, mainly in an effort to utilize the available pairwise comparison model that can designate the better of two arms. Each pair of arms i and j is grouped as a meta-arm (i, j) whose reward in each round is equal to the maximum reward between the two arms. Our algorithm observes the UCB scores of the meta-arms and picks the pair (i, j) that has the highest score. The pair of arms are then passed as a query to the ML auxiliary pairwise prediction model, which responds with the best of the two arms. This response is the arm that is finally used by the algorithm.
The decision problem considers three candidate routes. Our algorithm instead considers all pairs of the candidate routes. Suppose pair 2 is the one with the highest score in the current round. The pair is given to the auxiliary ML pairwise prediction model, which outputs whichever of the two routes is better in the current round.
Our algorithm for the experts setting takes a follow-the-regularized-leader (FtRL)approach, which maintains the total reward of each expert and adds random noise to each, before picking the best for the current round. Our algorithm repeats this process twice, drawing random noise two times and picking the highest reward expert in each of the two iterations. The two selected experts are then used to query the auxiliary ML model. The model’s response for the best between the two experts is the one played by the algorithm.
Results
Our algorithms utilize the concept of weak hints to achieve strong improvements in terms of theoretical guarantees, including an exponential improvement in the dependence of regret on the time horizon or even removing this dependence altogether. To illustrate how the algorithm can outperform existing baseline solutions, we present a setting where 1 of the n candidate arms is consistently marginally better than the n-1 remaining arms. We compare our ML probing algorithm against a baseline that uses the standard UCB algorithm to pick the two arms to submit to the pairwise comparison model. We observe that the UCB baseline keeps accumulating regret whereas the probing algorithm quickly identifies the best arm and keeps playing it, without accumulating regret.
An example in which our algorithm outperforms a UCB based baseline. The instance considers n arms, one of which is always marginally better than the remaining n-1.
Conclusion
In this work we explore how a simple pairwise comparison ML model can provide simple hints that prove very powerful in settings such as the experts and bandits problems. In our paper we further present how these ideas apply to more complex settings such as online linear and convex optimization. We believe our model of hints can have more interesting applications in ML and combinatorial optimization problems.
Acknowledgements
We thank our co-authors Aditya Bhaskara (University of Utah), Sungjin Im (University of California, Merced), and Kamesh Munagala (Duke University).
Posted by Posted by Alvin Rajkomar, Research Scientist, and Eric Loreaux, Software Engineer, Google Research
Today many people have digital access to their medical records, including their doctor’s clinical notes. However, clinical notes are hard to understand because of the specialized language that clinicians use, which contains unfamiliar shorthand and abbreviations. In fact, there are thousands of such abbreviations, many of which are specific to certain medical specialities and locales or can mean multiple things in different contexts. For example, a doctor might write in their clinical notes, “pt referred to pt for lbp“, which is meant to convey the statement: “Patient referred to physical therapy for low back pain.” Coming up with this translation is tough for laypeople and computers because some abbreviations are uncommon in everyday language (e.g., “lbp” means “low back pain”), and even familiar abbreviations, such as “pt” for “patient”, can have alternate meanings, such as “physical therapy.” To disambiguate between multiple meanings, the surrounding context must be considered. It’s no easy task to decipher all the meanings, and prior research suggests that expanding the shorthand and abbreviations can help patients better understand their health, diagnoses, and treatments.
In “Deciphering clinical abbreviations with a privacy protecting machine learning system”, published in Nature Communications, we report our findings on a general method that deciphers clinical abbreviations in a way that is both state-of-the-art and is on-par with board certified physicians in this task. We built the model using only public data on the web that wasn't associated with any patient (i.e., no potentially sensitive data) and evaluated performance on real, de-identified notes from inpatient and outpatient clinicians from different health systems. To enable the model to generalize from web-data to notes, we created a way to algorithmically re-write large amounts of internet text to look as if it were written by a doctor (called web-scale reverse substitution), and we developed a novel inference method, (called elicitive inference).
The model input is a string that may or may not contain medical abbreviations. We trained a model to output a corresponding string in which all abbreviations are simultaneously detected and expanded. If the input string does not contain an abbreviation, the model will output the original string. By Rajkomar et al used under CC BY 4.0/ Cropped from original.
Rewriting Text to Include Medical Abbreviations
Building a system to translate doctors’ notes would usually start with a large, representative dataset of clinical text where all abbreviations are labeled with their meanings. But no such dataset for general use by researchers exists. We therefore sought to develop an automated way to create such a dataset but without the use of any actual patient notes, which might include sensitive data. We also wanted to ensure that models trained on this data would still work well on real clinical notes from multiple hospital sites and types of care, such as both outpatient and inpatient.
To do this, we referenced a dictionary of thousands of clinical abbreviations and their expansions, and found sentences on the web that contained uses of the expansions from this dictionary. We then “rewrote” those sentences by abbreviating each expansion, resulting in web data that looked like it was written by a doctor. For instance, if a website contained the phrase “patients with atrial fibrillation can have chest pain,” we would rewrite this sentence to “pts with af can have cp.” We then used the abbreviated text as input to the model, with the original text serving as the label. This approach provided us with large amounts of data to train our model to perform abbreviation expansion.
The idea of “reverse substituting” the long-forms for their abbreviations was introduced in prior research, but our distributed algorithm allows us to extend the technique to large, web-sized datasets. Our algorithm, called web-scale reverse substitution (WSRS), is designed to ensure that rare terms occur more frequently and common terms are down-sampled across the public web to derive a more balanced dataset. With this data in-hand, we trained a series of large transformer-based language models to expand the web text.
We generate text to train our model on the decoding task by extracting phrases from public web pages that have corresponding medical abbreviations (shaded boxes on the left) and then substituting in the appropriate abbreviations (shaded dots, right). Since some words are found much more frequently than others ("patient" more than "posterior tibialis", both of which can be abbreviated “pt”), we downsampled common expansions to derive a more balanced dataset across the thousands of abbreviations. By Rajkomar et al used under CC BY 4.0.
Adapting Protein Alignment Algorithms to Unstructured Clinical Text
Evaluation of these models on the particular task of abbreviation expansion is difficult. Because they produce unstructured text as output, we had to figure out which abbreviations in the input correspond to which expansion in the output. To achieve this, we created a modified version of the Needleman Wunsch algorithm, which was originally designed for divergent sequence alignment in molecular biology, to align the model input and output and extract the corresponding abbreviation-expansion pairs. Using this alignment technique, we were able to evaluate the model’s capacity to detect and expand abbreviations accurately. We evaluated Text-to-Text Transfer Transformer (T5) models of various sizes (ranging from 60 million to over 60 billion parameters) and found that larger models performed translation better than smaller models, with the biggest model achieving the best performance.
Creating New Model Inference Techniques to Coax the Model
However, we did find something unexpected. When we evaluated the performance on multiple external test sets from real clinical notes, we found the models would leave some abbreviations unexpanded, and for larger models, the problem of incomplete expansion was even worse. This is mainly due to the fact that while we substitute expansions on the web for their abbreviations, we have no way of handling the abbreviations that are already present. This means that the abbreviations appear in both the original and rewritten text used as respective labels and input, and the model learns not to expand them.
To address this, we developed a new inference-chaining technique in which the model output is fed again as input to coax the model to make further expansions as long as the model is confident in the expansion. In technical terms, our best-performing technique, which we call elicitive inference, involves examining the outputs from a beam search above a certain log-likelihood threshold. Using elicitive inference, we were able to achieve state-of-the-art capability of expanding abbreviations in multiple external test sets.
Real example of the model’s input (left) and output (right).
Comparative Performance
We also sought to understand how patients and doctors currently perform at deciphering clinical notes, and how our model compared. We found that lay people (people without specific medical training) demonstrated less than 30% comprehension of the abbreviations present in the sample medical texts. When we allowed them to use Google Search, their comprehension increased to nearly 75%, still leaving 1 out of 5 abbreviations indecipherable. Unsurprisingly, medical students and trained physicians performed much better at the task with an accuracy of 90%. We found that our largest model was capable of matching or exceeding experts, with an accuracy of 98%.
How does the model perform so well compared to physicians in this task? There are two important factors in the model’s high comparative performance. Part of the discrepancy is that there were some abbreviations that clinicians did not even attempt to expand (such as "cm" for centimeter), which partly lowered the measured performance. This might seem unimportant, but for non-english speakers, these abbreviations may not be familiar, and so it may be helpful to have them written out. In contrast, our model is designed to comprehensively expand abbreviations. In addition, clinicians are familiar with abbreviations they commonly see in their speciality, but other specialists use shorthand that are not understood by those outside their fields. Our model is trained on thousands of abbreviations across multiple specialities and therefore can decipher a breadth of terms.
Towards Improved Health Literacy
We think there are numerous avenues in which large language models (LLMs) can help advance the health literacy of patients by augmenting the information they see and read. Most LLMs are trained on data that does not look like clinical note data, and the unique distribution of this data makes it challenging to deploy these models in an out-of-the-box fashion. We have demonstrated how to overcome this limitation. Our model also serves to "normalize" clinical note data, facilitating additional capabilities of ML to make the text easier for patients of all educational and health-literacy levels to understand.
Acknowledgements
This work was carried out in collaboration with Yuchen Liu, Jonas Kemp, Benny Li, Ming-Jun Chen, Yi Zhang, Afroz Mohiddin, and Juraj Gottweis. We thank Lisa Williams, Yun Liu, Arelene Chung, and Andrew Dai for many useful conversations and discussions about this work.