Tag Archives: Google APIs

Modernizing your Google App Engine applications

Posted by Wesley Chun, Developer Advocate, Google Cloud

Modernizing your Google App Engine applications header

Next generation service

Since its initial launch in 2008 as the first product from Google Cloud, Google App Engine, our fully-managed serverless app-hosting platform, has been used by many developers worldwide. Since then, the product team has continued to innovate on the platform: introducing new services, extending quotas, supporting new languages, and adding a Flexible environment to support more runtimes, including the ability to serve containerized applications.

With many original App Engine services maturing to become their own standalone Cloud products along with users' desire for a more open cloud, the next generation App Engine launched in 2018 without those bundled proprietary services, but coupled with desired language support such as Python 3 and PHP 7 as well as introducing Node.js 8. As a result, users have more options, and their apps are more portable.

With the sunset of Python 2, Java 8, PHP 5, and Go 1.11, by their respective communities, Google Cloud has assured users by expressing continued long-term support of these legacy runtimes, including maintaining the Python 2 runtime. So while there is no requirement for users to migrate, developers themselves are expressing interest in updating their applications to the latest language releases.

Google Cloud has created a set of migration guides for users modernizing from Python 2 to 3, Java 8 to 11, PHP 5 to 7, and Go 1.11 to 1.12+ as well as a summary of what is available in both first and second generation runtimes. However, moving from bundled to unbundled services may not be intuitive to developers, so today we're introducing additional resources to help users in this endeavor: App Engine "migration modules" with hands-on "codelab" tutorials and code examples, starting with Python.

Migration modules

Each module represents a single modernization technique. Some are strongly recommended, others less so, and, at the other end of the spectrum, some are quite optional. We will guide you as far as which ones are more important. Similarly, there's no real order of modules to look at since it depends on which bundled services your apps use. Yes, some modules must be completed before others, but again, you'll be guided as far as "what's next."

More specifically, modules focus on the code changes that need to be implemented, not changes in new programming language releases as those are not within the domain of Google products. The purpose of these modules is to help reduce the friction developers may encounter when adapting their apps for the next-generation platform.

Central to the migration modules are the codelabs: free, online, self-paced, hands-on tutorials. The purpose of Google codelabs is to teach developers one new skill while giving them hands-on experience, and there are codelabs just for Google Cloud users. The migration codelabs are no exception, teaching developers one specific migration technique.

Developers following the tutorials will make the appropriate updates on a sample app, giving them the "muscle memory" needed to do the same (or similar) with their applications. Each codelab begins with an initial baseline app ("START"), leads users through the necessary steps, then concludes with an ending code repo ("FINISH") they can compare against their completed effort. Here are some of the initial modules being announced today:

  • Web framework migration from webapp2 to Flask
  • Updating from App Engine ndb to Google Cloud NDB client libraries for Datastore access
  • Upgrading from the Google Cloud NDB to Cloud Datastore client libraries
  • Moving from App Engine taskqueue to Google Cloud Tasks
  • Containerizing App Engine applications to execute on Cloud Run

Examples

What should you expect from the migration codelabs? Let's preview a pair, starting with the web framework: below is the main driver for a simple webapp2-based "guestbook" app registering website visits as Datastore entities:

class MainHandler(webapp2.RequestHandler):
'main application (GET) handler'
def get(self):
store_visit(self.request.remote_addr, self.request.user_agent)
visits = fetch_visits(LIMIT)
tmpl = os.path.join(os.path.dirname(__file__), 'index.html')
self.response.out.write(template.render(tmpl, {'visits': visits}))

A "visit" consists of a request's IP address and user agent. After visit registration, the app queries for the latest LIMIT visits to display to the end-user via the app's HTML template. The tutorial leads developers a migration to Flask, a web framework with broader support in the Python community. An Flask equivalent app will use decorated functions rather than webapp2's object model:

@app.route('/')
def root():
'main application (GET) handler'
store_visit(request.remote_addr, request.user_agent)
visits = fetch_visits(LIMIT)
return render_template('index.html', visits=visits)

The framework codelab walks users through this and other required code changes in its sample app. Since Flask is more broadly used, this makes your apps more portable.

The second example pertains to Datastore access. Whether you're using App Engine's ndb or the Cloud NDB client libraries, the code to query the Datastore for the most recent limit visits may look like this:

def fetch_visits(limit):
'get most recent visits'
query = Visit.query()
visits = query.order(-Visit.timestamp).fetch(limit)
return (v.to_dict() for v in visits)

If you decide to switch to the Cloud Datastore client library, that code would be converted to:

def fetch_visits(limit):
'get most recent visits'
query = DS_CLIENT.query(kind='Visit')
query.order = ['-timestamp']
return query.fetch(limit=limit)

The query styles are similar but different. While the sample apps are just that, samples, giving you this kind of hands-on experience is useful when planning your own application upgrades. The goal of the migration modules is to help you separate moving to the next-generation service and making programming language updates so as to avoid doing both sets of changes simultaneously.

As mentioned above, some migrations are more optional than others. For example, moving away from the App Engine bundled ndb library to Cloud NDB is strongly recommended, but because Cloud NDB is available for both Python 2 and 3, it's not necessary for users to migrate further to Cloud Datastore nor Cloud Firestore unless they have specific reasons to do so. Moving to unbundled services is the primary step to giving users more flexibility, choices, and ultimately, makes their apps more portable.

Next steps

For those who are interested in modernizing their apps, a complete table describing each module and links to corresponding codelabs and expected START and FINISH code samples can be found in the migration module repository. We are also working on video content based on these migration modules as well as producing similar content for Java, so stay tuned.

In addition to the migration modules, our team has also setup a separate repo to support community-sourced migration samples. We hope you find all these resources helpful in your quest to modernize your App Engine apps!

Automate & Extend with Apps Script (Google Cloud for Student Developers)

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud


In the previous episode of our new Google Cloud for Student Developers video series, we introduced G Suite REST APIs, showing how to enhance your applications by integrating with Gmail, Drive, Calendar, Docs, Sheets, and Slides. However, not all developers prefer the lower-level style of programming requiring the use of HTTP, OAuth2, and processing the request-response cycle of API usage. Building apps that access Google technologies is open to everyone at any level, not just advanced software engineers.

Enhancing career readiness of non-engineering majors helps make our services more inclusive and helps democratize API functionality to a broader audience. For the budding data scientist, business analyst, DevOps staff, or other technical professionals who don't code every day as part of their profession, Google Apps Script was made just for you. Rather than thinking about development stacks, HTTP, or authorization, you access Google APIs with objects.

This video blends a standard "Hello World" example with various use cases where Apps Script shines, including cases of automation, add-ons that extend the functionality of G Suite editors like Docs, Sheets, and Slides, accessing other Google or online services, and custom functions for Google Sheets—the ability to add new spreadsheet functions.

One featured example demonstrates the power to reach multiple Google technologies in an expressive way: lots of work, not much code. What may surprise readers is that this entire app, written by a colleague years ago, is comprised of just 4 lines of code:

function sendMap() {
var sheet = SpreadsheetApp.getActiveSheet();
var address = sheet.getRange('A1').getValue();
var map = Maps.newStaticMap().addMarker(address);
GmailApp.sendEmail('[email protected]',
'Map', 'See below.', {attachments:[map]});
}

Apps Script shields its users from the complexities of authorization and "API service endpoints." Developers only need an object to interface with a service; in this case, SpreadsheetApp to access Google Sheets, and similarly, Maps for Google Maps plus GmailApp for Gmail. Viewers can build this sample line-by-line with its corresponding codelab (a self-paced, hands-on tutorial). This example helps student (and professional) developers...

  1. Build something useful that can be extended into much more
  2. Learn how to accomplish several tasks without a lot of code
  3. Imagine what else is possible with G Suite developer tools

For further exploration, check out this video as well as this one which introduces Apps Script and presents the same code sample with more details. (Note the second video emails the map's link, but the app has been updated to attach it instead; the code has been updated everywhere else.) You may also access the code at its open source repository. If that's not enough, learn about other ways you can use Apps Script from its video library. Finally, stay tuned for the next pair of episodes which will cover full sample apps, one with G Suite REST APIs, and another with Apps Script.

We look forward to seeing what you build with Google Cloud.

Google Cloud for Student Developers: Accessing G Suite REST APIs

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Recently, we introduced the "Google Cloud for Student Developers" video series to encourage students majoring in STEM fields to gain development experience using industry APIs (application programming interfaces) for career readiness. That first episode provided an overview of the G Suite developer landscape while this episode dives deeper, introducing G Suite's HTTP-based RESTful APIs, starting with Google Drive.

The first code sample has a corresponding codelab (a self-paced, hands-on tutorial) where you can build a simple Python script that displays the first 100 files or folders in your Google Drive. The codelab helps student (and professional) developers...

  1. Realize it is something that they can accomplish
  2. Learn how to create this solution without many lines of code
  3. See what’s possible with Google Cloud APIs

While everyone is familiar with using Google Drive and its web interface, many more doors are opened when you can code Google Drive. Check this blog post and video for a more comprehensive code walkthrough as well as access the code at its open source repository. What may surprise readers is that the entire app can be boiled down to just these 3-4 lines of code (everything else is either boilerplate or security):

    DRIVE = discovery.build('drive', 'v3', http=creds.authorize(Http()))
files = DRIVE.files().list().execute().get('files', [])
for f in files:
print(f['name'], f['mimeType'])

Once an "API service endpoint" to Google Drive is successfully created, calling the list() method in Drive's files() collection is all that's needed. By default, files().list() returns the first 100 files/folders—you can set the pageSize parameter for a different amount returned.

The video provides additional ideas of what else is possible by showing you examples of using the Google Docs, Sheets, and Slides APIs, and those APIs will be accessed in a way similar to what you saw for Drive earlier. You'll also hear about what resources are available for each API, such as documentation, code samples, and links to support pages.

If you wish to further explore coding with G Suite REST APIs, check out some additional videos for the Drive, Sheets, Gmail, Calendar, and Slides APIs. Stay tuned for the next episode which highlights the higher-level Google Apps Script developer platform.

We look forward to seeing what you build with Google Cloud!

Google Cloud for Student Developers: G Suite APIs (intro & overview)

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Students graduating from STEM majors at universities with development experience using industry APIs (application programming interfaces) have real-world practice that can prove valuable in terms of career readiness.

To that end, the Google Cloud team is creating a "Google Cloud for Student Developers" YouTube video series crafted specifically for the student developer audience.

While viewable by developers with any experience with Google Cloud, this series focuses on developing skills that will help student developers in their future careers. Google Cloud includes a pair of well-known product groups, Google Cloud Platform (GCP) as well as G Suite. While most equate GCP for developers and G Suite for users, many don't know that behind each G Suite application like Gmail, Google Drive, Calendar, Docs, Sheets, and Slides, are developer APIs.

The Google Cloud higher education team is happy to announce the first of a 5-episode mini-series to kickoff the video collection that shows student developers how they can code G Suite, starting with this first one introducing the G Suite developer landscape. Viewers will hear about the HTTP-based RESTful APIs as well as Google Apps Script, a serverless higher-level development environment that allows for automation, extension of G Suite app functionality, as well as integration of your apps with Gmail, Drive, Calendar, Docs, Sheets, Slides, and many more G Suite, Google, and even external services.

Succeeding episodes dig deeper into the RESTful APIs as well as Apps Script, with the final pair of videos showing students full-fledged apps they can build with G Suite developer tools. To learn more about integrating with G Suite, see its top-level documentation site and overview page as well as the set of all G Suite developer videos. Also stay tuned for new episodes in the series that focus on GCP developer tools. We look forward to seeing what you can build with G Suite, but also with GCP as well… or both at the same time!

Get smart about preparing your app for OAuth verification

Posted by Nafis Zebarjadi, Product Manager and Adam Dawes, Senior Product Manager

Project Strobe was started to help users have control over their data while giving developers more explicit rules of the road to ensure everyone is confident that their data is secure. One result of this effort has been to expand our app verification program to cover more apps and more types of data access. It is important to understand how the process works so that you can optimally build your app and streamline the verification process. Here we walk you through the process of preparing your app for OAuth verification.

Getting prepared for verification

The first thing you should do is confirm whether your app needs verification. App verification is only required if you want to launch your app widely to consumer or enterprise users and the app requests sensitive or restricted scopes. Apps that use non-sensitive scopes, are under development, or are built just for your own G Suite users are not required to go through verification. If the app is just for users within your own organization, choose the ‘Internal’ application type to restrict the app to use within your own organization and skip verification.

Once you initiate app verification, it is not easy to make updates to your app's Google API configuration. If you make any changes while in the process, you will need to start over again, so it’s critical that you get your app ready before initiating verification to avoid delays.

Determining if your app is using sensitive or restricted scopes

The first thing you need to do is look at your code on each platform to determine which OAuth scopes (Google APIs) your service needs. Be sure to do this on every client; we often see that apps will request different scopes on different platforms, and then initiate app verification on a subset of scopes than your clients actually use. Often, you can find the scopes by searching your code for the string “www.googleapis.com/auth”. Not all legacy scopes contain that string so you may also want to find the code related to the Google API library you’re using (on the specific platform) to see what scopes are being requested, or look at our directory of scopes.

Once you have identified all of the scopes that your apps use, you can check to see whether they are sensitive or restricted by going to the Cloud Console (APIs & Services -> Credentials -> OAuth consent screen -> Scopes for Google APIs) and pressing the ‘Add scope’ button. This will bring up the following window:

Google Cloud Console’s ‘Add Scope’ to your OAuth client tool and how it highlights sensitive scopes.

If the scope has a lock icon, it means that the scope is either sensitive or restricted and that you’ll need to go through app verification before you can widely launch to Google users.

[Note that the tool only lists scopes for APIs that you’ve enabled for your project. If you don’t see a scope listed, you’ll first need to enable the corresponding API for your project from the API Library. The fact that you’re not seeing the scope used in your code may mean that you have clients set up in different projects.]

Setting up the right project structure

Apps are reviewed and approved at the project level so you’ll want to make sure that you’ve configured your clients properly before starting app verification. If you have multiple projects, each one will have to independently go through app verification.

When to add multiple clients to a project: You may have multiple clients for your app to support different platforms like Android, Web and iOS. Ideally, all of these clients should be in the same project because it will smooth out the cross-client consent experience. When clients are in the same project, users only need to provide consent to one of the clients. Other clients can automatically get tokens without forcing the user to go through the consent flow for the same requested scopes again. The user is agreeing to share data with your service regardless of which platform they happen to be using and your service terms should be the same across platforms.

When to separate clients into separate projects: Your company may also have multiple apps that you publish to users. You may or may not want to host the clients related to your different apps in the same project. Generally, if the different apps use the same login system, have the same privacy policy and users recognize the brand of the publisher of all the apps, then it makes sense to have all the clients in the same project. For example, if PersonalFinance Corp has accounting, budgeting and tax apps that all share the same login, privacy policy and users recognize the PersonalFinance Corp brand, then it is best to structure those all in the same project. However, if CoolGames publisher has lots of titles that have different login systems and different privacy policies, or users are more familiar with the individual game titles than the CoolGames brand, then you should use separate projects.

Reorganizing projects: It is not possible to move or reorganize clients once they are created. If you want to make changes, you can either choose to create new clients in a centralized project or get each app verified independently. If you create new clients in a centralized project, you’ll update your apps to use the new client and abandon the old clients. The issue you may encounter with this approach is that your app may have to obtain user consent all over again (if the user hasn’t also consented to your other client). Alternately, you can leave your clients in separate projects; however, each project will have to go through app verification independently and users will have to consent to each of your clients individually.

Setting up test vs production projects: For many developers, it is also helpful to have a parallel test project to your production project. This allows you to easily change scopes or other app properties and test behavior without having to go through app verification.

Configuring your project

If your app does need to be verified, you’ll want to make sure the information about your project is up-to-date to avoid delay.

Project Owners

As we roll out changes across our API ecosystem, it is important to make sure your projects have up-to-date contact information. We often need to send notifications about changes, and have had developers miss important updates because of incorrect contact information which has resulted in their app being unexpectedly disabled. One way to help ensure your team gets notifications is to create a Google Group that aliases to a stable group within your company (and be sure to configure the group to receive emails from non-members). Another option is to create an Organizational Resource in the Cloud Console so that your client assets can be centrally administered and recovered when owners leave the company. It’s also very good practice to ensure the owners of the Android/iOS/Web clients are also owners or editors of the project. Domain verification is also required for every app, so you will also want to add your DNS administrator to the project so that person can easily go through the process.

To update project owners, use Cloud IAM in the Cloud Console (Cloud Console -> IAM and admin -> IAM).

Branding Info and Domain Verification

Branding info includes your app’s name and logo. It is critical that these are accurate because users use these to decide whether they know and trust your app. In the verification process, we will validate that you own the brand and logo and that it matches the information on your web site. If you make changes, your previously approved branding will continue to be shown until the new information can be verified.

OAuth consent screen showing a redirect domain

You will also need to verify the domain associated with your brand. This is true even if you only have Android/iOS versions of your app because you must have a website to publicly host your privacy policy. You start the domain verification process by linking your domain to your project in the Cloud Console (APIs & Services -> Domain verification). You’ll then need to go to the Search Console to prove that you own and control the domain.

Domain verification is a key security feature for your web clients. If you have web clients in your project, each of those must have their Authorized Redirect URIs or Authorized JavaScript Origins match an already verified domain. This enables us to guarantee that OAuth tokens are only returned to your application.

Adding an authorized domain for a Google Cloud Project in the domain verification tab

Scopes

Since you’ve already identified the scopes that your app uses, you should now check to see if you can change scopes to minimize your data access. Our API User Data Policy requires that you only request information that your app needs and that you’re clear to the user about how you will use it. It’s inappropriate to gain access to Google user data for alternate purposes such as advertising and market research.

In particular, you’ll want to try to avoid the use of restricted scopes. The verification process for restricted scopes can take several weeks longer than sensitive scopes. It also requires significant documentation and may involve a third-party security assessment that you must pay for. Currently, only specific Gmail scopes are restricted, but we have announced that most Drive scopes are also becoming restricted in early 2020.

If your app does need to access a restricted scope, consider architecting your app such that the Google user data is only ever stored client-side on the user’s device (like a contact manager app). Storing data in the cloud or on your own servers will require you to obtain a third-party security assessment (at your expense), and could also result in significant work to resolve any security issues found during the assessment.

Once you’ve decided on the scopes your app will need, make sure that they are registered with your project and reflected in your app’s code. We’ve seen many cases where a developer’s code calls a different set of scopes than those that have been registered in the Cloud Console. If your app does this, your users will see an unverified app error. Many developers request troubleshooting help because their users are unexpectedly seeing these errors even though their app was approved. Inevitably, it is because their code does not match what was verified. Similarly, if you need to add new scopes to your application, you’ll need to get those scopes approved before you launch the functionality into your production app (a test client is going to be essential here).

While you’re thinking about scopes, you should also consider how and when you are asking your users for consent. The best practice is to not request scopes at sign-in, but to use incremental authorization to allow a user to access a particular feature when they want it. This is a great way to build trust because the user interacts in a particular feature, can see the benefit of the feature, and understands why granting a particular permission will make the feature more useful.

Privacy Policy

Our goal in verifying apps is to ensure that any data users choose to share with third-parties is well-managed and meets users’ expectations about how it will be used. Your privacy policy is your public contract to your users and a critical proof to us that users’ expectations will be met.

You must include a link to your privacy policy on your website. If the domain where you host that policy isn’t verified, we won’t verify your app. If your app is purely mobile, with no server-side component, you will still need a privacy policy, but it may be very simple and describe that your app only stores data on a user’s device.

Google can not provide guidance on your privacy policy, but if your app requests restricted scopes, we will scrutinize your policy to understand how you plan to use that data and ensure that it conforms to our requirements. Make sure you understand the Limited Use requirements, and consult with your legal counsel to ensure that your privacy policy is consistent with the requirements. To ensure clarity in how your app handles email content, we also recommend adding the following statement to your application’s home page: “App’s use of information received from Gmail APIs will adhere to Google's Limited Use Requirements.” This is needed when your privacy policy is not specific in how email content is used.

Submitting your app for verification

Once you have your project(s) configured with all the appropriate information, you can submit your app for verification. We have three different types of app verification depending on the scopes you request, each taking a different amount of time to complete. If you start your verification with one set of scopes and later decide you need different scopes, you usually need to finish your existing verification before you can start the process again. This could cause frustration and lengthen your overall verification process.

Brand Verification (2-3 days)

Brand Verification is our simplest process and validates that your brand name and logo belong to you. It is an optional step if your app is requesting non-sensitive scopes like Google Sign-In and typically takes just 2 to 3 business days. If your app doesn’t go through brand verification, users will only see your domain name listed on the consent page.

Sensitive Scope Verification (3-5 days)

Starting in June 2019, we greatly expanded the classification of sensitive scopes and started requiring more extensive verification for new apps that are accessing those scopes. Existing apps that are already accessing sensitive scopes need to go through this verification process in the latter half of 2019.

Sensitive scope verification involves brand and domain validation, checking that the privacy policy is prominently available from your application home page. We also review your app and privacy policy against our API Services: User Data Policy and check for deceptive practices. The privacy policy must disclose the manner in which your application accesses, uses, stores, or shares Google user data. Your use of Google user data must be limited to the practices disclosed in your published privacy policy.

A YouTube or accessible Drive video will also be required to understand how users will experience your request for scopes, showing specifically how they’ll benefit from granting you access. The identity of your app needs to be clear from the video (including the app’s client ID), and you’ll need to highlight the value proposition you communicate to the user before requesting the scopes.

Until verification is completed, users will see an unverified app page when your app requests a scope requiring verification. Up to 100 users may choose to grant access while your app is unverified. After that, users will be blocked from granting access to your app until verification is complete.

Unverified app screen on mobile

Sensitive scope verification usually takes 3 to 5 business days if there aren’t any issues with your app.

Restricted Scope Verification (4-6 weeks)

Restricted scope verification is a much more involved process. In addition to going through all the steps for a sensitive scope verification, your app will also have a much more rigorous privacy policy review to ensure that your use of Google user data conforms to our Limited Use requirements. Only permitted application types will be considered for access to restricted scopes. Finally, if your app stores data on a server, you will need to pass an annual security assessment.

We do error validation before allowing you to click the ‘Submit for Verification’ button. Here are some common reasons why the button is not clickable:

  • No verified domain
  • Privacy policy URL, authorized redirect URIs or origins for your client do not match an authorized domain
  • No new scopes added to the project that require verification

When you submit your app for verification, you will need to provide a written explanation for why your app needs the requested scopes. This explanation should include the nature of the feature and how the user will benefit from using it. It’s also best to include a link to your YouTube video in the original submission to save some back and forth with the review team.

You’ll also be asked again what email should receive questions and notifications about the verification process. Make sure you provide an address that you pay attention to and can receive emails from outside your domain. Questions will go to the person who initiated verification (not necessarily project owners) and the contact email address provided in the verification form. We’ve seen many requests delayed because the developer hasn’t responded to questions from the verification team.

Example form for a project requesting verification

Responding to verification questions

Apps with sensitive and restricted scopes often need to answer questions from the verification team. If you believe it has taken a long time to get a response from the verification team, you should search your inbox for messages from ‘api-oauth-dev-verification-reply’ to ensure that you haven’t missed anything.

By following these guidelines for submitting your app for verification, you can greatly streamline the process of getting your app approved and released to the Google user community. If you have any follow-up questions, be sure to scan the OAuth API Verification FAQ.

Mail merge with the Google Docs API

Posted by Wesley Chun, Developer Advocate, Google Cloud

Students and working professionals use Google Docs every day to help enhance their productivity and collaboration. The ability to easily share a document and simultaneously edit it together are some of our users' favorite product features. However, many small businesses, corporations, and educational institutions often find themselves needing to automatically generate a wide variety of documents, ranging from form letters to customer invoices, legal paperwork, news feeds, data processing error logs, and internally-generated documents for the corporate CMS (content management system).

Mail merge is the process of taking a master template document along with a data source and "merging" them together. This process makes multiple copies of the master template file and customizes each copy with corresponding data of distinct records from the source. These copies can then be "mailed," whether by postal service or electronically. Using mail merge to produce these copies at volume without human labor has long been a killer app since word processors and databases were invented, and now, you can do it in the cloud with G Suite APIs!

While the Document Service in Google Apps Script has enabled the creation of Google Docs scripts and Docs Add-ons like GFormit (for Google Forms automation), use of Document Service requires developers to operate within the Apps Script ecosystem, possibly a non-starter for more custom development environments. Programmatic access to Google Docs via an HTTP-based REST API wasn't possible until the launch of the Google Docs API earlier this year. This release has now made building custom mail merge applications easier than ever!

Today's technical overview video walks developers through the concept and flow of mail merge operations using the Docs, Sheets, Drive, and Gmail APIs. Armed with this knowledge, developers can dig deeper and access a fully-working sample application (Python), or just skip it and go straight to its open source repo. We invite you to check out the Docs API documentation as well as the API overview page for more information including Quickstart samples in a variety of languages. We hope these resources enable you to develop your own custom mail merge solution in no time!

Code that final mile: from big data analysis to slide presentation

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Google Cloud Platform (GCP) provides infrastructure, serverless products, and APIs that help you build, innovate, and scale. G Suite provides a collection of productivity tools, developer APIs, extensibility frameworks and low-code platforms that let you integrate with G Suite applications, data, and users. While each solution is compelling on its own, users can get more power and flexibility by leveraging both together.

In the latest episode of the G Suite Dev Show, I'll show you one example of how you can take advantage of powerful GCP tools right from G Suite applications. BigQuery, for example, can help you surface valuable insight from massive amounts of data. However, regardless of "the tech" you use, you still have to justify and present your findings to management, right? You've already completed the big data analysis part, so why not go that final mile and tap into G Suite for its strengths? In the sample app covered in the video, we show you how to go from big data analysis all the way to an "exec-ready" presentation.

The sample application is meant to give you an idea of what's possible. While the video walks through the code a bit more, let's give all of you a high-level overview here. Google Apps Script is a G Suite serverless development platform that provides straightforward access to G Suite APIs as well as some GCP tools such as BigQuery. The first part of our app, the runQuery() function, issues a query to BigQuery from Apps Script then connects to Google Sheets to store the results into a new Sheet (note we left out CONSTANT variable definitions for brevity):

function runQuery() {
// make BigQuery request
var request = {query: BQ_QUERY};
var queryResults = BigQuery.Jobs.query(request, PROJECT_ID);
var jobId = queryResults.jobReference.jobId;
queryResults = BigQuery.Jobs.getQueryResults(PROJECT_ID, jobId);
var rows = queryResults.rows;

// put results into a 2D array
var data = new Array(rows.length);
for (var i = 0; i < rows.length; i++) {
var cols = rows[i].f;
data[i] = new Array(cols.length);
for (var j = 0; j < cols.length; j++) {
data[i][j] = cols[j].v;
}
}

// put array data into new Sheet
var spreadsheet = SpreadsheetApp.create(QUERY_NAME);
var sheet = spreadsheet.getActiveSheet();
var headers = queryResults.schema.fields;
sheet.appendRow(headers); // header row
sheet.getRange(START_ROW, START_COL,
rows.length, headers.length).setValues(data);

// return Sheet object for later use
return spreadsheet;
}

It returns a handle to the new Google Sheet which we can then pass on to the next component: using Google Sheets to generate a Chart from the BigQuery data. Again leaving out the CONSTANTs, we have the 2nd part of our app, the createColumnChart() function:

function createColumnChart(spreadsheet) {
// create & put chart on 1st Sheet
var sheet = spreadsheet.getSheets()[0];
var chart = sheet.newChart()
.setChartType(Charts.ChartType.COLUMN)
.addRange(sheet.getRange(START_CELL + ':' + END_CELL))
.setPosition(START_ROW, START_COL, OFFSET, OFFSET)
.build();
sheet.insertChart(chart);

// return Chart object for later use
return chart;
}

The chart is returned by createColumnChart() so we can use that plus the Sheets object to build the desired slide presentation from Apps Script with Google Slides in the 3rd part of our app, the createSlidePresentation() function:

function createSlidePresentation(spreadsheet, chart) {
// create new deck & add title+subtitle
var deck = SlidesApp.create(QUERY_NAME);
var [title, subtitle] = deck.getSlides()[0].getPageElements();
title.asShape().getText().setText(QUERY_NAME);
subtitle.asShape().getText().setText('via GCP and G Suite APIs:\n' +
'Google Apps Script, BigQuery, Sheets, Slides');

// add new slide and insert empty table
var tableSlide = deck.appendSlide(SlidesApp.PredefinedLayout.BLANK);
var sheetValues = spreadsheet.getSheets()[0].getRange(
START_CELL + ':' + END_CELL).getValues();
var table = tableSlide.insertTable(sheetValues.length, sheetValues[0].length);

// populate table with data in Sheets
for (var i = 0; i < sheetValues.length; i++) {
for (var j = 0; j < sheetValues[0].length; j++) {
table.getCell(i, j).getText().setText(String(sheetValues[i][j]));
}
}

// add new slide and add Sheets chart to it
var chartSlide = deck.appendSlide(SlidesApp.PredefinedLayout.BLANK);
chartSlide.insertSheetsChart(chart);

// return Presentation object for later use
return deck;
}

Finally, we need a driver application that calls all three one after another, the createColumnChart() function:

function createBigQueryPresentation() {
var spreadsheet = runQuery();
var chart = createColumnChart(spreadsheet);
var deck = createSlidePresentation(spreadsheet, chart);
}

We left out some detail in the code above but hope this pseudocode helps kickstart your own project. Seeking a guided tutorial to building this app one step-at-a-time? Do our codelab at g.co/codelabs/bigquery-sheets-slides. Alternatively, go see all the code by hitting our GitHub repo at github.com/googlecodelabs/bigquery-sheets-slides. After executing the app successfully, you'll see the fruits of your big data analysis captured in a presentable way in a Google Slides deck:

This isn't the end of the story as this is just one example of how you can leverage both platforms from Google Cloud. In fact, this was one of two sample apps featured in our Cloud NEXT '18 session this summer exploring interoperability between GCP & G Suite which you can watch here:

Stay tuned as more examples are coming. We hope these videos plus the codelab inspire you to build on your own ideas.

10 must-see G Suite developer sessions at Google Cloud Next ‘18

Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud

Google Cloud Next '18 is only a few days away, and this year, there are over 500 sessions covering all aspects of cloud computing, from G Suite to the Google Cloud Platform. This is your chance to learn first-hand how to build custom solutions in G Suite alongside other developers from Independent Software Vendors (ISVs), systems integrators (SIs), and industry enterprises.

G Suite's intelligent productivity apps are secure, smart, and simple to use, so why not integrate your apps with them? If you're planning to attend the event and are wondering which sessions you should check out, here are some sessions to consider:

  • "Power Your Apps with Gmail, Google Drive, Calendar, Sheets, Slides, and More!" on Tuesday, July 24th. Join me as I lead this session that provides a high-level technical overview of the various ways you can build with G Suite. This is a great place to start before attending deeper technical sessions.
  • "Power your apps with Gmail, Google Drive, Calendar, Sheets, Slides and more" on Monday, July 23rd and Friday, July 27th. Join me for one of our half-day bootcamps! Both are identical and bookend the conference—one on Monday and another on Friday, meaning you can do either one and still make it to all the other conference sessions. While named the same as the technical overview above, the bootcamps dive a bit deeper and feature more detailed tech talks on Google Apps Script, the G Suite REST APIs, and App Maker. The three (or more!) hands-on codelabs will leave you with working code that you can start customizing for your own apps on the job! Register today to ensure you get a seat.
  • "Automating G Suite: Apps Script & Sheets Macro Recorder" and "Enhancing the Google Apps Script Developer Experience" both on Tuesday, July 24th. Interested in Google Apps Script, our customized serverless JavaScript runtime used to automate, integrate, and extend G Suite? The first session introduces developers and ITDMs to new features as well as real business use cases while the other dives into recent features that make Apps Script more friendly for the professional developer.
  • "G Suite + GCP: Building Serverless Applications with All of Google Cloud" on Wednesday, July 25th. This session is your chance to attend one of the few hybrid talks that look at how to you can build applications on both the GCP and G Suite platforms. Learn about serverless—a topic that's become more and more popular over the past year—and see examples on both platforms with a pair of demos that showcase how you can take advantage of GCP tools from a G Suite serverless app, and how you can process G Suite data driven by GCP serverless functions. I'm also leading this session and eager to show how you can leverage the strengths of each platform together in the same applications.
  • "Build apps your business needs, with App Maker" and "How to Build Enterprise Workflows with App Maker" on Tuesday, July 24th and Thursday, July 26th, respectively. Google App Maker is a new low-code, development environment that makes it easy to build custom apps for work. It's great for business analysts, technical managers, or data scientists who may not have software engineering resources. With a drag & drop UI, built-in templates, and point-and-click data modeling, App Maker lets you go from idea to app in minutes! Learn all about it with our pair of App Maker talks featuring our Developer Advocate, Chris Schalk.
  • "The Google Docs, Sheets & Slides Ecosystem: Stronger than ever, and growing" and "Building on the Docs Editors: APIs and Apps Script" on Wednesday, July 25th and Thursday, July 26th, respectively. Check out these pair of talks to learn more about how to write apps that integrate with the Google Docs editors (Docs, Sheets, Slides, Forms). The first describes the G Suite productivity tools' growing interoperability in the enterprise with while the second focuses on the different integration options available to developers, either using Google Apps Script or the REST APIs.
  • "Get Productive with Gmail Add-ons" on Tuesday, July 24th. We launched Gmail Add-ons less than a year ago to help developers integrate their apps alongside Gmail. Check out this video I made to help you get up-to-speed on Gmail Add-ons! This session is for developers either new to Gmail Add-ons or want to hear the latest from the Gmail Add-ons and API team.

I look forward to meeting you in person at Next '18. In the meantime, check out the entire session schedule to find out everything it has to offer. Don't forget to swing by our "Meet the Experts" office hours (Tue-Thu), G Suite "Collaboration & Productivity" showcase demos (Tue-Thu), the G Suite Birds-of-a-Feather meetup (Wed), and the Google Apps Script & G Suite Add-ons meetup (just after the BoF on Wed). I'm excited at how we can use "all the tech" to change the world. See you soon!

10 must-see G Suite developer sessions at Google Cloud Next ‘18



Google Cloud Next '18 is less than a week away and this year, there are over 500 sessions, covering all aspects of cloud computing—IaaS, PaaS, and SaaS. This is your chance to hear from experts in artificial intelligence, as well as learn first-hand how to build custom solutions in G Suite alongside developers other Independent Software Vendors (ISVs), systems integrators (SIs) or industry enterprises.

G Suite’s intelligent productivity apps are secure, smart and simple to use, so why not integrate your apps with them? If you’re planning to attend the event and are wondering which sessions you should check out to enhance your skill set, here are some sessions to consider:

  • Power Your Apps with Gmail, Google Drive, Calendar, Sheets, Slides, and More!" on Tuesday, July 24th. Join me as I lead this session that provides a high-level technical overview of the various ways you can build with G Suite. This is a great place to start before attending deeper technical sessions. 
  • “Power your apps with Gmail, Google Drive, Calendar, Sheets, Slides and more” on Monday, July 23rd and Friday, July 27th. If you're already up-to-speed and want to leave NEXT with actual, working code you can use at school or on the job, join us for one of our bootcamps! Both are identical and bookend the conference—one on Monday and another on Friday. While named the same as the technical overview talk above, these dive a bit deeper, show more API usage examples and feature hands-on codelabs. Register today to ensure you get a seat.
  • Automating G Suite: Apps Script & Sheets Macro Recorder” or “Enhancing the Google Apps Script Developer Experience” on Tuesday, July 24th. Interested in Google Apps Script, our customized serverless JavaScript runtime used to automate, integrate, and extend G Suite apps and data? The first session introduces developers and ITDMs to new features as well as real business use cases while the other session dives into recent features that make Apps Script more friendly for the professional developer. 
  • G Suite + GCP: Building Serverless Applications with All of Google Cloud” on Wednesday, July 25th. This session is your chance to attend one of the few hybrid talks that look at how to you can build applications on both GCP and G Suite platforms. Learn about GCP and G Suite serverless products— a topic that’s become more and more popular over the past year—and see how it works firsthand with demos. I’m also leading this session and eager to show how you can leverage both platforms in the same application. 
  • Build apps your business needs, with App Maker” or “How to Build Enterprise Workflows with App Maker” on Tuesday, July 24th and Thursday, July 26th respectively. Google App Maker is a new low-code, development environment that makes it easy to build custom apps for work. It’s great for business analysts, technical managers or data scientists who may not have software engineering resources. With a drag & drop UI, built-in templates, and point-and-click data modeling, App Maker lets you go from idea to app in minutes! Learn all about it with our pair of App Maker talks featuring our Developer Advocate, Chris Schalk. 
  • The Google Docs, Sheets & Slides Ecosystem: Stronger than ever, and growing” or “Building on the Docs Editors: APIs and Apps Script” on Wednesday, July 25th and Thursday, July 26th respectively. Check out these pair of talks to learn more about how to write apps that integrate with Google Docs, Sheets, Slides and Forms. The first describes the G Suite productivity tools' growing interoperability in the enterprise with while the second focuses on the different options available to developers for integrating with the G Suite "editor" applications. 
  • Get Productive with Gmail Add-ons” on Tuesday, July 24th. We launched Gmail Add-ons less than a year ago (You can check out this video to learn more.) to help developers integrate their apps alongside Gmail. Come to this session to learn the latest from the Gmail Add-ons and API team.
I look forward to meeting you in person at Next '18. In the meantime, you can check out the entire session schedule to find out everything NEXT has to offer or this video where I talk about how I think technology will change the world. See you soon!

Hangouts Chat alerts & notifications… with asynchronous messages

Posted by Wesley Chun (@wescpy), Developer Advocate, G Suite

While most chatbots respond to user requests in a synchronous way, there are scenarios when bots don't perform actions based on an explicit user request, such as for alerts or notifications. In today's DevByte video, I'm going to show you how to send messages asynchronously to rooms or direct messages (DMs) in Hangouts Chat, the team collaboration and communication tool in G Suite.

What comes to mind when you think of a bot in a chat room? Perhaps a user wants the last quarter's European sales numbers, or maybe, they want to look up local weather or the next movie showtime. Assuming there's a bot for whatever the request is, a user will either send a direct message (DM) to that bot or @mention the bot from within a chat room. The bot then fields the request (sent to it by the Hangouts Chat service), performs any necessary magic, and responds back to the user in that "space," the generic nomenclature for a room or DM.

Our previous DevByte video for the Hangouts Chat bot framework shows developers what bots and the framework are all about as well as how to build one of these types of bots, in both Python and JavaScript. However, recognize that these bots are responding synchronously to a user request. This doesn't suffice when users want to be notified when a long-running background job has completed, when a late bus or train will be arriving soon, or when one of their servers has just gone down. Recognize that such alerts can come from a bot but also perhaps a monitoring application. In the latest episode of the G Suite Dev Show, learn how to integrate this functionality in either type of application.

From the video, you can see that alerts and notifications are "out-of-band" messages, meaning they can come in at any time. The Hangouts Chat bot framework provides several ways to send asynchronous messages to a room or DM, generically referred to as a "space." The first is the HTTP-based REST API. The other way is using what are known as "incoming webhooks."

The REST API is used by bots to send messages into a space. Since a bot will never be a human user, a Google service account is required. Once you create a service account for your Hangouts Chat bot in the developers console, you can download its credentials needed to communicate with the API. Below is a short Python sample snippet that uses the API to send a message asynchronously to a space.

from apiclient import discovery
from httplib2 import Http
from oauth2client.service_account import ServiceAccountCredentials

SCOPES = 'https://www.googleapis.com/auth/chat.bot'
creds = ServiceAccountCredentials.from_json_keyfile_name(
'svc_acct.json', SCOPES)
CHAT = discovery.build('chat', 'v1', http=creds.authorize(Http()))

room = 'spaces/<ROOM-or-DM>'
message = {'text': 'Hello world!'}
CHAT.spaces().messages().create(parent=room, body=message).execute()

The alternative to using the API with services accounts is the concept of incoming webhooks. Webhooks are a quick and easy way to send messages into any room or DM without configuring a full bot, i.e., monitoring apps. Webhooks also allow you to integrate your custom workflows, such as when a new customer is added to the corporate CRM (customer relationship management system), as well as others mentioned above. Below is a Python snippet that uses an incoming webhook to communicate into a space asynchronously.

import requests
import json

URL = 'https://chat.googleapis.com/...&thread_key=T12345'
message = {'text': 'Hello world!'}
requests.post(URL, data = json.dumps(message))

Since incoming webhooks are merely endpoints you HTTP POST to, you can even use curl to send a message to a Hangouts Chat space from the command-line:

curl \
-X POST \
-H 'Content-Type: application/json' \
'https://chat.googleapis.com/...&thread_key=T12345' \
-d '{"text": "Hello!"}'

To get started, take a look at the Hangouts Chat developer documentation, especially the specific pages linked to above. We hope this video helps you take your bot development skills to the next level by showing you how to send messages to the Hangouts Chat service asynchronously.