Tag Archives: Data

YouTube Ads Creative Analysis

Posted by Brian Craft, Satish Shreenivasa, Huikun Zhang, Manisha Arora and Paul Cubre – gTech Data Science Team


Introduction


Why analyze YouTube ads?

YouTube has billions of monthly logged-in users and every day people watch billions of hours of video and generate billions of views. Businesses can connect with YouTube users using YouTube ads, which are promotional videos that appear on YouTube's website and app, with a variety of video ad formats and goals.

Image of a sample YouTube in-stream skippable video ad
A sample YouTube in-stream skippable video ad

The Challenge

An effective video ad focuses on the ABCDs.

  • Attention: Capturing the viewer's attention till the end.
  • Branding: Helping them hear or visualize the brand.
  • Connection: Making them feel something about the brand.
  • Direction: Encouraging them to take action.

But each YouTube ad has a varying number of components, for instance, objects, background music or a logo. Each of these components affect the view through rate (which is referred to as VTR for the remainder of the post) of the video ad. Therefore, analyzing video ads through the lens of the components in the ad helps businesses understand what about the ad improves VTR. The insights from these analyses can be used to inform the creation of new creatives and to optimize existing creatives to improve VTR.


The Proposal

We propose a machine learning based approach for analyzing a company’s YouTube ads to assess which components affect VTR, for the purpose of optimizing a video ad’s performance. We illustrate how to:

  • Use Google Cloud Video Intelligence API to extract the components of each video ad, using the underlying video files.
  • Transform that extracted data to engineered features that map to actionable business questions.
  • Use a machine learning model to isolate the effect on VTR of each engineered feature.
  • Interpret and action on those insights to improve video ad performance, for instance altering existing creatives or create new creatives to be used in an AB test.

Approach


The Process

The proposed analysis has 5 steps, discussed below.

1. Define Business Questions
Align on a list of business questions that are actionable, for instance “does having a logo in the opening shot affect VTR?” We suggest taking feasibility into account ahead of time, for instance if a product disclaimer is necessary to have for legal reasons, there is no reason to assess the impact a disclaimer has on VTR.

2. Raw Component Extraction
Use Google Cloud technologies, such as the Google Cloud Video Intelligence API, and underlying video files to extract raw components from each video ad. For instance, but not limited to, objects appearing in the video at a particular timestamp, presence of text and its location on the screen, or the presence of specific sounds.

3. Feature Engineering
Using the raw components extracted in step 2, engineer features that align to the business questions defined in step 1. For example, if the business question is “does having a logo in the opening shot affect VTR”, create a feature that labels each video as either 1, having a logo in the opening shot or 0, not having a logo in the opening shot. Repeat this for each feature.

4. Modeling
Create an ML model using the engineered features from step 3, using VTR as the target in the model.

5. Interpretation
Extract statistically significant features from the ML model and interpret their effect on VTR. For example, “there is an xx% observed uplift in VTR when there is a logo in the opening shot.”


Feature Engineering


Data Extraction

Consider 2 different YouTube Video Ads for a web browser, each highlighting a different product feature. Ad A has text that says “Built In Virus Protection'', while Ad B has text that says “Automatic Password Saving”.

The raw text can be extracted from each video ad and allow for the creation of tabular datasets, such as the below. For brevity and simplicity, the example carried forward will deal with text features only and forgo the timestamp dimension.

 Ad

 Detected Raw Text

 Ad A

 Built In Virus Protection

 Ad B

 Automatic Password Saving


Preprocessing

After extracting the raw components in each ad, preprocessing may need to be applied, such as removing case sensitivity and punctuation.

 Ad

 Detected Raw Text

 Processed Text

 Ad A

 Built IVirus Protection

 built ivirus protection

 Ad B

 Automatic Password Saving

 automatic password saving


Manual Feature Engineering

Consider a scenario where the goal is to answer the business question, “does having a textual reference to a product feature affect VTR?”

This feature could be built manually by exploring all the text in all the videos in the sample and creating a list of tokens or phrases that indicate a textual reference to a product feature. However, this approach can be time consuming and limits scaling.

Image of pseudo code for manual feature engineering
Pseudo code for manual feature engineering

AI Based Feature Engineering

Instead of manual feature engineering as described above, the text detected in each video ad creative can be passed to an LLM along with a prompt that performs the feature engineering automatically.

For example, if the goal is to explore the value of highlighting a product feature in a video ad, ask an LLM if the text “‘built in virus protection’ is a feature callout”, followed by asking the LLM if the text “‘automatic password saving’ is a feature callout”.

The answers can be extracted and transformed to a 0 or 1, to later be passed to a machine learning model.

 Ad

 Raw Text

 Processed Text

 Has Textual Reference to Feature

 Ad A

 Built IVirus Protection

 built ivirus protection

 Yes

 Ad B

 Automatic Password Saving

 automatic password saving

 Yes



Modeling


Training Data

The result of the feature engineering step is a dataframe with columns that align to the initial business questions, which can be joined to a dataframe that has the VTR for each video ad in the sample.

 Ad

 Has Textual Reference to Feature

 VTR*

 Ad A

 Yes

 10%

 Ad B

 Yes

 50%


*Values are random and not to be interpreted in any way.

Modeling is done using fixed effects, bootstrapping and ElasticNet. More information can be found here in the post Introducing Discovery Ad Performance Analysis, written by Manisha Arora and Nithya Mahadevan.

Interpretation

The model output can be used to extract significant features, coefficient values, and standard deviation.

Coefficient Value (+/- X%)
Represents the absolute percentage uplift in VTR. Positive value indicates positive impact on VTR and a negative value indicates a negative impact on VTR.

Significant Value (True/False)
Represents whether the feature has a statistically significant impact on VTR.

 Feature

 Coefficient*

 Standard Deviation*

 Significant?*

 Has Textual Reference to Feature

0.0222

0.000033

True


*Values are random and not to be interpreted in any way.

In the above hypothetical example, the feature “Has Feature Callout” has a statistically significant, positive impact of VTR. This can be interpreted as “there is an observed 2.22% absolute uplift in VTR when an ad has a textual reference to a product feature.”

Challenges

Challenges of the above approach are:

  • Interactions among the individual features input into the model are not considered. For example, if “has logo” and “has logo in the lower left” are individual features in the model, their interaction will not be assessed. However, a third feature can be engineered combining the above as “has large logo + has logo in the lower left”.
  • Inferences are based on historical data and not necessarily representative of future ad creative performance. There is no guarantee that insights will improve VTR.
  • Dimensionality can be a concern as given the number of components in a video ad.

Activation Strategies


Ads Creative Studio

Ads Creative Studio is an effective tool for businesses to create multiple versions of a video by quickly combining text, images, video clips or audio. Use this tool to create new videos quickly by adding/removing features in accordance with model output.

Image of sample video creation features in Ads creative studio
Sample video creation features in Ads creative studio

Video Experiments

Design a new creative, varying a component based on the insights from the analysis, and run an AB test. For example, change the size of the logo and set up an experiment using Video Experiments.


Summary


Identifying which components of a YouTube Ad affect VTR is difficult, due to the number of components contained in the ad, but there is an incentive for advertisers to optimize their creatives to improve VTR. Google Cloud technologies, GenAI models and ML can be used to answer creative centric business questions in a scalable and actionable way. The resulting insights can be used to optimize YouTube ads and achieve business outcomes.


Acknowledgements

We would like to thank our collaborators at Google, specifically Luyang Yu, Vijai Kasthuri Rangan, Ahmad Emad, Chuyi Wang, Kun Chang, Mike Anderson, Yan Sun, Nithya Mahadevan, Tommy Mulc, David Letts, Tony Coconate, Akash Roy Choudhury, Alex Pronin, Toby Yang, Felix Abreu and Anthony Lui.

Prediction Framework, a time saver for Data Science prediction projects

Posted by Álvaro Lamas, Héctor Parra, Jaime Martínez, Julia Hernández, Miguel Fernandes, Pablo Gil

Acquiring high value customers using predicted Lifetime Value, taking specific actions on high propensity of churn users, generating and activating audiences based on machine learning processed signals…All of those marketing scenarios require of analyzing first party data, performing predictions on the data and activating the results into the different marketing platforms like Google Ads as frequently as possible to keep the data fresh.

Feeding marketing platforms like Google Ads on a regular and frequent basis, requires a robust, report oriented and cost reduced ETL & prediction pipeline. These pipelines are very similar regardless of the use case and it’s very easy to fall into reinventing the wheel every time or manually copy & paste structural code increasing the risk of introducing errors.

Wouldn't it be great to have a common reusable structure and just add the specific code for each of the stages?

Here is where Prediction Framework plays a key role in helping you implement and accelerate your first-party data prediction projects by providing the backbone elements of the predictive process.

Prediction Framework is a fully customizable pipeline that allows you to simplify the implementation of prediction projects. You only need to have the input data source, the logic to extract and process the data and a Vertex AutoML model ready to use along with the right feature list, and the framework will be in charge of creating and deploying the required artifacts. With a simple configuration, all the common artifacts of the different stages of this type of projects will be created and deployed for you: data extraction, data preparation (aka feature engineering), filtering, prediction and post-processing, in addition to some other operational functionality including backfilling, throttling (for API limits), synchronization, storage and reporting.

The Prediction Framework was built to be hosted in the Google Cloud Platform and it makes use of Cloud Functions to do all the data processing (extraction, preparation, filtering and post-prediction processing), Firestore, Pub/Sub and Schedulers for the throttling system and to coordinate the different phases of the predictive process, Vertex AutoML to host your machine learning model and BigQuery as the final storage of your predictions.

Prediction Framework Architecture

To get involved and start using the Prediction Framework, a configuration file needs to be prepared with some environment variables about the Google Cloud Project to be used, the data sources, the ML model to make the predictions and the scheduler for the throttling system. In addition, custom queries for the data extraction, preparation, filtering and post-processing need to be added in the deploy files customization. Then, the deployment is done automatically using a deployment script provided by the tool.

Once deployed, all the stages will be executed one after the other, storing the intermediate and final data in the BigQuery tables:

  • Extract: this step will, on a timely basis, query the transactions from the data source, corresponding to the run date (scheduler or backfill run date) and will store them in a new table into the local project BigQuery.
  • Prepare: immediately after the extract of the transactions for one specific date is available, the data will be picked up from the local BigQuery and processed according to the specs of the model. Once the data is processed, it will be stored in a new table into the local project BigQuery.
  • Filter: this step will query the data stored by the prepare process and will filter the required data and store it into the local project BigQuery. (i.e only taking into consideration new customers transactionsWhat a new customer is up to the instantiation of the framework for the specific use case. Will be covered later).
  • Predict: once the new customers are stored, this step will read them from BigQuery and call the prediction using Vertex API. A formula based on the result of the prediction could be applied to tune the value or to apply thresholds. Once the data is ready, it will be stored into the BigQuery within the target project.
  • Post_process: A formula could be applied to the AutoML batch results to tune the value or to apply thresholds. Once the data is ready, it will be stored into the BigQuery within the target project.

One of the powerful features of the prediction framework is that it allows backfilling directly from the BigQuery user interface, so in case you’d need to reprocess a whole period of time, it could be done in literally 4 clicks.

In summary: Prediction Framework simplifies the implementation of first-party data prediction projects, saving time and minimizing errors of manual deployments of recurrent architectures.

For additional information and to start experimenting, you can visit the Prediction Framework repository on Github.

Prediction Framework, a time saver for Data Science prediction projects

Posted by Álvaro Lamas, Héctor Parra, Jaime Martínez, Julia Hernández, Miguel Fernandes, Pablo Gil

Acquiring high value customers using predicted Lifetime Value, taking specific actions on high propensity of churn users, generating and activating audiences based on machine learning processed signals…All of those marketing scenarios require of analyzing first party data, performing predictions on the data and activating the results into the different marketing platforms like Google Ads as frequently as possible to keep the data fresh.

Feeding marketing platforms like Google Ads on a regular and frequent basis, requires a robust, report oriented and cost reduced ETL & prediction pipeline. These pipelines are very similar regardless of the use case and it’s very easy to fall into reinventing the wheel every time or manually copy & paste structural code increasing the risk of introducing errors.

Wouldn't it be great to have a common reusable structure and just add the specific code for each of the stages?

Here is where Prediction Framework plays a key role in helping you implement and accelerate your first-party data prediction projects by providing the backbone elements of the predictive process.

Prediction Framework is a fully customizable pipeline that allows you to simplify the implementation of prediction projects. You only need to have the input data source, the logic to extract and process the data and a Vertex AutoML model ready to use along with the right feature list, and the framework will be in charge of creating and deploying the required artifacts. With a simple configuration, all the common artifacts of the different stages of this type of projects will be created and deployed for you: data extraction, data preparation (aka feature engineering), filtering, prediction and post-processing, in addition to some other operational functionality including backfilling, throttling (for API limits), synchronization, storage and reporting.

The Prediction Framework was built to be hosted in the Google Cloud Platform and it makes use of Cloud Functions to do all the data processing (extraction, preparation, filtering and post-prediction processing), Firestore, Pub/Sub and Schedulers for the throttling system and to coordinate the different phases of the predictive process, Vertex AutoML to host your machine learning model and BigQuery as the final storage of your predictions.

Prediction Framework Architecture

To get involved and start using the Prediction Framework, a configuration file needs to be prepared with some environment variables about the Google Cloud Project to be used, the data sources, the ML model to make the predictions and the scheduler for the throttling system. In addition, custom queries for the data extraction, preparation, filtering and post-processing need to be added in the deploy files customization. Then, the deployment is done automatically using a deployment script provided by the tool.

Once deployed, all the stages will be executed one after the other, storing the intermediate and final data in the BigQuery tables:

  • Extract: this step will, on a timely basis, query the transactions from the data source, corresponding to the run date (scheduler or backfill run date) and will store them in a new table into the local project BigQuery.
  • Prepare: immediately after the extract of the transactions for one specific date is available, the data will be picked up from the local BigQuery and processed according to the specs of the model. Once the data is processed, it will be stored in a new table into the local project BigQuery.
  • Filter: this step will query the data stored by the prepare process and will filter the required data and store it into the local project BigQuery. (i.e only taking into consideration new customers transactionsWhat a new customer is up to the instantiation of the framework for the specific use case. Will be covered later).
  • Predict: once the new customers are stored, this step will read them from BigQuery and call the prediction using Vertex API. A formula based on the result of the prediction could be applied to tune the value or to apply thresholds. Once the data is ready, it will be stored into the BigQuery within the target project.
  • Post_process: A formula could be applied to the AutoML batch results to tune the value or to apply thresholds. Once the data is ready, it will be stored into the BigQuery within the target project.

One of the powerful features of the prediction framework is that it allows backfilling directly from the BigQuery user interface, so in case you’d need to reprocess a whole period of time, it could be done in literally 4 clicks.

In summary: Prediction Framework simplifies the implementation of first-party data prediction projects, saving time and minimizing errors of manual deployments of recurrent architectures.

For additional information and to start experimenting, you can visit the Prediction Framework repository on Github.

Introducing TensorFlow Recorder

When training computer vision machine learning models, data loading can often be a performance bottleneck, causing your GPU or TPU resources to be underutilized while waiting for data to be loaded into the model. Storing your dataset in the efficient TensorFlow Record (TFRecord) format is a great way to solve these problems, but creating TFRecords can unfortunately often require a great deal of complex code.

Last week we open sourced the TensorFlow Recorder project (also known as TFRecorder), which makes it possible for data scientists, data engineers, or AI/ML engineers to create image based TFRecords with just a few lines of code. Using TFRecords is incredibly important for creating efficient TensorFlow ML pipelines, but until now they haven’t been so easy to create. Before TFRecorder, in order to create TFRecords at scale you would have had to write a data pipeline that parsed your structured data, loaded images from storage, and serialized the results into the TFRecord format. TFRecorder allows you to write TFRecords directly from a Pandas dataframe or CSV without writing any complicated code.

You can see an example of TFRecoder below, but first let’s talk about some of the specific advantages of TFRecords.

How TFRecords Can Help

Using the TFRecord file format allows you to store your data in sets of files, each containing a sequence of protocol buffers serialized as a binary record that can be read very efficiently, which will help reduce the data loading bottleneck mentioned above.

Data loading performance can be further improved by implementing prefetching and parallel interleave along with using the TFRecord format. Prefetching reduces the time of each model training step(s) by fetching the data for the next training step while your model is executing training on the current step. Parallel interleave allows you to read from multiple TFRecords shards (pieces of a TFRecord file) and apply preprocessing of those interleaved data streams. This reduces the latency required to read a training batch and is especially helpful when reading data from the network.

Using TensorFlow Recorder

Creating a TFRecord using TFRecorder requires only a few lines of code. Here’s how it works.
import pandas as pd
import tfrecorder
df = pd.read_csv(...)
df.tensorflow.to_tfrecord(output_dir="gs://my/bucket")

TFRecorder currently expects data to be in the same format as Google AutoML Vision.

This format looks like a pandas dataframe or CSV formatted as:
splitimage_urilabel
TRAIN
gs://my/bucket/image1.jpgcat

Where:
  • split can take on the values TRAIN, VALIDATION, and TEST
  • image_uri specifies a local or google cloud storage location for the image file.
  • label can be either a text-based label that will be integerized or an integer
In the future, we hope to extend TensorFlow Recorder to work with data in any format.

While this example would work well to convert a few thousand images into TFRecords, it probably wouldn’t scale well if you have millions of images. To scale up to huge datasets, TensorFlow Recorder provides connectivity with Google Cloud Dataflow, which is a serverless Apache Beam pipeline runner. Scaling up to DataFlow requires only a little bit more configuration.
df.tensorflow.to_tfrecord(
output_dir="gs://my/bucket",
runner="DataFlowRunner",
project="my-project",
region="us-central1)

What’s next?

We’d love for you to try out TensorFlow Recorder. You can get it from GitHub or simply pip install tfrecorder. Tensorflow Recorder is very new and we’d greatly appreciate your feedback, suggestions, and pull requests.

By Mike Bernico and Carlos Ezequiel, Google Cloud AI Engineers

Kpt: Packaging up your Kubernetes configuration with git and YAML since 2014

Kubernetes configuration manifests have become an industry standard for deploying both custom and off-the-shelf applications (as well as for infrastructure). Manifests are combined into bundles to create higher-level deployable systems as well as reusable blueprints (such as a product offering, off the shelf software, or customizable starting point for a new application).

However, most teams lack the expertise or desire to create bespoke bundles of configuration from scratch and instead: 1) either fork them from another bundle, or 2) use some packaging solution which generates manifests from code.

Teams quickly discover they need to customize, validate, audit and re-publish their forked/ generated bundles for their environment. Most packaging solutions to date are tightly coupled to some format written as code (e.g. templates, DSLs, etc). This introduces a number of challenges when trying to extend, build on top of, or integrate them with other systems. For example, how does one update a forked template from upstream, or how does one apply custom validation?

Packaging is the foundation of building reusable components, but it also incurs a productivity tax on the users of those components.

Today we’d like to introduce kpt, an OSS tool for Kubernetes packaging, which uses a standard format to bundle, publish, customize, update, and apply configuration manifests.

Kpt is built around an “as data” architecture bundling Kubernetes resource configuration, a format for both humans and machines. The ability for tools to read and write the package contents using standardized data structures enables powerful new capabilities:
  • Any existing directory in a Git repo with configuration files can be used as a kpt package.
  • Packages can be arbitrarily customized and later pull in updates from upstream by merging them.
  • Tools and automation can perform high-level operations by transforming and validating package data on behalf of users or systems.
  • Organizations can develop their own tools and automation which operate against the package data.
  • Existing tools and automation that work with resource configuration “just work” with kpt.
  • Existing solutions that generate configuration (e.g. from templates or DSLs) can emit kpt packages which enable the above capabilities for them.

Example workflow with kpt

Now that we’ve established the benefits of using kpt for managing your packages of Kubernetes config, lets walk through how an enterprise might leverage kpt to package, share and use their best practices for Kubernetes across the organization.


First, a team within the organization may build and contribute to a repository of best practices (pictured in blue) for managing a certain type of application, for example a microservice (called “app”). As the best practices are developed within an organization, downstream teams will want to consume and modify configuration blueprints based on them. These blueprints provide a blessed starting point which adheres to organization policies and conventions.

The downstream team will get their own copy of a package by downloading it to their local filesystem (pictured in red) using kpt pkg get. This clones the git subdirectory, recording upstream metadata so that it can be updated later.

They may decide to update the number of replicas to fit their scaling requirements or may need to alter part of the image field to be the image name for their app. They can directly modify the configuration using a text editor (as would be done before). Alternatively, the package may define setters, allowing fields to be set programmatically using kpt cfg set. Setters streamline workflows by providing user and automation friendly commands to perform common operations.

Once the modifications have been made to the local filesystem, the team will commit and push their package to an app repository owned by them. From there, a CI/CD pipeline will kick off and the deployment process will begin. As a final customization before the package is deployed to the cluster, the CI/CD pipeline will inject the digest of the image it just built into the image field (using kpt cfg set). When the image digest has been set, the CI/CD pipeline can send the manifests to the cluster using kpt live apply. Kpt live operates like kubectl apply, providing additional functionality to prune resources deleted from the configuration and block on rollout completion (reporting status of the rollout back to the user).

Now that we’ve walked through how you might use kpt in your organization, we’d love it if you’d try it out, read the docs, or contribute.

One more thing

There’s still a lot to the story we didn’t cover here. Expect to hear more from us about:
  • Using kpt with GitOps
  • Building custom logic with functions
  • Writing effective blueprints with kpt and kustomize
By Phillip Wittrock, Software Engineer and Vic Iglesias, Cloud Solutions Architect

Importing SA360 WebQuery reports to BigQuery

Context

Search Ads 360 (SA36) is an enterprise-class search campaign management platform used by marketers to manage global ad campaigns across multiple engines. It offers powerful reporting capability through WebQuery reports, API, BiqQuery and Datastudio connectors.

Effective Ad campaign management requires multi-dimensional analysis of campaign data along with customers’ first-party data by building custom reports with dimensions combined from paid-search reports and business data.

Customers’ business data resides in a data-warehouse, which is designed for analysis, insights and reporting. To integrate ads data into the data-warehouse, the usual approach is to bring/ load the campaign data into the warehouse; to achieve this, SA360 offers various options to retrieve paid-search data, each of these methods provide a unique capabilities.

Comparison AreaWebQueryBQ ConnectorDatastudio ConnectorAPI
Technical complexityLow
Medium
Medium
High
Ease of report customizationHigh
Medium
Low
High
Reporting DetailsCompleteLimited
Reports not supported on API are not available
E.g.
Location targets
Remarketing targets
Audience reports
Possible Data WarehouseAny
The report is generic and needs to be loaded into the data-warehouse using DWs custom loading methods.
BigQuery ONLYNoneAny
Comparing these approaches, in terms of technical knowledge required, as well as, supporters data warehousing solution, the easiest one is WebQuery report for which a marketer can build a report by choosing the dimensions/metrics they want on the SA360 User Interface.

BigQuery data-transfer service is limited to importing data in BigQuery and Datastudio connector does not allow retrieving data.

WebQuery offers a simpler and customizable method than other alternatives and also offers more options for the kind of data (vs. BQ transfer service which does not bring Business Data from SA360 to BigQuery). It was originally designed for Microsoft Excel to provide an updatable view of a report. In the era of cloud computing, a need was felt for a tool which would help consume the report and make it available on an analytical platform or a cloud data warehouse like BigQuery.

Solution Approach



This tool showcases how to bridge this gap of bringing SA360 data to a data warehouse, in generic fashion, where the report from SA360 is fetched in XML format and converted it into a CSV file using SAX parsers. This CSV file is then transferred to staging storage to be finally ETLed into the Data Warehouse.

As a concrete example, we chose to showcase a solution with BigQuery as the destination (cloud) data warehouse, though the solution architecture is flexible for any other system.

Conclusion

The tool helps marketers bring advertising data closer to their analytical systems helping them derive better insights. In case you use BigQuery as your Data Warehouse, you can use this tool as-is. You can also adopt by adding components for analytical/data-warehousing systems you use and improve it for the larger community.

To get started, follow our step-by-step guide.
Notable Features of the tool are as following:
  • Modular Authorization module
  • Handle arbitrarily large web-query reports
  • Batch mode to process multiple reports in a single call
  • Can be used as part of ETL workflow (Airflow compatible)
By Anant Damle, Solutions Architect and Meera Youn, Technical Partnership Lead

Audience Insights Series: A framework for success

This is our final post in a series exploring the value of audience insights in search marketing. Over the past few weeks, we heard from experts and leaders in the industry on the opportunity, predictions, and insights on the topic. With our final post today, we would like to explore the path to success when applying audience insights in your own campaigns.


Additional insights about your audience, such as location, time of day, and how they’ve engaged with you in the past, can help you better understand the intent of your audience so you can serve the most relevant message.

But more information can also mean more complexity. So to help you effectively navigate and leverage audience insights in your campaigns, we’ve developed a 3-step framework for success: Gather, Target, Engage. The infographic below captures the steps in more detail, along with case studies of advertisers who have applied them to their campaigns.

Click here to download the infographic
1. Gather insights that matter: This step is about identifying relevant signals to leverage in your campaigns, which is essential for developing insights on who the audience is, what context they are in, as well as what their interests may be. Here are some examples of the types of signals you can identify:

Who:
The user’s relationship with you, including whether they have previously visited your site or made a purchase
What: Time, location and device used
Interests: Interests in specific categories based on consumed content

2. Target based on discovered insights: The next step is to combine these signals, and based on them, create segments you can target. Below are examples of segments you can create if you were selling laptops:


“Close to store”, based on device and location signals.
“Android users” may be more inclined to purchase a Chromebook.
“Interested in bags”: If a user has bought a laptop through your website, he might now need a laptop case rather than a laptop.


3. Engage your audience with a tailored ad: This final step is about delivering your audience a tailored message. Messaging can be optimized for each segment with A/B testing. By measuring results post-engagement, you can reassess if there are new signals to gather, ultimately coming back to the first step in the cycle.


Advertiser success with Audience-driven planning
Specsavers is a good example of an advertiser who applied this framework, matching their ad copy with location-specific segments. The strategy helped drive a 189% increase in their key metric - conversions. To find out more, you can see other case studies in the infographic or explore previous posts in our series. You can also hear about upcoming developments in your inbox, by signing up for our newsletter.

    Audience Insights Series: Getting started

    Over the past couple of weeks, we heard from experts and leaders in the industry on the opportunity of applying audience insights to their search marketing efforts, and predictions on how this trend will impact the industry moving forward.


    This week, we’re diving deeper and sharing best practices and first steps advertisers can take to make the most of the audience opportunity.


    When we sat down with Ben Wood from iProspect, Khurram Hamid of GlaxoSmithKline and Steve Chester from the IAB UK, we heard a resounding message: Don’t hesitate, start today. The sooner advertisers start testing and experimenting with applying audience targeting in their search campaigns, the sooner they’ll tap into valuable insights  to tailor their campaigns for their audience.

    As one expert said, “Today, because it’s nascent, it’s those brands right at the cutting edge that are really leaning into this... but in 6 month’s time, in 12 month’s time.. this isn’t something you can’t be doing.” 

    And as a first step, we heard how investing in a data management strategy is key. Watch the video for more:


    This will be our last post featuring perspectives from industry leaders, but the journey doesn’t stop here. With our next post in the series, we’ll explore specifics around how advertisers can approach planning their search marketing strategy with a focus on leveraging audience insights. Stay tuned!

    Audience Insights Series: What the future holds

    This is the second post in our series to explore the convergence of audience data and search marketing. In our last post, we heard from industry leaders on the opportunity and how audience data helps them  deliver even more relevant and resonant messages.

    This week, we explore what the future holds.  iProspect’s Ben Wood, Havas Media’s Paul Frampton and the IAB’s Steve Chester share perspectives on the continued convergence of audience data and search marketing, implications for digital marketing teams and how they work together, as well as how audience data in search will help bridge the gap between branding and direct response.  






    Look for our next post in the series, where we will explore best practices for advertisers who are looking to embrace audience data as part of their search marketing efforts.

    Audience Insights Series: What is the opportunity?

    As part of our series exploring the value of audience signals in search marketing, we went behind the scenes at leading agencies and marketers and asked industry experts to share their views on what the opportunity is.


    Here’s what we heard: According to these industry leaders, audience insights enable advertisers to go beyond simple keywords and use other signals to inform their search marketing. They can make smarter bidding decisions, but more than that, advertisers can improve the message  they’re presenting   to their audience, making their  search ads even more relevant and compelling. And of course, as search strategies become sharper, ads perform better.

    To see the latest from the front lines, watch our video featuring Martin McNulty of Forward3D, Ben Wood from iProspect, Paul Frampton of Havas Media, Steve Chester from the Internet Advertising Bureau and Khurram Hamid from GlaxoSmithKline.

    Hope you enjoy the video above; we will continue the series next week with our next post focusing on getting our partner’s views on how audience signals may impact search marketing in the future.