New partnerships and initiatives to strengthen fact-checking online

Fact checkers are on the front line in the fight against mis and disinformation. Everyday, they use their verification and investigation skills to determine what can and can’t be trusted so that online browsers can avoid false claims. 


Every year, reliable facts become more important but every year, we continue to see bad actors spread false and misleading claims. We want to support fact checkers to address these claims as soon as possible and reach as many people as possible when they do. 



Building on our important work with a new partnership with AAP 


We are excited to announce we will be supercharging our partnership with the Australian Associated Press, a partner we’ve worked with since they launched their fact checking unit in 2019.


This new phase of the partnership will increase AAP’s speed and quantity of fact checks and put them on the screens of users in Australia and New Zealand along with their hundreds of news publisher subscribers. 


For the first time, AAP FactCheck will also analyse global misinformation trends and produce video explainers so people can understand how each claim fits into a broader picture. They will also translate fact-checks into different languages (Arabic, Simplified Chinese and Vietnamese) for distribution to local news outlets and social media. The more people that see and read AAP’s FactChecks, the stronger our online environment will be.



Partnering with Squiz Kids to build important digital literacy skills in schools


Education is also key to stopping the business model of misinformation - false claims germinate when they find an audience. We’ve worked with Squiz Kids on Newshounds, a media literacy module to help children “stop, think and check” before they believe, and potentially share, what they see online. 


More than 2000 classrooms in New Zealand and Australia use Newshounds to help teachers help their students decide what they should trust. Their work has shown to be invaluable in lifting teachers’ and parents’ confidence when discussing media literacy with children.



Our continued efforts in information literacy 


'About this image' gives people a quick way to check the background and context of images they see online. You can access it by clicking on the three dots on an image in Google Images results, or by clicking ‘more about this page’ in the About this result tool on search results. Launched last year in English globally, today the tool is live in 40 additional languages including Hindi, Indonesian, Japanese, Korean, Thai, and Vietnamese.


Image Alt Text: Animated image of the 'About this image' tool


When you click on the three dots next to a website in search results, you can learn more about a site before visiting it through the About this result feature. By tapping on the ‘more about this page’ tab in that menu, you will get more context about the website, such as how Wikipedia (when available) or others have described it in the news or reviews. Today, this feature is available in 40 additional languages, including Japanese, Korean, Indonesian, Hindi, Thai, Vietnamese and Tagalog. 


We are committed to building on these efforts and look forward to the seeing the impact of these important partnerships 


Reliable information is essential for every facet of life and if more people have access to it, they can make small and big, fun and serious, short term and long term decisions with clarity.


Post content

Google Workspace Updates Weekly Recap – March 29, 2024

New updates 

There are no new updates to share this week. Please see below for a recap of published announcements. 


Previous announcements

The announcements below were published on the Workspace Updates blog earlier this week. Please refer to the original blog posts for complete details.


Send voice messages in Google Chat 
In continuing our efforts to improve the Google Chat experience and help ensure it’s a useful tool for seamless communication, especially when on the go, we’ve introduced voice messages on Chat mobile (with web support coming soon). | Available to Enterprise Essentials, Enterprise Essentials Plus, Enterprise Standard, Enterprise Plus customers only. | Learn more about voice messages in Chat.

Workspace audit log exports in BigQuery now enriched with Drive label metadata 
For admins who analyze audit logs in BigQuery, these events are now enriched with Drive labels metadata. Admins leverage Drive labels to apply descriptive metadata, such as file sensitivity, to Drive items. With the enrichment of label metadata on log events, admins can now focus their analysis on activity occurring on their most important files by filtering on label conditions. | Available to Enterprise Essentials Plus, Enterprise Standard and Enterprise Plus, Education Standard and Education Plus customers only. | Learn more about Drive label metadata. 

Access and sort shared files within a space in Google Chat more easily 
We’re enhancing the Files tab in Google Chat spaces to improve upon the file management experience and create a central place to manage all conversation-related artifacts. The updated tab will now be called Shared. | Learn more about Shared in Chat.

Launch Miro directly from Google Meet Series One Board 65 and Desk 27 devices 
Users now have the ability to launch Miro from a Series One Board 65 or Desk 27, either in an active Meet call or directly from the device home screen. | Learn more about launching Miro from Google Meet.


Completed rollouts

The features below completed their rollouts to Rapid Release domains, Scheduled Release domains, or both. Please refer to the original blog posts for additional details.


Rapid Release Domains: 
Scheduled Release Domains: 
Rapid and Scheduled Release Domains: 

For a recap of announcements in the past six months, check out What’s new in Google Workspace (recent releases).  

  

Generative AI to quantify uncertainty in weather forecasting

Accurate weather forecasts can have a direct impact on people’s lives, from helping make routine decisions, like what to pack for a day’s activities, to informing urgent actions, for example, protecting people in the face of hazardous weather conditions. The importance of accurate and timely weather forecasts will only increase as the climate changes. Recognizing this, we at Google have been investing in weather and climate research to help ensure that the forecasting technology of tomorrow can meet the demand for reliable weather information. Some of our recent innovations include MetNet-3, Google's high-resolution forecasts up to 24-hours into the future, and GraphCast, a weather model that can predict weather up to 10 days ahead.

Weather is inherently stochastic. To quantify the uncertainty, traditional methods rely on physics-based simulation to generate an ensemble of forecasts. However, it is computationally costly to generate a large ensemble so that rare and extreme weather events can be discerned and characterized accurately.

With that in mind, we are excited to announce our latest innovation designed to accelerate progress in weather forecasting, Scalable Ensemble Envelope Diffusion Sampler (SEEDS), recently published in Science Advances. SEEDS is a generative AI model that can efficiently generate ensembles of weather forecasts at scale at a small fraction of the cost of traditional physics-based forecasting models. This technology opens up novel opportunities for weather and climate science, and it represents one of the first applications to weather and climate forecasting of probabilistic diffusion models, a generative AI technology behind recent advances in media generation.


The need for probabilistic forecasts: the butterfly effect

In December 1972, at the American Association for the Advancement of Science meeting in Washington, D.C., MIT meteorology professor Ed Lorenz gave a talk entitled, “Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?” which contributed to the term “butterfly effect”. He was building on his earlier, landmark 1963 paper where he examined the feasibility of “very-long-range weather prediction” and described how errors in initial conditions grow exponentially when integrated in time with numerical weather prediction models. This exponential error growth, known as chaos, results in a deterministic predictability limit that restricts the use of individual forecasts in decision making, because they do not quantify the inherent uncertainty of weather conditions. This is particularly problematic when forecasting extreme weather events, such as hurricanes, heatwaves, or floods.

Recognizing the limitations of deterministic forecasts, weather agencies around the world issue probabilistic forecasts. Such forecasts are based on ensembles of deterministic forecasts, each of which is generated by including synthetic noise in the initial conditions and stochasticity in the physical processes. Leveraging the fast error growth rate in weather models, the forecasts in an ensemble are purposefully different: the initial uncertainties are tuned to generate runs that are as different as possible and the stochastic processes in the weather model introduce additional differences during the model run. The error growth is mitigated by averaging all the forecasts in the ensemble and the variability in the ensemble of forecasts quantifies the uncertainty of the weather conditions.

While effective, generating these probabilistic forecasts is computationally costly. They require running highly complex numerical weather models on massive supercomputers multiple times. Consequently, many operational weather forecasts can only afford to generate ~10–50 ensemble members for each forecast cycle. This is a problem for users concerned with the likelihood of rare but high-impact weather events, which typically require much larger ensembles to assess beyond a few days. For instance, one would need a 10,000-member ensemble to forecast the likelihood of events with 1% probability of occurrence with a relative error less than 10%. Quantifying the probability of such extreme events could be useful, for example, for emergency management preparation or for energy traders.


SEEDS: AI-enabled advances

In the aforementioned paper, we present the Scalable Ensemble Envelope Diffusion Sampler (SEEDS), a generative AI technology for weather forecast ensemble generation. SEEDS is based on denoising diffusion probabilistic models, a state-of-the-art generative AI method pioneered in part by Google Research.

SEEDS can generate a large ensemble conditioned on as few as one or two forecasts from an operational numerical weather prediction system. The generated ensembles not only yield plausible real-weather–like forecasts but also match or exceed physics-based ensembles in skill metrics such as the rank histogram, the root-mean-squared error (RMSE), and the continuous ranked probability score (CRPS). In particular, the generated ensembles assign more accurate likelihoods to the tail of the forecast distribution, such as ±2σ and ±3σ weather events. Most importantly, the computational cost of the model is negligible when compared to the hours of computational time needed by supercomputers to make a forecast. It has a throughput of 256 ensemble members (at 2° resolution) per 3 minutes on Google Cloud TPUv3-32 instances and can easily scale to higher throughput by deploying more accelerators.

SEEDS generates an order-of-magnitude more samples to in-fill distributions of weather patterns.

Generating plausible weather forecasts

Generative AI is known to generate very detailed images and videos. This property is especially useful for generating ensemble forecasts that are consistent with plausible weather patterns, which ultimately result in the most added value for downstream applications. As Lorenz points out, “The [weather forecast] maps which they produce should look like real weather maps." The figure below contrasts the forecasts from SEEDS to those from the operational U.S. weather prediction system (Global Ensemble Forecast System, GEFS) for a particular date during the 2022 European heat waves. We also compare the results to the forecasts from a Gaussian model that predicts the univariate mean and standard deviation of each atmospheric field at each location, a common and computationally efficient but less sophisticated data-driven approach. This Gaussian model is meant to characterize the output of pointwise post-processing, which ignores correlations and treats each grid point as an independent random variable. In contrast, a real weather map would have detailed correlational structures.

Because SEEDS directly models the joint distribution of the atmospheric state, it realistically captures both the spatial covariance and the correlation between mid-tropospheric geopotential and mean sea level pressure, both of which are closely related and are commonly used by weather forecasters for evaluation and verification of forecasts. Gradients in the mean sea level pressure are what drive winds at the surface, while gradients in mid-tropospheric geopotential create upper-level winds that move large-scale weather patterns.

The generated samples from SEEDS shown in the figure below (frames Ca–Ch) display a geopotential trough west of Portugal with spatial structure similar to that found in the operational U.S. forecasts or the reanalysis based on observations. Although the Gaussian model predicts the marginal univariate distributions adequately, it fails to capture cross-field or spatial correlations. This hinders the assessment of the effects that these anomalies may have on hot air intrusions from North Africa, which can exacerbate heat waves over Europe.

Stamp maps over Europe on 2022/07/14 at 0:00 UTC. The contours are for the mean sea level pressure (dashed lines mark isobars below 1010 hPa) while the heatmap depicts the geopotential height at the 500 hPa pressure level. (A) The ERA5 reanalysis, a proxy for real observations. (Ba-Bb) 2 members from the 7-day U.S. operational forecasts used as seeds to our model. (Ca-Ch) 8 samples drawn from SEEDS. (Da-Dh) 8 non-seeding members from the 7-day U.S. operational ensemble forecast. (Ea-Ed) 4 samples from a pointwise Gaussian model parameterized by the mean and variance of the entire U.S. operational ensemble.

Covering extreme events more accurately

Below we show the joint distributions of temperature at 2 meters and total column water vapor near Lisbon during the extreme heat event on 2022/07/14, at 1:00 local time. We used the 7-day forecasts issued on 2022/07/07. For each plot, we generate 16,384-member ensembles with SEEDS. The observed weather event from ERA5 is denoted by the star. The operational ensemble is also shown, with squares denoting the forecasts used to seed the generated ensembles, and triangles denoting the rest of ensemble members.

SEEDS provides better statistical coverage of the 2022/07/14 European extreme heat event, denoted by the brown star . Each plot shows the values of the total column-integrated water vapor (TCVW) vs. temperature over a grid point near Lisbon, Portugal from 16,384 samples generated by our models, shown as green dots, conditioned on 2 seeds (blue squares) taken from the 7-day U.S. operational ensemble forecasts (denoted by the sparser brown triangles). The valid forecast time is 1:00 local time. The solid contour levels correspond to iso-proportions of the kernel density of SEEDS, with the outermost one encircling 95% of the mass and 11.875% between each level.

According to the U.S. operational ensemble, the observed event was so unlikely seven days prior that none of its 31 members predicted near-surface temperatures as warm as those observed. Indeed, the event probability computed from a Gaussian kernel density estimate is lower than 1%, which means that ensembles with less than 100 members are unlikely to contain forecasts as extreme as this event. In contrast, the SEEDS ensembles are able to extrapolate from the two seeding forecasts, providing an envelope of possible weather states with much better statistical coverage of the event. This allows both quantifying the probability of the event taking place and sampling weather regimes under which it would occur. Specifically, our highly scalable generative approach enables the creation of very large ensembles that can characterize very rare events by providing samples of weather states exceeding a given threshold for any user-defined diagnostic.


Conclusion and future outlook

SEEDS leverages the power of generative AI to produce ensemble forecasts comparable to those from the operational U.S. forecast system, but at an accelerated pace. The results reported in this paper need only 2 seeding forecasts from the operational system, which generates 31 forecasts in its current version. This leads to a hybrid forecasting system where a few weather trajectories computed with a physics-based model are used to seed a diffusion model that can generate additional forecasts much more efficiently. This methodology provides an alternative to the current operational weather forecasting paradigm, where the computational resources saved by the statistical emulator could be allocated to increasing the resolution of the physics-based model or issuing forecasts more frequently.

We believe that SEEDS represents just one of the many ways that AI will accelerate progress in operational numerical weather prediction in coming years. We hope this demonstration of the utility of generative AI for weather forecast emulation and post-processing will spur its application in research areas such as climate risk assessment, where generating a large number of ensembles of climate projections is crucial to accurately quantifying the uncertainty about future climate.


Acknowledgements

All SEEDS authors, Lizao Li, Rob Carver, Ignacio Lopez-Gomez, Fei Sha and John Anderson, co-authored this blog post, with Carla Bromberg as Program Lead. We also thank Tom Small who designed the animation. Our colleagues at Google Research have provided invaluable advice to the SEEDS work. Among them, we thank Leonardo Zepeda-Núñez, Zhong Yi Wan, Stephan Rasp, Stephan Hoyer, and Tapio Schneider for their inputs and useful discussion. We thank Tyler Russell for additional technical program management, as well as Alex Merose for data coordination and support. We also thank Cenk Gazen, Shreya Agrawal, and Jason Hickey for discussions in the early stage of the SEEDS work.

Source: Google AI Blog


Migration to OpenRTB, deprecation of the Authorized Buyers Real-time Bidding Protocol

To align more closely with industry practices and embrace OpenRTB as the standard protocol, Authorized Buyers Real-time Bidding protocol will sunset February 15th, 2025. Following this date, bid requests will no longer be sent to endpoints configured to use the Authorized Buyers RTB protocol. After this time we will support the OpenRTB protocol only. We strongly recommend that you transition to either the JSON or Protobuf formats of the Authorized Buyers OpenRTB protocol implementation as early as possible to avoid interruptions to your bidding integration.

As a first step in migrating to OpenRTB, we suggest that you read through the OpenRTB migration guide. The guide highlights differences between the Google RTB protocol and the supported OpenRTB formats, identifies how Google RTB protocol fields map to OpenRTB, and provides instructions for complex mappings. We will continue updating our developer content as we approach February 2025 to provide additional guidance, and to ensure a smooth migration.

For any questions or feedback you have concerning the transition to OpenRTB, please contact us using the Authorized Buyers support forum, or [email protected].

Battling Impersonation Scams: Monzo’s Innovative Approach

Posted by Todd Burner – Developer Relations Engineer

Cybercriminals continue to invest in advanced financial fraud scams, costing consumers more than $1 trillion in losses. According to the 2023 Global State of Scams Report by the Global Anti-Scam Alliance, 78 percent of mobile users surveyed experienced at least one scam in the last year. Of those surveyed, 45 percent said they’re experiencing more scams in the last 12 months.

ALT TEXT

The Global Scam Report also found that phone calls are the top method to initiate a scam. Scammers frequently employ social engineering tactics to deceive mobile users.

The key place these scammers want individuals to take action are in the tools that give access to their money. This means financial services are frequently targeted. As cybercriminals push forward with more scams, and their reach extends globally, it’s important to innovate in the response.

One such innovator is Monzo, who have been able to tackle scam calls through a unique impersonation detection feature in their app.

Monzo’s Innovative Approach

Founded in 2015, Monzo is the largest digital bank in the UK with presence in the US as well. Their mission is to make money work for everyone with an ambition to become the one app customers turn to to manage their entire financial lives.

Monzo logo

Impersonation fraud is an issue that the entire industry is grappling with and Monzo decided to take action and introduce an industry-first tool. An impersonation scam is a very common social engineering tactic when a criminal pretends to be someone else so they can encourage you to send them money. These scams often involve using urgent pretenses that involve a risk to a user’s finances or an opportunity for quick wealth. With this pressure, fraudsters convince users to disable security safeguards and ignore proactive warnings for potential malware, scams, and phishing.

Call Status Feature

Android offers multiple layers of spam and phishing protection for users including call ID and spam protection in the Phone by Google app. Monzo’s team wanted to enhance that protection by leveraging their in-house telephone systems. By integrating with their mobile application infrastructure they could help their customers confirm in real time when they’re actually talking to a member of Monzo’s customer support team in a privacy preserving way.

If someone calls a Monzo customer stating they are from the bank, their users can go into the app to verify this. In the Monzo app’s Privacy & Security section, users can see the ‘Monzo Call Status’, letting them know if there is an active call ongoing with an actual Monzo team member.

“We’ve built this industry-first feature using our world-class tech to provide an additional layer of comfort and security. Our hope is that this could stop instances of impersonation scams for Monzo customers from happening in the first place and impacting customers.” 

- Priyesh Patel, Senior Staff Engineer, Monzo’s Security team

Keeping Customers Informed

If a user is not talking to a member of Monzo’s customer support team they will see that as well as some helpful information. If the ‘Monzo call status’ is showing that you are not speaking to Monzo, the call status feature tells you to hang up right away and report it to their team. Their customers can start a scam report directly from the call status feature in the app.

screen grab of Monzo call status alerting the customer that the call the customer is receiving is not coming from Monzo. The customer is being advised to end the call

If a genuine call is ongoing the customer will see the information.

screen grab of Monzo call status confirming to the customer that the call the customer is receiving is coming from Monzo.

How does it work?

Monzo has integrated a few systems together to help inform their customers. A cross functional team was put together to build a solution.

Monzo’s in-house technology stack meant that the systems that power their app and customer service phone calls can easily communicate with one another. This allowed them to link the two and share details of customer service calls with their app, accurately and in real-time.

The team then worked to identify edge cases, like when the user is offline. In this situation Monzo recommends that customers don’t speak to anyone claiming they’re from Monzo until you’re connected to the internet again and can check the call status within the app.

screen grab of Monzo call status displaying warning while the customer is offline letting the customer know the app is unable to verify whether or not the call is coming from Monzo, so it is safer not to answer.

Results and Next Steps

The feature has proven highly effective in safeguarding customers, and received universal praise from industry experts and consumer champions.

“Since we launched Call Status, we receive an average of around 700 reports of suspected fraud from our customers through the feature per month. Now that it’s live and helping protect customers, we’re always looking for ways to improve Call Status - like making it more visible and easier to find if you’re on a call and you want to quickly check that who you’re speaking to is who they say they are.” 

- Priyesh Patel, Senior Staff Engineer, Monzo’s Security team

Final Advice

Monzo continues to invest and innovate in fraud prevention. The call status feature brings together both technological innovation and customer education to achieve its success, and gives their customers a way to catch scammers in action.

A layered security approach is a great way to protect users. Android and Google Play provide layers like app sandboxing, Google Play Protect, and privacy preserving permissions, and Monzo has built an additional one in a privacy-preserving way.

To learn more about Android and Play’s protections and to further protect your app check out these resources:

Dev Channel Update for ChromeOS / ChromeOS Flex

Hello All,

The Dev channel has been updated to ChromeOS version 15823.11.0 with Chrome Browser version 124.0.6367.18 for most ChromeOS devices.

If you find new issues, please let us know one of the following ways:

Interested in switching channels? Find out how.


Google ChromeOS.

Chrome Dev for Desktop Update

The Dev channel has been updated to 125.0.6382.3 for Windows, Mac and Linux.

A partial list of changes is available in the Git log. Interested in switching release channels? Find out how. If you find a new issue, please let us know by filing a bug. The community help forum is also a great place to reach out for help or learn about common issues.

Prudhvi Bommana
Google Chrome