Tag Archives: Partners

Istio reaches 1.0: ready for prod

Today, Google Cloud is proud to announce, together with our collaborators, that the Istio open-source project has reached the 1.0 milestone. This is a key step toward delivering the Cloud Services Platform that we discussed last week, helping you manage your services in a hybrid world where some of your infrastructure runs on VMs and some in Kubernetes, some services run in the cloud and some on-premises.

Istio: a service mesh

Istio is at its heart a service mesh—software that layers transparently onto an existing distributed application. It collects logs, traces and telemetry, and adds security and policy without embedding client libraries. Moreover, Istio is also a platform, complete with APIs that let you integrate with systems for logging, telemetry and policy.

Istio delivers a service-based view of the service interactions across the mesh. Whereas traditional monitoring gives you low-level metrics such as nodes’ CPU consumption, Istio measures the actual traffic between services: requests per second, error rates and latency. It also generates a dependency graph so you can see how services affect one another.

With Istio, your DevOps team gets the tools it needs to run distributed apps smoothly. Istio does canary rollouts, letting you smoke-test a new build to make sure it’s performing well before ramping up. It also offers fault-injection, retry logic and circuit breaking so DevOps teams can do more testing and change network behavior at runtime to keep applications up and running.

And finally, Istio adds security. It can be used to layer mTLS on every call, adding encryption-in-flight and giving you the ability to authorize every single call on your cluster and in your mesh.

Istio in action

Istio provides foundational capabilities for your infrastructure, freeing developers to work on code that is critical to your business. But there’s only one way to prove that Istio is ready for the enterprise: by running real workloads on it in production. Already, there are at least a dozen companies running Istio in production, including several on GCP. We worked with them through early hurdles, incorporated their feedback, and they’re reaping the benefits of Istio already. A great example is Auto Trader UK, which used Istio to help accelerate their move to containers and the public cloud.

Auto Trader UK is not only migrating from private cloud to public cloud, but also moving from virtual machines to Kubernetes. The level of control and visibility that Istio provides has enabled us to significantly de-risk this ambitious work, and in several cases has actually helped surface issues we were previously unaware of. We've been able to accelerate the delivery of capabilities such as mutual TLS, that previously would have taken significant engineering effort, allowing us to focus on our market differentiators.
- Karl Stoney, Delivery Infrastructure Lead, Auto Trader UK

A true joint effort

We first released Istio as open source last year, and what a year it’s been. Since that first 0.1 release, Istio has improved and matured significantly, with eight versions, 200+ contributors, and 4,000+ check-ins adding an ever growing set of functionality.

Getting to version 1.0 was truly a community-driven effort. IBM was a key collaborator and co-founder, and Lyft’s Envoy proxy is a key component of the project. Since then, the number of companies involved in Istio has skyrocketed, including Cisco, Red Hat, and VMware consolidating industry support with the goal of accelerating adoption and meeting the service mesh needs of their customers.

“The growth of Istio since its launch last year has been tremendous, and it’s quickly taking its place as the standard way to manage microservices in the cloud,” said Jason McGee, IBM Fellow and VP, IBM Cloud. “Our mission since Istio’s launch has been to enable everyone to succeed with microservices, especially in the enterprise. This is why we’ve focused the community around improving security and scale, and heavily leaned our contributions on what we’ve learned from building agile cloud architectures for companies of all sizes.”
- Jason McGee, IBM Fellow and VP, IBM Cloud 
"We see Istio's potential to be able to solve some of the most complex aspects of application development and deployment. It brings a control plane for service mesh, cluster orchestration, and network control that will support and enable developers to focus on the more important aspects of their application development. We are looking forward to leveraging Istio in Red Hat OpenShift to enable developers to deploy their applications in a more secure and efficient manner." 
- Brian 'Redbeard' Harrington, product manager, Istio, Red Hat
“VMware has been an integral part of the community developing Istio service mesh. We see great potential in Istio’s service-based approach to connectivity, security, and observability. We believe it will become an infrastructure cornerstone, spanning across vSphere and Kubernetes platforms and multiple private and public clouds, and helping our enterprise customers improve development efficiencies and deliver on their SLAs / SLOs in a secure manner. Istio’s application layer complements the network virtualization layer, and together allow enterprises to achieve defense in depth, improve performance and scalability, and speed time to application value.” 
- Pere Monclus, CTO Network and Security, VMware

We’re also thrilled with the number of companies writing adapters for Istio—from observability software from SolarWinds and Datadog, to deployment tools from Weaveworks and CodeFresh, to policy and security offerings from Aspenmesh and Octarine. While Istio is transparent to application developers, it provides a standard integration interface for anyone writing observability tools or policy engines.

Working and integrating with other open source projects in the community drives our success, as well. Integrations with SPIFFE, the Open Policy Agent and OpenTracing all improve the state of open source and the lives of developers.

Istio on GCP

While the open-source Istio project is a major undertaking, we’re also intent on making it especially easy to use on Google Cloud Platform. Last week at Google Cloud Next we announced the alpha release of Managed Istio: open-source Istio that’s automatically installed and upgraded on your Kubernetes Engine clusters as a part of the Cloud Services Platform. Managed Istio will help provide the visibility, security and control you need over services running in hybrid environments, and it integrates with other Google products like Stackdriver and Apigee.

Achieving 1.0 is just a first step, both for the project and for us at Google Cloud. We have ambitious plans for adding features and improving Istio’s usability with  the ultimate goal of delivering a complete set of tools to manage all of your services, so that you can focus on writing software and running a business.

To find out more about Istio and how to get started using it on GCP, please visit cloud.google.com/istio.

Google Cloud and GitHub collaborate to make CI fast and easy

Today, Google Cloud and GitHub are delivering a new integrated experience that connects GitHub with Google’s Cloud Build, our new CI/CD platform. Together, we will provide fast, frictionless, and convenient Continuous Integration (CI) for any repository on GitHub, integrated directly into the GitHub developer workflow.

Millions of developers trust GitHub today to store and collaborate around source code. Working with GitHub, we realized we had an opportunity to help make it significantly easier for any repository to add CI, integrate DevOps practices, and improve velocity and productivity. We set out to build that together, and today’s release is the first step in that collaboration.

Continuous Integration drives developer productivity

“Continuous integration is a crucial element of modern software development, but historically one that has required development teams to invest significant effort in patching together disparate software products and services to build a working, streamlined pipeline. This is an area where partners with adjacent offerings can add real value by pre-integrating the necessary pieces to deliver a seamless experience. This is what GitHub and Google have set out to do.”
- Rachel Stephens, Analyst, RedMonk
Software development is built on trust. We work in teams and trust our fellow developers to write the right code together. We use open-source operating systems, tools, and libraries so we can focus on the code that we need to write. We trust cloud platforms so we can develop, test, run, and manage our applications securely, at scale. Google Cloud builds on that trust by developing and using open technologies such as Kubernetes, TensorFlow, and Go.

DevOps is also built on trust. Trust is what lets us go faster. We know that mistakes and errors happen and that we will learn from them. We create a culture of trust through transparency and data-driven decisions, through a spirit of shared-fate and blameless post-mortems for continuous improvement. We use automation everywhere, especially CI, to create a safety net. Trust in our tests and our tools lets us go faster. Cloud Build provides the DevOps tools to unleash developer productivity, and help teams go faster.

Collaborations are built on trust too. Google and GitHub have a long history of working together to make software development better for all developers. We have a shared belief in the principles and practices of open source, and a shared vision of productive developers and software teams. We have worked together on improvements to the Git client and protocol, as well as other projects. And Google uses GitHub too: Googlers contributed to nearly 30,000 repos on GitHub last year, some of which are among the most popular projects on GitHub.

Cloud Build and GitHub, better together

“GitHub is excited to partner with Google to make CI for cloud-native application development painless. The ability to use Cloud Build for CI as a part of the GitHub workflow is just the start of this partnership and we look forward to building more in the future with Google.”
- Jason Warner, SVP of Technology at GitHub (read more in GitHub’s blog post)
The integration of Cloud Build with GitHub makes it quick to adopt CI and validate changes by integrating code early and often, bringing a host of benefits to developers, directly from their GitHub workflow.

Zero-config Docker builds: In one step, you can run automated container builds and tests on changes pushed to a GitHub repository as a part of every pull request. GitHub will automatically detect and recommend CI for repositories that contain a Dockerfile.

Scalability: Cloud Build meets the growing needs of your organization. You can go from a single build on your local machine to multiple builds in parallel in the cloud across numerous projects, all in a matter of minutes.

Security: The builds run on infrastructure protected by Google’s security. You get full control over who can create and view your builds, what source code can be used, and where your build artifacts are stored.

Flexibility: For advanced use cases, you can include a cloudbuild.yaml file when setting up CI using Cloud Build. This lets you define custom build steps, speed up builds by caching a Docker image, build leaner containers, and deploy directly to Google Kubernetes Engine, Google App Engine, on-prem clusters (in alpha soon), or another cloud provider.

Insights: Once the build is complete, details about build times, failures and artifacts are available within GitHub through the Checks API, so you can understand and diagnose build results from within the familiar GitHub environment. Full logs and history are available in Cloud Build’s UI in the Google Cloud Console.

Join us

Today’s integration is already available in the GitHub Marketplace. Smart CI recommendations will be rolled out to all GitHub users on a phased basis. Please try it out, and share your feedback with us.

Google and GitHub have had a long relationship serving developers, and this is just the next step. We know there are many other ways we can make software development better for developers. We trust you’ll join us on this journey.

Introducing new Apigee capabilities to deliver business impact with APIs

Whether it's delivering new experiences through mobile apps, building a platform to power a partner ecosystem, or modernizing IT systems, virtually every modern business uses APIs (application programming interfaces).

Google Cloud’s Apigee API platform helps enterprises adapt by giving them control and visibility into the APIs that connect applications and data across the enterprise and across clouds. It enables organizations to deliver connected experiences, create operational efficiencies, and unlock the power of their data.

As enterprise API programs gain traction, organizations are looking to ensure that they can seamlessly connect data and applications, across multi-cloud and hybrid environments, with secure, manageable and monetizable APIs. They also need to empower developers to quickly build and deliver API products and applications that give customers, partners, and employees secure, seamless experiences.

We are making several announcements today to help enterprises do just that. Thanks to a new partnership with Informatica, a leading integration-platform-as-a-service (iPaaS) provider, we’re making it easier to connect and orchestrate data services and applications, across cloud and on-premise environments, using Informatica Integration Cloud for Apigee. We’ve also made it easier for API developers to access Google Cloud services via the Apigee Edge platform.

Discover and invoke business integration processes with Apigee

We believe that for an enterprise to accelerate digital transformation, it needs API developers to focus on business-impacting programs rather than low-level tasks such as coding, rebuilding point-to-point integrations, and managing secrets and keys.

From the Apigee Edge user interface, developers can now use policies to discover and invoke business integration processes that are defined in Informatica’s Integration Cloud.

Using this feature, an API developer can add a callout policy inside an API proxy that invokes the required Informatica business integration process. This is especially useful when the business integration process needs to be invoked before the request gets routed to the configured backend target.

To use this feature, API developers:
  • Log in to Apigee Edge user interface with their credentials
  • Create a new API proxy, configure backend target, add policies
  • Add a callout policy to select the appropriate business integration process
  • Save and deploy the API proxy

Access Google Cloud services from the Apigee Edge user interface

API developers want to easily access and connect with Google Cloud services like Cloud Firestore, Cloud Pub/Sub, Cloud Storage, and Cloud Spanner. In each case, there are a few steps to perform to deal with security, data formats, request/response transformation, and even wire protocols for those systems.

Apigee Edge includes a new feature that simplifies interacting with these services and enables connectivity to them through a first-class policy interface that an API developer can simply pick from the policy palette and use. Once configured, these can be reused across all API proxies.

We’re working to expand this feature to cover more Google Cloud services. Simultaneously, we’re working with Informatica to include connections to other software-as-a-service (SaaS) applications and legacy services like hosted databases.

Publish business integration processes as managed APIs

Integration architects, working to connect data and applications across the enterprise, play an important role in packaging and publishing business integration processes as great API products. Working with Informatica, we’ve made this possible within Informatica’s Integration Cloud.

Integration architects that use Informatica's Integration Cloud for Apigee can now author composite services using business integration processes to orchestrate data services and applications, and directly publish them as managed APIs to Apigee Edge. This pattern is useful when the final destination of the API call is an Informatica business integration process.

To use this feature, integration architects need to execute the following steps:
  • Log in to their Informatica Integration Cloud user interface
  • Create a new business integration process or modify an existing one
  • Create a new service of type (“Apigee”), select options (policies) presented on the wizard, and publish the process as an API proxy
  • Apply additional policies to the generated API proxy by logging in to the Apigee Edge user interface.
API documentation can be generated and published on a developer portal, and the API endpoint can be shared with app developers and partners. APIs are an increasingly central part of organizations’ digital strategy. By working with Informatica, we hope to make APIs even more powerful and pervasive. Click here for more on our partnership with Informatica.

Last month today: GCP in June

In June, we had a lot to discuss about getting the most out of the cloud for your business, from speeding up web traffic to running fully managed apps easily. Here’s a quick look at some of the highlights from Google Cloud Platform (GCP) news this month.

What caught your attention this month

Some of the most-read stories this month reflected new technology developments or integrations that will be useful for developers and engineers.
  • You can now deploy your Node.js app to the Google App Engine standard environment—and based on readership, many of you are excited about this. Node.js works easily on App Engine, without any language, module or API restrictions. You’ll get very quick deployment times, and a fully managed experience once you’ve deployed those apps, just as in other apps on the fully managed App Engine.
  • QUIC is a transport protocol, optimized for HTTPS, that makes web traffic run faster. The protocol itself isn’t new, but last month we announced QUIC support for our HTTPS load balancers. Network performance is a huge part of a successful public cloud operation, so this new support could make a big impact on web page load times for your cloud services. Enabling QUIC means your connections can be established faster, which is especially useful for latency-prone connections, and clients who don’t yet support QUIC will seamlessly continue to use HTTPS.
  • If you’re a Kubernetes fan, you may have already explored the new kubemci command-line interface (CLI). It lets you configure ingress for multi-cluster Kubernetes Engine environments, using Cloud Load Balancer. It’s also the first step in a long-term solution that will consist of a multi-cluster ingress system controlled via kubectl CLI or Kubernetes API calls.

Hot topics

You can now run your GCP workloads in Finland to improve availability and reduce your latency in the Nordics, and we announced that the Los Angeles region will open next month.

We also added some new storage tools to your arsenal. We’re adding Cloud Filestore as a GCP storage option so you can run enterprise applications that need a file system interface and shared file system for data. It’s fully managed and offers high performance for applications that need low latency and high throughput. For those of you supporting and running creative industry applications on GCP infrastructure, Cloud Filestore works great for render farms, website hosting and content management systems.

In addition, the Transfer Appliance became generally available in June, allowing a type of cloud data migration that will work well if you’ve got more than 20TB of data to upload to GCP, or that would take more than a week to upload. In early use, Transfer Appliance customers have gotten quick starts on analytics projects by moving test data to GCP, along with moving backup data and some or all of a data center to GCP.

And in the “Cloud powers some very cool projects” category, take a look at how the new Dragon Ball Legends game creator built the backend on GCP. Bandai Namco Entertainment knew that players of the latest addition to their Dragon Ball Z franchise would want to play against one another in real-time, with players around the globe. They turned to GCP for the scalability, global reach and real-time analytics they needed to make that possible.

Behind the compute curtain

This news of sole-tenant nodes for Google Compute Engine will come in handy for those of you at companies that need dedicated cloud servers. With this option, it’s possible to launch new VM instances as usual, but on server capacity dedicated to you. This choice is nice for industries with strict compliance and regulatory rules around data, and for getting higher utilization from VM instances along with instance placement, done either manually or by Compute Engine.

Building applications on GCP involves some upfront choices for app developers: Which compute offering will you pick, and what language will you use? Whether you’re a fan of containers or VMs, containers, App Engine or Cloud Functions, you’ll find in this post some excellent concrete examples the time and effort involved in building a “Hello, World” app in each of GCP’s four compute platforms.

That’s a wrap for June. This month brings the Next ‘18 conference, July 24-26. Join us and thousands of other IT practitioners in San Francisco to learn all you need to know about building a modern cloud infrastructure. Till then, build away!

New GitHub repo: Using Firebase to add cloud-based features to games built on Unity

A while back, a group of us Google Cloud Platform Developer Programs Engineers teamed up with gaming fans in Firebase Engineering to work on an interesting project. We all love games, gamers, and game developers, and we wanted to support those developers with solutions that accomplish common tasks so they can focus more on what they do best: making great games.

The result was Firebase Unity Solutions. It’s an open-source github repository with sample projects and scripts. These projects utilize Firebase tools and services to help you add cloud-based features to your games being built on Unity.

Each feature will include all the required scripts, a demo scene, any custom editors to help you better understand and use the provided assets, and a tutorial to use as a step-by-step guide for incorporating the feature into your game.

The only requirements are a Unity project with the .NET 2.0 API level enabled, and a project created with the Firebase Console.

Introducing Firebase Leaderboard

Our debut project is the Firebase_Leaderboard, a set of scripts that utilize Firebase Realtime Database to create and manage a cross-platform high score leaderboard. With the LeaderboardController MonoBehaviour, you can retrieve any number of unique users’ top scores from any time frame. Want the top 5 scores from the last 24 hours? Done. How about the top 100 from last week? You got it.

Once a connection to Firebase is established, scores are retrieved automatically, including any new scores that come in while the controller is enabled.

If any of those parameters are modified (the number of scores to retrieve, or the start or end date), the scores are automatically refreshed. The content is always up-to-date!

private void Start() {
    this.leaderboard = FindObjectOfType();
    leaderboard.FirebaseInitialized += OnInitialized;
    leaderboard.TopScoresUpdated += UpdateScoreDisplay;
    leaderboard.UserScoreUpdated += UpdateUserScoreDisplay;
    leaderboard.ScoreAdded += ScoreAdded;

    MessageText.text = "Connecting to Leaderboard...";
With the same component, you can add new scores for current users as well, meaning a single script handles both read and write operations on the top score data.

public void AddScore(string userId, int score) {
    leaderboard.AddScore(userId, score);
For step-by-step instructions on incorporating this cross-platform leaderboard into your Unity game using Firebase Realtime Database, follow the instructions here. Or check out the Demo Scene to see a version of the leaderboard in action!

We want to hear from you

We have ideas for what features to add to this repository moving forward, but we want to hear from you, too! What game feature would you love to see implemented in Unity using Firebase tools? What cloud-based functionality would you like to be able to drop directly into your game? And how can we improve the Leaderboard, or other solutions as they are added? You can comment below, create feature requests and file bugs on the github repo, or join the discussion in this Google Group.

Let’s make great games together!

Bust a move with Transfer Appliance, now generally available in U.S.

As we celebrate the upcoming Los Angeles Google Cloud Platform (GCP) region in one of the creative centers of the world, we are excited to share news about a product that can help you get your data there as fast as possible. Google Transfer Appliance is now generally available in the U.S., with a few new features that will simplify moving data to Google Cloud Storage. Customers have been using Transfer Appliance for almost a year, and we’ve heard great feedback.

The Transfer Appliance is a high-capacity server that lets you transfer large amounts of data to GCP, quickly and securely. It’s recommended if you’re moving more than 20TB of data, or data that would take more than a week to upload.

You can now request a Transfer Appliance directly from your Google Cloud Platform console. Indicate the amount of data you’re looking to transfer, and our team will help you choose the version that is the best fit for your needs.

The service comes in two configurations: 100TB or 480TB of raw storage capacity. We see typical data compression rates of 2x the raw capacity. The 100TB model is priced at $300, plus express shipping (approximately $500); the 480TB model is priced at $1,800, plus shipping (approximately $900).

You can mount Transfer Appliance as an NFS volume, making it easy to drag and drop files, or rsync, from your current NAS to the appliance. This feature simplifies the transfer of file-based content to Cloud Storage, and helps our migration partners expedite the move for customers.
"SADA Systems provides expert cloud consultation and technical services, helping customers get the most out of their Google Cloud investment. We found Transfer Appliance helps us transition the customer to the cloud faster and more efficiently by providing a secure data transfer strategy."
-Simon Margolis, Director of Cloud Platform, SADA Systems
Transfer Appliance can also help you transition your backup workflow to the cloud quickly. To do that, move the bulk of your current backup data offline using Transfer Appliance, and then incrementally back up to GCP over the network from there. Partners like Commvault can help you do this.

With this release, you’ll also find a more visible end-to-end integrity check, so you can be confident that every bit was transferred as is, and have peace of mind in deleting source data.

Transfer Appliance in action

In developing Transfer Appliance, we built a device designed for the data center, so it slides into a standard 19” rack. That has been a positive experience for our early customers, even those with floating data centers (yes, actually floating--see below for more).

We’ve seen our customers successfully use Transfer Appliance for the following use cases:
  • Migrate your data center (or parts of it) to the cloud.
  • Kick-start your ML or analytics project by transferring test data and staging it quickly.
  • Move large archives of content like creative libraries, videos, images, regulatory or backup data to Cloud Storage.
  • Collect data from research bodies or data providers and move it to Google Cloud for analysis.
We’ve heard about lots of innovative, interesting data projects powered by Transfer Appliance. Here are a few of them.

One early adopter, Schmidt Ocean Institute, is a private non-profit foundation that combines advanced science with state-of-the-art technology to achieve lasting results in ocean research. Their goals are to catalyze sharing of information and to communicate this knowledge to audiences around the world. For example, the Schmidt Ocean Institute owns and operates research vessel Falkor, the first oceanographic research vessel with a high-performance cloud computing system installed onboard. Scientists run models and software and can plan missions in near-real time while at sea. With the state-of-the-art technologies onboard, scientists contribute scientific data to the oceanographic community at large, very quickly. Schmidt Ocean Institute uses Transfer Appliance to safely get the data back to shore and publicly available to the research community as fast as possible.

“We needed a way to simplify the manual and complex process of copying, transporting and mailing hard drives of research data, as well as making it available to the scientific community as quickly as possible. We are able to mount the Transfer Appliance onboard to store the large amounts of data that result from our research expeditions and easily transfer it to Google Cloud Storage post-cruise. Once the data is in Google Cloud Storage, it’s easy to disseminate research data quickly to the community.”
-Allison Miller, Research Program Manager, Schmidt Ocean Institute

Beatport, a division of LiveStyle, serves an audience of electronic music DJs, producers and their fans. Google Transfer Appliance afforded Beatport the opportunity to rethink their storage architecture in the cloud without affecting their customer-facing network in the process.

“DJs, music producers and fans all rely on Beatport as the home for the world’s electronic music. By moving our library to Google Cloud Storage, we can access our audio data with the advanced tools that Google Cloud Platform has to offer. Managing tens of millions of lossless quality files poses unique challenges. Migrating to the highly performant Cloud Storage puts our wealth of audio data instantly at the fingertips of our technology team. Transfer Appliance made that move easier for our team.”
-Jonathan Steffen, CIO, beatport
Eleven Inc. creates content, brand experiences and customer activation strategies for clients across the globe. Through years of work for their clients, Eleven built a large library of creative digital assets and wanted a way to cost-effectively store that data in the cloud. Facing ISP network constraints and a desire to free up space on their local asset server quickly, Eleven Inc. used Transfer Appliance to facilitate their migration.

“Working with Transfer Appliance was a smooth experience. Rack, capture and ship. And now that our creative library is in Google Cloud Storage, it's much easier to think about ways to more efficiently manage the data throughout its life-cycle.”
-Joe Mitchell, Director of Information Systems
amplified ai combines extensive IP industry experience with deep learning to offer instant patent intelligence to inventors and attorneys. This requires a lot of patent data for building models. Transfer Appliance helped amplified ai move TBs of this specialized essential data to the cloud quickly.

“My hands are already full building deep learning models on massive, disparate data without also needing to worry about physically moving data around. Transfer Appliance was easy to understand, easy to install, and made it easy to capture and transfer data. It just did what it was supposed to do and saved me time which, for a busy startup, is the most valuable asset.”
-Chris Grainger, Founder & CTO, amplified ai
Airbus Defence and Space Geo Inc. uses their exclusive access to radar and optical satellites to offer a stunning Earth observation images library. As part of a major cloud migration effort, Airbus moved hundreds of TBs of this data to the cloud with Transfer Appliance so they can better serve images to clients from Cloud Storage. They improved data quality along with the migration by using Transfer Appliance.

“We needed to liberate. To flex on demand and scale in the cloud, and unleash our creativity. Transfer Appliance was a catalyst for that. In addition to migrating an amount of data that would not have been possible over the network, this transfer gave us the opportunity to improve our storage in the process—to clean out the clutter.”
-Dave Wright, CTO, Airbus Defense and Space Geo Inc.

National Collegiate Sports Archives (NCSA) is the creator and owner of the VAULT, which contains years worth of college sports footage. NCSA digitizes archival sports footage from leading schools and delivers it via mobile, advertising and social media platforms. With a lot of precious footage to deliver to college sports fans around the globe, NCSA needed a way to move data into Google Cloud Platform quickly and with zero disruption for their users.

“With a huge archive of collegiate sports moments, we wanted to get that content into the cloud and do it in a way that provides value to the business. I was looking for a solution that would cost-effectively, simply and safely execute the transfer and let our teams focus on improving the experience for our users. Transfer Appliance made it simple to capture data in our data center and ship it to Google Cloud. ”
-Jody Smith, Technology Lead, NCSA

Tackle your data migration needs with Transfer Appliance

To get detailed information on Transfer Appliance, check out our documentation. And visit our Data Transfer page to learn more about our other cloud data transfer options.

We’re looking forward to bringing Transfer Appliance to regions outside of the U.S. in the coming months. But we need your help: Where should we deploy first? If you are interested in offline data transfer but not located in the U.S., please indicate so in the request form.

If you’re interested in learning more about cloud data migration strategies, check out this session at Next 2018 next month. For more information, and to register, visit the Next ‘18 website.

Google Cloud for Electronic Design Automation: new partners

A popular enterprise use case for Google Cloud is electronic design automation (EDA)—designing electronic systems such as integrated circuits and printed circuit boards. EDA workloads, like simulations and field solvers, can be incredibly computationally intensive. They may require a few thousand CPUs, sometimes even a few hundred thousand CPUs, but only for the duration of the run. Instead of building up massive server farms that are oversubscribed during peak times and sit idle for the rest of the time, you can use Google Cloud Platform (GCP) compute and storage resources to implement large-scale modeling and simulation grids.

Our partnerships with software and service providers make Google Cloud an even stronger platform for EDA. These solutions deliver elastic infrastructure and improved time-to-market for customers like eSilicon, as described here.

Scalable simulation capacity on GCP provided by Metrics Technologies (more details below)

This week at Design Automation Conference, we’re showcasing a first-of-its-kind implementation of EDA in the cloud: our implementation of the Synopsys VCS simulation solution for internal EDA workloads on Google Cloud, by the Google Hardware Engineering team. We also have several new partnerships to help you achieve operational and engineering excellence through cloud computing, including:

  • Metrics Technologies is the first EDA platform provider of cloud-based SystemVerilog simulation and verification management, accelerating the move of semiconductor verification workloads into the cloud. The Metrics Cloud Simulator and Verification Manager, a pay-by-the-minute software-as-a-service (SaaS) solution built entirely on GCP, improves resource utilization and engineering productivity, and can scale capacity with variable demand. Simulation resources are dynamically adjusted up or down by the minute without the need to purchase additional hardware or licenses, or manage disk space. You can find Metrics news and reviews at www.metrics/news.ca, or schedule a demo at DAC 2018 at www.metrics.ca.
  • Elastifile delivers enterprise-grade, scalable file storage on Google Cloud. Powered by a high-performance, POSIX-compliant distributed file system with integrated object tiering, Elastifile simplifies storage and data management for EDA workflows. Deployable in minutes via Google Cloud Launcher, Elastifile enables cloud-accelerated circuit design and verification, with no changes required to existing tools and scripts.
  • NetApp is a leading provider of high-performance storage solutions. NetApp is launching Cloud Volumes for Google Cloud Platform, which is currently available in Private Preview. With NetApp Cloud Volumes, GCP customers have access to a fully-managed, familiar file storage (NFS) service with a cloud native experience.
  • Quobyte provides a parallel, distributed, POSIX-compatible file system that runs on GCP and on-premises to provide petabytes of storage and millions of IOPS. As a distributed file system, Quobyte scales IOPS and throughput linearly with the number of nodes–avoiding the performance bottlenecks of clustered or single filer solutions. You can try Quobyte today on the Cloud Launcher Marketplace.
If you’d like to learn more about EDA offerings on Google Cloud, we encourage you to visit us at booth 1251 at DAC 2018. And if you’re interested in learning more about how our Hardware Engineering team’s used Synopsys VCS on Google Cloud for internal Google workloads, please stop by Design Infrastructure Alley on Tuesday for a talk by team members Richard Ho and Ravi Rajamani. Hope to see you there!

Partner Interconnect now generally available

We are happy to announce that Partner Interconnect, launched in beta in April, is now generally available. Partner Interconnect lets you connect your on-premises resources to Google Cloud Platform (GCP) from the partner location of your choice, at a data rate that meets your needs.

With general availability, you can now receive an SLA for Partner Interconnect connections if you use one of the recommended topologies. If you were a beta user with one of those topologies, you will automatically be covered by the SLA. Charges for the service start with GA (see pricing).

Partner Interconnect is ideal if you want physical connectivity to your GCP resources but cannot connect at one of Google’s peering locations, or if you want to connect with an existing service provider. If you need help understanding the connection options, the information here can help.

In this blog we will walk through how you can start using Partner Interconnect, from choosing a partner that works best for you all the way through how you can deploy and start using your interconnect.

Choosing a partner

If you already have a service provider partner for network connectivity, you can check the list of supported service providers to see if they offer Partner Interconnect service. If not, you can select a partner from the list based on your data center location.

Some critical factors to consider are:
  • Make sure the partner can offer the availability and latency you need between your on-premises network and their network.
  • Check whether the partner offers Layer 2 connectivity, Layer 3 connectivity, or both. If you choose a Layer 2 Partner, you have to configure and establish a BGP session between your Cloud Routers and on-premises routers for each VLAN attachment that you create. If you choose a Layer 3 partner, they will take care of the BGP configuration.
  • Please review the recommended topologies for production-level and non-critical applications. Google provides a 99.99% (with Global Routing) or 99.9% availability SLA, and that only applies to the connectivity between your VPC network and the partner's network.

Bandwidth options and pricing

Partner Interconnect provides flexible options for bandwidth between 50 Mbps and 10 Gbps. Google charges on a monthly basis for VLAN attachments depending on capacity and egress traffic (see options and pricing).

Setting up Partner Interconnect VLAN attachments

Once you’ve established network connectivity with a partner, and they have set up interconnects with Google, you can set up and activate VLAN attachments using these steps:
  1. Create VLAN attachments.
  2. Request provisioning from the partner.
  3. If you have a Layer 2 partner, complete the BGP configuration and then activate the attachments for traffic to start. If you have a Layer 3 partner, simply activate the attachments, or use the pre-activation option.
With Partner Interconnect, you can connect to GCP where and how you want to. Follow these steps to easily access your GCP compute resources from your on-premises network.

Related content

Behind the scenes with the Dragon Ball Legends GCP backend

Dragon Ball Legends, a new mobile game from Bandai Namco Entertainment (BNE), is based on its popular Dragon Ball Z franchise, and is rolling out to gamers around the world as we speak. But planning the cloud infrastructure to power the game dates back to February 2017, when BNE approached Google Cloud to talk about the interesting challenges they were facing, and how we could help.

Based on their anticipated demand, BNE had three ambitious requirements for their game:
  1. Extreme scalability. The game would be launched globally, so it needed backend that could scale with millions of players and still perform well.
  2. Global network. Because the game allows real-time player versus player battles, it needs a reliable and low-latency network across regions.
  3. Real-time data analytics. The game is designed to evolve with players in real-time, so it was critical to have a data analytics pipeline to stream data to a data warehouse. Then the operation team can measure and evaluate how people are playing the game and adjust it on-the-fly.
All three of these are areas where we have a lot of experience. Google has multiple global services with more than a billion users, and we use the data those services generate to improve them over time. And because Google Cloud Platform (GCP) runs on the same infrastructure as these Google services, GCP customers can take advantage of the same enabling technologies.

Let’s take a look at how BNE worked with Google Cloud to build the infrastructure for Dragon Ball Legends.

Challenge #1: Extreme scalability

MySQL is extensively used by gaming companies in Japan because engineers are used to working with relational databases with schema, SQL queries and strong consistency. This simplifies a lot on the application side that doesn’t have to handle any database limitations like eventual consistency or schema enforcement. MySQL is a widely used even outside gaming and most backend engineers already have strong experience using this database.

While MySQL offers many advantages, it has one big limitation: scalability. Indeed, as a scale-up database if you want to increase MySQL performance, you need to add more CPU, RAM or disk. And when a single instance of MySQL can’t handle the load anymore, you can divide the load by sharding—splitting users into groups and assigning them to multiple independent instances of MySQL. Sharding has a number of drawbacks, however. Most gaming developers calculate the number of shards they’ll need for the database before the game launches since resharding is labor-intensive and error-prone. That causes gaming companies tend to overprovision the database to eventually handle more players than they expect. If the game is as popular as expected, everything is fine. But what if the game is a runaway hit and exceeds the anticipated demand? And what about the long tail representing a gradual decrease in active players? What if it’s an out-and-out flop? MySQL sharding is not dynamically scalable, and adjusting its size requires maintenance as well as risk.

In an ideal world, databases can scale in and out without downtime while offering the advantages of a relational database. When we first heard that BNE was considering MySQL sharding to handle the massive anticipated traffic for Dragon Ball Legends, we suggested they consider Cloud Spanner instead.

Why Cloud Spanner?

Cloud Spanner is a fully managed relational database that offers horizontal scalability and high availability while keeping strong consistency with a schema that is similar to MySQL’s. Better yet, as a managed service, it’s looked after by Google SREs, removing database maintenance and minimizing the risk of downtime. We thought Cloud Spanner would be able to help BNE make their game global.

Evaluation to implementation

Before adopting a new technology, engineers should always test it to confirm its expected performance in a real world scenario. Before replacing MySQL, BNE created a new Cloud Spanner instance in GCP, including a few tables with a similar schema to what they used in MySQL. Since their backend developers were writing in Scala, they chose the Java client library for Cloud Spanner and wrote some sample code to load-test Cloud Spanner and see if it could keep up with their queries per second (QPS) requirements for writes—around 30,000 QPS at peak. Working with our customer engineer and the Cloud Spanner engineering team, they met this goal easily. They even developed their own DML (Data Manipulation Language) wrapper to write SQL commands like INSERT, UPDATE and DELETE.

Game release

With the proof of concept behind them, they could start their implementation. Based on the expected daily active users (DAU), BNE calculated how many Cloud Spanner nodes they needed—enough for the 3 million pre-registered players they were expecting. To prepare the release, they organized two closed beta tests to validate their backend, and didn’t have a single issue with the database! In the end, over 3 million participants worldwide pre-registered for Dragon Ball Legends, and even with this huge number, the official game release went flawlessly.

Long story short, BNE can focus on improving the game rather than spending time operating their databases.

Challenge #2: Global network

Let’s now talk about BNE’s second challenge: building a global real-time player-vs-player (PvP) game. BNE’s goal for Dragon Ball Legends was to let all its players play against one another, anywhere in the world. If you know anything about networking, you understand the challenge around latency. Round-trip time (RTT) ( between Tokyo and San Francisco, for example, is on average around 100 ms. To address that, they decided to divide every game second into 250 ms intervals. So while the game looks like it’s real-time to users, it’s actually a really fast turn-based game at its core (you can read more about the architecture here). And while some might say that 250ms offers plenty of room for latency, it’s extremely hard to predict the latency when communicating across the Internet.

Why Cloud Networking?

Here’s what it looks like for a game client to access the game server on GCP over the internet. Since the number of hops can vary every time, this means that playing PvP can sometimes feel fast, sometimes slow.

Once of the main reasons BNE decided to use GCP for the Dragon Ball Legends backend was the Google dedicated network. As you can see in the picture below, when using GCP, once the game client accesses one of the hundreds of GCP Point Of Presence (POP) around the world, it’s on the Google dedicated network. That means none unpredictable hops, for predictable and lowest possible latency.

Taking advantage of the Google Cloud Network

Usually, gaming companies implement PvP by connecting two players directly or through a dedicated game server. Usually combat games that require low latency between players will prefer P2P communication. In general, when two players are geographically close, P2P works very well, but it’s often unreliable when trying to communicate across regions (some carriers even block P2P protocols). For two players from two different continents to communicate through Google’s dedicated network, players first try to communicate through P2P, and if that fails, they failover to an open source implementation of STUN/TURN Server called coturn, which acts as a relay between the two players.. That way, cross continent battles leverage the low-latency and reliable Google network as much as possible.

Challenge #3: Real-time data analytics

BNE’s last challenge was around real-time data analytics. BNE wanted to offer the best user experience to their fans and one of the ways to do that is through live game operations, or LiveOps, in which operators make constant changes to the game so it always feels fresh. But to understand players’ needs, they needed data— usually users’ actions log data. And if they could get this data in near real-time, they could then make decisions on what changes to apply to the game to increase users’ satisfaction and engagement.

To gather this data, BNE used a combination of Cloud Pub/Sub, Cloud Dataflow to transform in users’ data in real-time and insert it into BigQuery.
  • Cloud Pub/Sub offers a globally reliable messaging system that buffers the logs until they can be handled by Cloud Dataflow.
  • Cloud Dataflow is a fully managed parallel processing service that lets you execute ETL in real-time and in parallel.
  • BigQuery is the fully managed data warehouse where all the game logs are stored. Since BigQuery offers petabyte-scale storage, scaling was not a concern. Thanks to heavy parallel processing when querying the logs, BNE can get a response to a query, scanning terabytes of data in a few seconds.
This system lets a game producer visualize a player’s behavior in near real-time and take decision on what new features to bring to the game or what to change inside the game to satisfy all their fans.


Using Cloud Spanner, BNE could focus on developing an amazing game instead of spending time on database capacity planning and scaling. Operations-wise, by using a fully managed scalable database, they drastically reduced risks related to human error as well as an operational overhead.

Using Cloud Networking, they leveraged Google’s dedicated network to offer the best user experience to their fans, even when fighting across regions.

And finally, using Google’s analytics stack (Cloud PubSub, Cloud Dataflow and BigQuery), BNE was able to analyze players’ behaviors in near real-time and make decisions about how to adjust the game to make their fans even happier!

If you want to hear more details about how they evaluated and adopted Cloud Spanner for their game, please join them at their Google Cloud NEXT’18 session in San Francisco.

Exploring container security: Using Cloud Security Command Center (and five partner tools) to detect and manage an attack

Editor’s note: This is the sixth in a series of blog posts on container security at Google.

If you suspect that a container has been compromised, what do you do? In today’s blog post on container security, we’re focusing in on container runtime security—how to detect, respond to, and mitigate suspected threats for containers running in production. There’s no one way to respond to an attack, but there are best practices that you can follow, and in the event of a compromise, we want to make it easy for you to do the right thing.

Today, we’re excited to announce that you’ll soon be able to manage security alerts for your clusters in Cloud Security Command Center (Cloud SCC), a central place on Google Cloud Platform (GCP) to unify, analyze and view security data across your organization. Further, even though we just announced Cloud SCC a few weeks ago, already five container security companies have integrated their tools with Cloud SCC to help you better secure the containers you’re running on Google Kubernetes Engine.

With your Kubernetes Engine assets in Cloud SCC, you can view security alerts for your Kubernetes Engine clusters in a single pane of glass, and choose how to best take action. You’ll be able to view, organize and index your Kubernetes Engine cluster assets within each project and across all the projects that your organization is working on. In addition, you’ll be able to associate your container security findings to either specific clusters, container images and/or VM instances as appropriate.

Until then, let’s take a deeper look at runtime security in the context of containers and Kubernetes Engine.

Responding to bad behavior in your containers

Security operations typically includes several steps. For example, NIST’s well known framework includes steps to identify, protect, detect, respond, and recover. In containers, this translates to detecting abnormal behavior, remediating a potential threat, performing forensics after an incident, and enforcing runtime policies in isolated environments such as the new gVisor sandboxed container environment.

But first, how do you detect that a container is acting maliciously? Typically, this requires creating a baseline of what normal behaviour looks like, and using rules or machine learning to detect variation from that baseline. There are many ways to create that initial behavioral baseline (i.e., how a container should act), for example, using kprobes, tracepoints, and eBPF kernel inspection. Deviation from this baseline then triggers an alert or action.

If you do find a container that appears to be acting badly, there are several actions you might want to take, in increasing order of severity:

  • Just send an alert. This notifies your security response team that something unusual had been detected. For example, if security monitoring is relatively new in your environment, you might be worried about having too many false positives. Cloud SCC lets you unify container security signals with other security signals across your organization. With Cloud SCC, you can: see the live monitored state of container security issues in the dashboard; access the details either in the UI or via the API; and set up customer-defined filters to generate Cloud Pub/Sub topics that can then trigger email, SMS, or bugs in Jira.
  • Isolate a container. This moves the container to a new network, or otherwise restricts its network connectivity. For example, you might want to do this if you think one container is being used to perform a denial of service attack on other services.
  • Pause a container, e.g., `gcloud compute instances stop`. This suspends all running processes in the container. For example, if you detect suspected cryptomining, you might want to limit resource use and make a backup prior to further investigation.
  • Restart a container, e.g., `docker restart` or `kubectl delete pod`. This kills and restarts a running container, and resets the current state of the application. For example, if you suspect an attacker has created a foothold in your container, this might be a first step to counter their efforts, but this won’t stop an attacker from replicating an attack—just temporarily remove them.
  • Kill a container, i.e., `docker kill`. This kills a running container, halting all running processes (and less gracefully than `docker stop`). This is typically a last resort for a suspected malicious container.

Analyzing a security incident

After an incident, your security forensics team might step in to determine what really happened, and how they can prevent it the next time around. On Kubernetes Engine, you can look at a few different sources of event information:

  • Security event history and monitoring status in Cloud SCC. You can view the summary status of your assets and security findings in the dashboard, configure alerting and notification to a custom Cloud Pub/Sub topic and then query and explore specific events in detail either via the UI or API.
  • Container logs, kubelet logs, Docker logs, and audit logs in Stackdriver. Kubernetes Engine Audit Logging captures certain actions by default, both in the Kubernetes Engine API (e.g., create cluster, remove nodepool) and in the Kubernetes API (e.g., create a pod, update a DaemonSet).
  • Snapshots. You can snapshot a container’s filesystem in docker with `docker export`.

Announcing our container runtime security partners

To give you the best options for container runtime security on Google Cloud Platform, we’re excited to announce five partners who have already integrated with Cloud SCC: Aqua Security, Capsule8, Stackrox, Sysdig Secure, and Twistlock. These technical integrations allow you to use their cutting-edge security tools with your deployments, and view their findings and recommendations directly in Cloud SCC.

Aqua Security

Aqua’s integration with Cloud SCC provides real-time visibility into container security events and policy violations, including:

  • Inventory of vulnerabilities in container images in Google Container Registry, and alerts on new vulnerabilities
  • Container user security violations, such as privilege escalation attempts
  • Attempts to run unapproved images
  • Policy violations of container network, process, and host resource usage

To learn more and get a demo of Aqua’s integration with Google Cloud SCC, visit aquasec.com/gcp


Capsule8 is a real-time, zero-day attack detection platform purpose-built for modern production infrastructures. The Capsule8 integration with Google delivers continuous security across GCP environments to detect and help shut down attacks as they happen. Capsule8 runs entirely in the customer's Google Compute Engine environment and accounts and only requires a lightweight installation-free sensor running on each Compute Engine instance to stream behavioral telemetry to identify and help shut down zero-day attacks in real-time.

For more information on Capsule8’s integration with GCP, please visit: https://capsule8.com/capsule8-for-google-cloud-platform/


StackRox has partnered with Google Cloud to deliver comprehensive security for customers running containerized applications on Kubernetes Engine. StackRox visualizes the container attack surface, exposes malicious activity using machine learning, and stops attacks. Under the partnership, StackRox is working closely with the GCP team to offer an integrated experience for Kubernetes and Kubernetes Engine users as part of Cloud SCC.

“My current patchwork of security vendor solutions is no longer viable – or affordable – as our enterprise is growing too quickly and cyber threats evolve constantly. StackRox has already unified a handful of major product areas into a single security engine, so moving to containers means positive ROI."

- Gene Yoo, Senior Vice President and Head of Information Security at City National Bank

For more information on StackRox’s integration with GCP, please visit: https://www.stackrox.com/google-partnership

Sysdig Secure

By bringing together container visibility and a native Kubernetes Engine integration, Sysdig Secure provides the ability to block threats, enforce compliance, and audit activity across an infrastructure through microservices-aware security policies. Security events are enriched with hundreds of container and Kubernetes metadata before being sent to Cloud SCC. This brings the most relevant signals to your attention and correlates Sysdig events with other security information sources so you can have a single point of view and the ability to react accordingly at all levels.

"We chose to develop on Google Cloud for its robust, cost-effective platform. Sysdig is the perfect complement because it allows us to effectively secure and monitor our Kubernetes services with a single agent. We're excited to see that Google and Sysdig are deepening their partnership through this product integration.”

- Ashley Penny, VP of infrastructure, Cota Healthcare. 

For more information on Sysdig Secure’s integration with GCP, please visit: https://sysdig.com/gke-monitoring/


Twistlock surfaces cloud-native security intel vulnerability findings, compliance posture, runtime anomalies, and firewall logs directly into Cloud SCC. Customers can use Cloud SCC's big data capabilities to analyze and alert at scale, integrating container, serverless, and cloud-native VM security intelligence alongside other apps and workloads connected to Cloud SCC.

"Twistlock enables us to pinpoint vulnerabilities, block attacks, and easily enforce compliance across our environment, giving our team the visibility and control needed to run containers at scale."

- Anthony Scodary, Co-Founder of Gridspace

For more information on Twistlock’s integration with GCP, please visit: https://twistlock.com/partners/google-cloud-platform

Now you have the tools you need to protect your containers! Safe computing!

And if you’re at KubeCon in Copenhagen, join us at our booth for a demo and discussion around container security.