Tag Archives: AI

Meet the inaugural cohort of our Google for Startups Accelerator: AI First North America

Posted by Matt Ridenour, Head of Startup Developer Ecosystem - USA

Startups are at the forefront of developing solutions for some of humanity's most pressing challenges by using AI, driving breakthroughs across industries from healthcare to cybersecurity.

To help AI-focused startups scale quickly while building responsibly, we’re thrilled to introduce the inaugural class of the Google for Startups Accelerator: AI-First program in North America. This new program is for startups building AI solutions based in the U.S. and Canada. This is the first of several AI-focused programs we'll offer throughout the year in Europe, India and Brazil.

This equity-free program provides 10 weeks of hands-on mentorship and technical project support to startups using AI in their core service or product. Selected startups will collaborate with a cohort of top peer founders and engage with leaders across Google. The curriculum will give founders access to the latest AI tools (including Google’s own Gemini), and will also include workshops on tech and infrastructure, UX and product, growth, sales, leadership and OKRs.

Meet the inaugural class of Google for Startups Accelerator: AI-First, North America

We’re thrilled to introduce the 15 AI startups selected for this accelerator:

Aptori, San Jose, CA. Aptori assists developers and security engineers to build secure, high-quality software.

Augmend, Seattle, WA. Augmend is an AI native Loom made for developers, making it possible to share expertise, not just videos.

Backpack Healthcare, Elkridge, MA. Backpack Healthcare is a pediatric mental health company utilizing proprietary AI technology, an engagement platform, and live therapists to offer personalized care to patients.

BrainLogic AI, Menlo Park, CA. BrainLogic AI has built a localized AI agent that connects users and businesses through whatsapp.

Cicerai, The Woodlands, TX. Cicerai is an AI-native Legal Practice Management Platform, boosting productivity and enhancing quality.

CLIKA, San Jose, CA. CLIKA simplifies deploying AI models on diverse hardware by offering automated model compression and format compilation.

Easel AI, Inc., Los Angeles, CA. Easel AI is an AI avatar-based social chat app that runs on iMessage.

Findly, San Francisco, CA. Findly is a data visualization integrator using a natural language chat interface.

Glass Health, San Francisco, CA. Glass Health empowers clinicians with the best-in-class AI platform for clinical decision support.

Kodif, Sunnyvale, CA. Kodif is a low-code AI-powered automation platform for support agent workflows to resolve customer issues.

Liminal, Indianapolis, IN. Liminal empowers regulated enterprises to securely deploy and use generative AI, horizontally covering every interaction and use case.

Mbue, Austin, TX. Mbue leverages AI to instantly review architectural drawings, catching errors earlier and streamlining the process.

Modulo Bio, San Diego, CA. Modulo Bio is building a platform to discover therapeutics that prevent or reverse neurodegenerative diseases.

Rocket Doctor, Toronto, ON, Canada. Rocket Doctor is a digital health platform and marketplace that intelligently matches patients and clinicians in a telemedicine 2.0 approach.

Sibli, Montreal, QC, Canada. Sibli is a fintech platform that processes unstructured data and identifies key insights for financial analysts.

The program kicks off at Cloud Next 2024 and culminates with a high profile Demo Day in June for potential partners, customers and investors.

After graduation, startups join the dynamic Google for Startups accelerator community, where they receive ongoing support and have the opportunity to build lasting connections with like-minded founders, mentors and investors.

We are honored to partner with this cohort of companies through this accelerator and beyond, to advance their AI technologies. Register your interest to get updates on the program, and join us in celebrating these exceptional startups!

Gemma Family Expands with Models Tailored for Developers and Researchers

Posted by Tris Warkentin – Director, Product Management and Jane Fine - Senior Product Manager

In February we announced Gemma, our family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. The community's incredible response – including impressive fine-tuned variants, Kaggle notebooks, integration into tools and services, recipes for RAG using databases like MongoDB, and lots more – has been truly inspiring.

Today, we're excited to announce our first round of additions to the Gemma family, expanding the possibilities for ML developers to innovate responsibly: CodeGemma for code completion and generation tasks as well as instruction following, and RecurrentGemma, an efficiency-optimized architecture for research experimentation. Plus, we're sharing some updates to Gemma and our terms aimed at improvements based on invaluable feedback we've heard from the community and our partners.


Introducing the first two Gemma variants


CodeGemma: Code completion, generation, and chat for developers and businesses

Harnessing the foundation of our Gemma models, CodeGemma brings powerful yet lightweight coding capabilities to the community. CodeGemma models are available as a 7B pretrained variant that specializes in code completion and code generation tasks, a 7B instruction-tuned variant for code chat and instruction-following, and a 2B pretrained variant for fast code completion that fits on your local computer. CodeGemma models have several advantages:

  • Intelligent code completion and generation: Complete lines, functions, and even generate entire blocks of code – whether you're working locally or leveraging cloud resources. 
  • Enhanced accuracy: Trained on 500 billion tokens of primarily English language data from web documents, mathematics, and code, CodeGemma models generate code that's not only more syntactically correct but also semantically meaningful, helping reduce errors and debugging time. 
  • Multi-language proficiency: Your invaluable coding assistant for Python, JavaScript, Java, and other popular languages. 
  • Streamlined workflows: Integrate a CodeGemma model into your development environment to write less boilerplate, and focus on interesting and differentiated code that matters – faster.
image of streamlined workflows within an exisitng AI dev project with CodeGemma integrated
This table compares the performance of CodeGemma with other similar models on both single and multi-line code completion tasks. Learn more in the technical report.

Learn more about CodeGemma in our report or try it in this quickstart guide.


RecurrentGemma: Efficient, faster inference at higher batch sizes for researchers

RecurrentGemma is a technically distinct model that leverages recurrent neural networks and local attention to improve memory efficiency. While achieving similar benchmark score performance to the Gemma 2B model, RecurrentGemma's unique architecture results in several advantages:

  • Reduced memory usage: Lower memory requirements allow for the generation of longer samples on devices with limited memory, such as single GPUs or CPUs. 
  • Higher throughput: Because of its reduced memory usage, RecurrentGemma can perform inference at significantly higher batch sizes, thus generating substantially more tokens per second (especially when generating long sequences). 
  • Research innovation: RecurrentGemma showcases a non-transformer model that achieves high performance, highlighting advancements in deep learning research. 
graph showing maximum thoughput when sampling from a prompt of 2k tokens on TPUv5e
This chart reveals how RecurrentGemma maintains its sampling speed regardless of sequence length, while Transformer-based models like Gemma slow down as sequences get longer.

To understand the underlying technology, check out our paper. For practical exploration, try the notebook, which demonstrates how to finetune the model.


Built upon Gemma foundations, expanding capabilities

Guided by the same principles of the original Gemma models, the new model variants offer:

  • Open availability: Encourages innovation and collaboration with its availability to everyone and flexible terms of use. 
  • High-performance and efficient capabilities: Advances the capabilities of open models with code-specific domain expertise and optimized design for exceptionally fast completion and generation. 
  • Responsible design: Our commitment to responsible AI helps ensure the models deliver safe and reliable results. 
  • Flexibility for diverse software and hardware:  
    • Both CodeGemma and RecurrentGemma: Built with JAX and compatible with JAX, PyTorch, , Hugging Face Transformers, and Gemma.cpp. Enable local experimentation and cost-effective deployment across various hardware, including laptops, desktops, NVIDIA GPUs, and Google Cloud TPUs.  
    • CodeGemma: Additionally compatible with Keras, NVIDIA NeMo, TensorRT-LLM, Optimum-NVIDIA, MediaPipe, and availability on Vertex AI. 
    • RecurrentGemma: Support for all the aforementioned products will be available in the coming weeks.

Gemma 1.1 update

Alongside the new model variants, we're releasing Gemma 1.1, which includes performance improvements. Additionally, we've listened to developer feedback, fixed bugs, and updated our terms to provide more flexibility.


Get started today

These first Gemma model variants are available in various places worldwide, starting today on Kaggle, Hugging Face, and Vertex AI Model Garden. Here's how to get started:

We invite you to try the CodeGemma and RecurrentGemma models and share your feedback on Kaggle. Together, let's shape the future of AI-powered content creation and understanding.

Android Studio uses Gemini Pro to make Android development faster and easier

Posted by Sandhya Mohan – Product Manager, Android Studio

As part of the next chapter of our Gemini era, we announced we were bringing Gemini to more products. Today we’re excited to announce that Android Studio is using the Gemini 1.0 Pro model to make Android development faster and easier, and we’ve seen significant improvements in response quality over the last several months through our internal testing. In addition, we are making this transition more apparent by announcing that Studio Bot is now called Gemini in Android Studio.

Gemini in Android Studio is an AI-powered coding assistant which can be accessed directly in the IDE. It can accelerate your ability to develop high-quality Android apps faster by helping generate code for your app, providing complex code completions, answering your questions, finding relevant resources, adding code comments and more — all without ever having to leave Android Studio. It is available in 180+ countries and territories in Android Studio Jellyfish.

If you were already using Studio Bot in the canary channel, you’ll continue experiencing the same helpful and powerful features, but you’ll notice improved quality in responses compared to earlier versions.

Ask Gemini your Android development questions

Gemini in Android Studio can understand natural language, so you can ask development questions in your own words. You can enter your questions in the chat window ranging from very simple and open-ended ones to specific problems that you need help with.

Here are some examples of the types of queries it can answer:

    • How do I add camera support to my app?
    • Using Compose, I need a login screen with the following: a username field, a password field, a 'Sign In' button, a 'Forgot Password?' link. I want the password field to obscure the input.
    • What's the best way to get location on Android?
    • I have an 'orders' table with columns like 'order_id', 'customer_id', 'product_id', 'price', and 'order_date'. Can you help me write a query that calculates the average order value per customer over the last month?
Moving image demonstrating a conversation in Android Studio

Gemini in Android Studio remembers the context of the conversation, so you can also ask follow-up questions, such as “Can you give me the code for this in Kotlin?” or “Can you show me how to do it in Compose?”

Code faster with AI powered Code Completions

Gemini in Android Studio can help you be more productive by providing you with powerful AI code completions. You can receive suggestions of multi-line code completions, suggestions for how to do comments for your code, or how to add documentation to your code.

Moving image demonstrating code completion in Android Studio

Designed with privacy in mind

Gemini in Android Studio was designed with privacy in mind. Gemini is only available after you log in and enable it. You don’t need to send your code context to take advantage of most features. By default, Gemini in Android Studio’s chat responses are purely based on conversation history, and you control whether you want to share additional context for customized responses. You can update this anytime in Android Studio > Settings at a granular project level. We also have a custom way for you to opt out certain files and folders through an .aiexclude file. Much like our work on other AI projects, we stick to a set of AI Principles that hold us accountable. Learn more here.

image of share settings in Android Studio

Build a Generative AI app using the Gemini API starter template

Not only does Android Studio use Gemini to help you be more productive, it can also help you take advantage of Gemini models to create AI-powered features in your applications. Get started in minutes using the Gemini API starter template available in the canary release – channel for Android Studio – under File > New Project > Gemini API Starter. You can also use the code sample available at File > Import Sample > Google Generative AI sample.

The Gemini API is multimodal, meaning it can support image and text inputs. For example, it can support conversational chat, summarization, translation, caption generation etc. using both text and image inputs.

image of starter templates in Android Studio

Try Gemini in Android Studio

Gemini in Android Studio is still in preview, but we have added many feature improvements — and now a major model update — since we released the experience in May 2023. It is currently no-cost for developers to try out. Now is a great time to test it and let us know what you think, before we release this experience to stable.


Stay updated on the latest by following us on LinkedIn, Medium, YouTube, or X. Let's build the future of Android apps together!

ML Olympiad 2024: Globally Distributed ML Competitions by Google ML Community

Posted by Bitnoori Keum – DevRel Community Manager

The ML Olympiad consists of Kaggle Community Competitions organized by ML GDE, TFUG, and other ML communities, aiming to provide developers with opportunities to learn and practice machine learning. Following successful rounds in 2022 and 2023, the third round has now launched with support from Google for Developers for each competition host. Over the last two rounds, 605 teams participated in 32 competitions, generating 105 discussions and 170 notebooks. We encourage you to join this round to gain hands-on experience with machine learning and tackle real-world challenges.


ML Olympiad Community Competitions

Over 20 ML Olympiad community competitions are currently open. Visit the ML Olympiad page to participate.

Smoking Detection in Patients

Predict smoking status with bio-signal ML models
Host: Rishiraj Acharya (AI/ML GDE) / TFUG Kolkata

TurtleVision Challenge

Develop a classification model to distinguish between jellyfish and plastic pollution in ocean imagery
Host: Anas Lahdhiri / MLAct

Detect hallucinations in LLMs

Detect which answers provided by a Mistral 7B instruct model are most likely hallucinations
Host: Luca Massaron (AI/ML GDE)

ZeroWasteEats

Find ML solutions to reduce food wastage
Host: Anushka Raj / TFUG Hajipur

Predicting Wellness

Predict the percentage of body fat in men using multiple regression methods
Host: Ankit Kumar Verma / TFUG Prayagraj

Offbeats Edition

Build a regression model to predict the age of the crab
Host: Ayush Morbar / Offbeats Byte Labs

Nashik Weather

Predict the condition of weather in Nashik, India
Host: TFUG Nashik

Predicting Earthquake Damage

Predict the level of damage to buildings caused by earthquake based on aspects of building location and construction
Host: Usha Rengaraju

Forecasting Bangladesh's Weather

Predict the rainy day; amount of rainfall, and average temperature for a particular day.
Host: TFUG Bangladesh (Dhaka)

CO2 Emissions Prediction Challenge

Predict CO2 emissions per capita for 2030 using global development indicators
Host: Md Shahriar Azad Evan, Shuvro Pal / TFUG North Bengal

AI & ML Malaysia

Predict loan approval status
Host: Kuan Hoong (AI/ML GDE) / Artificial Intelligence & Machine Learning Malaysia User Group

Sustainable Urban Living

Predict the habitability score of properties
Host: Ashwin Raj / BeyondML

Toxic Language (PTBR) Detection

(in local language)
Classify Brazilian Portuguese tweets in one of the two classes: toxics or non toxics.
Host: Mikaeri Ohana, Pedro Gengo, Vinicius F. Caridá (AI/ML GDE)

Improving disaster response

Predict the humanitarian aid contributions as a response to disasters occurs in the world
Host: Yara Armel Desire / TFUG Abidjan

Urban Traffic Density

Develop predictive models to estimate the traffic density in urban areas
Host: Kartikey Rawat / TFUG Durg

Know Your Customer Opinion

Classify each customer opinion into several Likert scale
Host: TFUG Surabaya

Forecasting India's Weather

Predict the temperature of the particular month
Host: Mohammed Moinuddin / TFUG Hyderabad

Classification Champ

Develop classification models to predict tumor malignancy
Host: TFUG Bhopal

AI-Powered Job Description Generator

Build a system that employs Generative AI and a chatbot interface to automatically generate job descriptions
Host: Akaash Tripathi / TFUG Ghaziabad

Machine Translation French-Wolof

Develop robust algorithms or models capable of accurately translating French sentences into Wolof.
Host: GalsenAI

Water Mapping using Satellite Imagery

Water mapping using satellite imagery and deep learning for dam drought detection
Host: Taha Bouhsine / ML Nomads


Navigating ML Olympiad

To see all the community competitions around the ML Olympiad, search "ML Olympiad" on Kaggle and look for further related posts on social media using #MLOlympiad. Browse through the available competitions and participate in those that interest you!