Tag Archives: Android Studio

What’s new in the Jetpack Compose March ’23 release

Posted by Jolanda Verhoef, Android Developer Relations Engineer

Today, as part of the Compose March ‘23 Bill of Materials, we’re releasing version 1.4 of Jetpack Compose, Android's modern, native UI toolkit that is used by apps such as Booking.com, Pinterest, and Airbnb. This release contains new features like Pager and Flow Layouts, and new ways to style your text, such as hyphenation and line-break behavior. It also improves the performance of modifiers and fixes a number of bugs.

Swipe through content with the new Pager composable

Compose now includes out-of-the-box support for vertical and horizontal paging between different content. Using VerticalPager or HorizontalPager enables similar functionality to the ViewPager in the view system. However, just like the benefits of using LazyRow and LazyColumn, you no longer need to create an adapter or fragments! You can simply embed a composable inside the Pager:

// Display 10 items HorizontalPager(pageCount = 10) { page -> // Your specific page content, as a composable: Text( text = "Page: $page", modifier = Modifier.fillMaxWidth() ) }


These composables replace the implementation in the Accompanist library. If you already use the Accompanist implementation, check out the migration guide. See the Pager documentation for more information.

Get your content flowing with the new Flow Layouts

FlowRow and FlowColumn provide an efficient and compact way to lay out items in a container when the size of the items or the container are unknown or dynamic. These containers allow the items to flow to the next row in the FlowRow or next column in the FlowColumn when they run out of space. These flow layouts also allow for dynamic sizing using weights to distribute the items across the container.

Here’s an example that implements a list of filters for a real estate app:


@Composable fun Filters() { val filters = listOf( "Washer/Dryer", "Ramp access", "Garden", "Cats OK", "Dogs OK", "Smoke-free" ) FlowRow( horizontalArrangement = Arrangement.spacedBy(8.dp) ) { filters.forEach { title -> var selected by remember { mutableStateOf(false) } val leadingIcon: @Composable () -> Unit = { Icon(Icons.Default.Check, null) } FilterChip( selected, onClick = { selected = !selected }, label = { Text(title) }, leadingIcon = if (selected) leadingIcon else null ) } } }

Performance improvements in Modifiers

The major internal Modifier refactor we started in the October release has continued, with the migration of multiple foundational modifiers to the new Modifier.Node architecture. This includes graphicsLayer, lower level focus modifiers, padding, offset, and more. This refactoring should bring performance improvements to these APIs, and you don't have to change your code to receive these benefits. Work on this continues, and we expect even more gains in future releases as we migrate Modifiers outside of the ui module. Learn more about the rationale behind the changes in the ADS talk Compose Modifiers deep dive.

Increased flexibility of Text and TextField

Along with various performance improvements, API stabilizations, and bug fixes, the compose-text 1.4 release brings support for the latest emoji version, including backwards compatibility with older Android versions 🎉🙌. Supporting this requires no changes to your application. If you’re using a custom emoji solution, make sure to check out PlatformTextStyle(emojiSupportMatch).

In addition, we’ve addressed one of the main pain points of using TextField. In some scenarios, a text field inside a scrollable Column or LazyColumn would be obscured by the on-screen keyboard after being focused. We re-worked core parts of scroll and focus logic, and added key APIs like PinnableContainer to fix this bug.

Finally, we added a lot of new customization options to Text and its TextStyle:

  • Draw outlined text using TextStyle.drawStyle.
  • Improve text transition and legibility during animations using TextStyle.textMotion.
  • Configure line breaking behavior using TextStyle.lineBreak. Use built-in semantic configurations like Heading, Paragraph, or Simple, or construct your own LineBreak configuration with the desired Strategy, Strictness, and WordBreak values.
  • Add hyphenation support using TextStyle.hyphens.
  • Define a minimum number of visible lines using the minLines parameter of the Text and TextField composables.
  • Make your text move by applying the basicMarquee modifier. As a bonus, because this is a Modifier, you can apply it to any arbitrary composable to make it move in a similar marquee-like fashion!
    Marquee text using outline with shapes stamped on it using the drawStyle API.

Improvements and fixes for core features

In response to developer feedback, we have shipped some particularly in-demand features & bug fixes in our core libraries:
  • Test waitUntil now accepts a matcher! You can use this API to easily synchronize your test with your UI, with specific conditions that you define.
  • animatedContent now correctly supports getting interrupted and returning to its previous state.
  • Accessibility services focus order has been improved: the sequence is now more logical in common situations, such as with top/bottom bars.
  • AndroidView is now reusable in LazyList if you provide an optional onReset lambda. This improvement lets you use complex non-Compose-based Views inside LazyLists.
  • Color.lerp performance has been improved and now does zero allocations: since this method is called at high frequency during fade animations, this should reduce the amount of garbage collection pauses, especially on older Android versions.
  • Many other minor APIs and bug fixes as part of a general cleanup. For more information, see the release notes.

Get started!

We’re grateful for all of the bug reports and feature requests submitted to our issue tracker - they help us to improve Compose and build the APIs you need. Continue providing your feedback, and help us make Compose better!

Wondering what’s next? Check out our updated roadmap to see the features we’re currently thinking about and working on. We can’t wait to see what you build next!

Happy composing!

Accurately Measure Android App Performance with Profileable Builds

Posted by Yi Yang (Software Engineer)
It’s important to stay on top of your app performance to make sure your users can easily use your app. When an app experiences issues such as animation jank, frozen frames, and high memory usage, it negatively impacts the user experience which could lead to lower ratings or app deletion. To fix these performance issues, we first need the right tools to measure app performance correctly.
This is where profiling comes in. Profiling helps you find where CPU cycles and memory are spent at the time of inspection which makes it easier for you to pinpoint performance bottlenecks in your app. Android Studio offers a suite of profilers to help with the inspection.
Screenshot of Android Studio profilers
Historically, profiling an Android app required a debug build.
Screenshot of the debug/release build variants in Android Studio

The debug build allows you to use features useful for development, like Apply Changes, working with the debugger, or the Database Inspector. In addition, it also enables profiling tools to inspect the state of a running app unavailable to the release build.

Under the hood, the debug build sets the debuggable flag in the Android Manifest to true.


<application android:debuggable="true">



While useful, the debug build is meant to provide more information at the cost of performance. That’s because when debuggable is true, a lot of compiler optimizations are turned off.
Screenshot of the Profile HWUI rendering setting in Developer Options. The option is in Developer Options > Monitoring > Profile HWUI rendering > On screen as bars
To show you the performance difference between the debug and release builds, we recorded an app running on the same device but in these two build variants. To visualize the frame rendering time, we turned on Profile GPU Rendering (or Profile HWUI rendering in some Android versions) in Developer Options when recording the screen. Each vertical bar on the bottom of the screen represents how long each frame takes to render. The shorter these bars are, the smoother the animation is.

The screen recording below shows the same app running on the same device. The left-hand side is on a debug build, the right-hand side a release build. The debug version has more stuttering frames, also known as UI jank. This means when you profile the debug build, you may see timing measurements significantly different from what your users see in the release build, and you may end up optimizing something that is not the problem.
GIF showing the performance difference between debug and release builds

To address that issue, the Android platform introduced a tag called profileable. It enables many profiling tools that measure timing information, without the performance overhead of the debug build. Profileable is available on devices running Android 10 or higher.


    <profileable android:shell=["true" | "false"] />

Let’s look at another screen recording. This time, the left side shows a profileable release app and the right side an unmodified release app. There’s little performance difference between the two.

GIF showing the performance difference between profileable and release builds

With profileable, you can now measure the timing information much more accurately than the debug build.

This feature is designed to be used in production where app security is paramount. Therefore we decided to only support profiling features such as Callstack Sampling and System Trace, where timing measurement is critical. The Memory Profiler only supports Native Memory Profiling. The Energy Profiler and Event Timeline are not available. The complete list of disabled features can be found here. All these restrictions are put in place to keep your app's data safe.

Now that you know what the profileable tag does, let me show you how to use it. There are two options: automatically and manually.

Option 1: Use the option in Android Studio.

With Android Studio Flamingo and Android Gradle Plugin 8.0, all you need to do is just select this option from the Profile dropdown menu in the Run toolbar: “Profile with low overhead”. Then Android Studio will automatically build a profileable app of your current build type and attach the profiler. It works for any build type, but we highly recommend you to profile a release build, which is what your users see.

Screenshot of the one-click profileable builds feature in Android Studio Flamingo Canary
When a profileable app is being profiled, there is a visual indicator along with a banner message. Only the CPU and Memory profilers are available.
Screenshot of Android Studio profiler profiling a profileable build
In the Memory Profiler, only the native allocation recording feature is available due to security reasons.
Screenshot showing Android Studio memory profiler features when profiling a profileable build

This feature is great for simplifying the process of local profiling but it only applies when you profile with Android Studio. Therefore, it can still be beneficial to manually configure your app in case you want to diagnose performance issues in production or if you’re not ready to use the latest version of Android Studio or Android Gradle plugin yet.

Option 2: Manual configuration.

It takes 4 steps to manually enable profileable.

1.    Add this line to your AndroidManifest.xml.


  <profileable android:shell="true" />

2.    Switch to the release build type (or any build type that’s not debuggable).
Screenshot of selecting the active build variant in Android Studio

3.    Make sure you have a signing key configured. To prevent compromising your release signing key, you can temporarily use your debug signing key, or configure a new key just for profiling.




4.    Build and run the app on a device running Android 10 or higher. You now have a profileable app. You can then attach the Android Studio profiler by launching the Profiler tool window and selecting the app process from the dropdown list.
Screenshot of process selection in Android Studio profilersMany of you may wonder if it is safe to leave the profileable manifest tag in production and the answer is yes. This tag is designed to be usable in release builds to enable local profiling. No memory data is readable by the host profiling tools and the shell process. Only stack traces are readable, which are typically obfuscated or lacking symbols in release builds.

In fact, many first-party Google apps such as Google Maps ship their app to the Play Store as profileable apps.

Screenshot showing Google Maps as a profileable process in the profiler process dropdownIn summary, profiling the debug build may skew the performance and therefore it’s better to analyze the release build with the profileable tag enabled.

Here’s a table that shows which build type should be used:

ReleaseProfileable ReleaseDebug
ProductionProfiling CPU timingDebugger, Inspectors, etc.

Profiling memory, energy, etc.

To learn more about profilable builds, start by reading the documentation and the the user guide.

With these tools provided by the Android team, we hope you can make your app run faster and smoother.

What’s new in Jetpack Compose

Posted by Jolanda Verhoef, Android Developer Relations Engineer

We launched Jetpack Compose over a year ago, and have been busy improving it ever since. We’ve added new features and invented powerful tools to make your experience developing Android UI as productive, intuitive and fun as possible. So, if you're starting a new app, it's time to write it with Compose! With Material Design 3 support, new Bill Of Materials, Compose WearOS Stable and Android TV (alpha), Compose Camp, and many other pieces of news… It's an exciting release!

Compose in the Community

In the last year, we’ve seen many companies developing with Compose at scale, implementing new features and migrating screens from views to Compose. For example, we talked to the engineers at Lyft, who told us that over 90% of their new feature code is written in Compose, and moving to Compose made their code much simpler and easier to maintain. They also shared “We rewrote the button component in our app using Compose. Before it required 800 lines of code across three files plus 17 different XML files, and it is now down to a single Kotlin file with 300 lines of code. This is a 60% reduction in the Kotlin code alone“. The team at Zepeto has also been implementing Compose across many features, and are enjoying the experience, as “Compose simplified our UI layer logic, making it easier to understand code written by my colleagues.”
It’s great to see how these teams experience faster development cycles, and also feel their UI code is more concise and readable. And they’re not the only ones. Since this year’s Google I/O, the number of top 1000 apps on Google Play using Compose has increased by 50%! To help your team follow in the footsteps of the teams at Lyft, Zepeto, and others, we published a guide on How to Adopt Compose for your Team. It outlines how and where to start, and shows the areas of development where Compose can bring huge added value.

Compose, October ‘22 release

Today we’re releasing a new stable version of Compose, with some exciting features and news.

First of all, we’ve heard from you how it can be daunting to track versions across different artifacts that might go on different release schedules, so we’re now publishing, together with every Stable release of any of the Compose artifacts, a Bill of Materials, or BOM, to make your life easier.

Our first BOM release, Compose October ‘22, brings support for Staggered Grids, drawing Text directly to Canvas, Pull to Refresh, as well as performance improvements and bug fixes.

Compose Bill of Materials

A BOM is a Maven module that declares a set of libraries with their versions. It will greatly simplify the way you define Compose library versions in your Gradle dependencies block, especially now that we moved the various Jetpack Compose libraries to independent versioning schemes. Instead of defining each version separately, which can become cumbersome and prone to errors when library versions start to differ, you now only need to define one BOM version and all Compose library versions will be extracted from that. We will publish a new version of the BOM every time a Compose artifact has a new stable release, so moving from stable release to stable release is going to be much simpler.

dependencies {
    // Import the Compose BOM
    implementation platform('androidx.compose:compose-bom:2022.10.00')

    // Declare dependencies for the desired Compose libraries without versions
    implementation 'androidx.compose.foundation:foundation'
    androidTestImplementation 'androidx.compose.ui:ui-test-junit4'


We’ve added the instructions on how to add the Compose BOM to our Quick start guide. Note that you can still choose to define your dependencies using hard-coded versions. The BOM is added as a useful way to simplify dependencies and make upgrades easier.

Modifiers on overdrive

Behind the scenes, we’re always working on improving Compose performance. The October ‘22 release includes a major refactor of how Modifiers work under the hood. While you will not notice anything changing in the APIs, this refactor paves the way for greatly improving Modifier performance. Learn more about the rationale behind the changes, and what’s planned for the near future in the ADS talk Compose Modifiers deep dive.

Popup & Dialog elevation change

Accessibility is always a first-class citizen for Compose, and this release contains a behavior change that helps fix an Accessibility bug with Popups and Dialogs: their maximum elevation is decreased from 30dp to 8dp. Your app will be impacted only if it uses a custom dialog or popup implementation with an elevation higher than 8dp. The release notes contain more information about the change, including a way to override the new behavior as an interim solution (keep in mind that we always recommend using 8dp maximum when customizing popups or dialogs).

New features

We added a lot of new functionality to Compose. Here are some highlights:

Compose Material 3 stable

Today we also announce the first stable release of the Compose Material 3 library! You can build an app using Compose and theme it according to Material Design 3, our latest iteration of Material Design. Use Material Design 3 to further customize your app’s colors, typography and shapes to make your brand stand out! The library contains fresh and updated versions of many UI components, such as buttons, cards, checkboxes, switches, navigation bars, drawers, and many more, with support for others on its way. See a list of all the supported components in the documentation and learn more in this blog post.

To help you adopt Material 3 check out our new migration guide with clear guidance on how Material 2 concepts translate to Material 3. The default template in Android Studio Flamingo now uses Material 3, to get you up and running in no time. We’ve also updated many of our sample apps, tutorials, templates, and codelabs to use Material 3 so you can learn as you go!

New tools

Developing your app using Jetpack Compose is much easier with the new and improved tools around it. We’ve added tons of new features to Android Studio to improve your workflow and efficiency:

Android Studio Dolphin is the latest stable release, bringing you:

  • Animation Coordination
  • Multipreview annotations
  • Recomposition counts in Layout Inspector

Android Studio Electric Eel contains beta features, like:

  • Live Edit (experimental)
  • Composition rendering highlighting
  • Configuring Preview devices
  • Live updates in Previews

Android Studio Flamingo contains canary features such as:

  • New project templates use Compose and Material 3 by default
  • Live Edit turned on by default
  • Improved composition tracing to help you better inspect performance issues.


Today we also launch the first alpha version of Relay, a design-to-code solution for improving designer-developer collaboration. Designers create UI components using the Figma plugin, and developers use the Android Studio plugin to automatically use these components in their apps. The generated components are composable functions and can be integrated directly into your Compose app. Learn more about Relay in the documentation.

Compose on WearOS, Large Screens and TV

In July we released the first Stable version of Wear Compose, ready to build production apps. Compose for Wear OS is our recommended approach for building UIs for Wear OS apps. We’ve included over twenty Compose UI components that were designed specifically for Wearables, like TimeText, PositionIndicator, and ScalingLazyColumn.

We’re also continuing to make it easier to design, develop, and test apps for large screens such as foldables, tablets, and Chrome OS. The material3-window-size-class library graduated to Stable, giving you a set of opinionated viewport breakpoints to work with. Large screen designs often contain staggered grids, and the addition of LazyHorizontalStaggeredGrid and LazyVerticalStaggeredGrid will help implement these.

Feedback from the Android community always moves us forward. With your input we have updated our roadmap, focusing on areas that will help you implement Compose successfully. We’re now focusing on supporting more advanced use cases, covering more Material 3 components, improving platform support, tooling and performance.

New and updated guidance

No matter where you are in your learning journey, we’ve got you covered! We added and revamped a lot of the guidance on Compose:

Compose Camp

Running from September through December is a world-wide community-organized event series called Compose Camp! With both a beginner and an experienced track, developers of all levels can join Compose Camp to learn together with others. We already see lots of traction, with many videos being posted by GDGs and GDSCs all over the globe, and many events hosted on our Community platform.

Happy Composing!

We hope that you’re as excited by these developments as we are! If you haven't started yet, it's time to learn Jetpack Compose and see how your team and development process can benefit from it. Get ready for improved velocity and developer productivity. Happy Composing!

The new Google Pixel Watch is here – start building for Wear OS!

Posted by the Android Developers Team

If you caught yesterday's Made by Google event, then you saw the latest devices in the Pixel portfolio. Besides the Pixel 7 and Pixel 7 Pro phones, we wanted to showcase two of the latest form factors: the Google Pixel Tablet1 (Google's brand new tablet, coming in 2023), and the latest device powered with Wear OS by Google: the Google Pixel Watch! As consumers begin to preorder the watch, it's an especially great time to prepare your app so it looks great on all of the new watches that consumers will get their hands on over the holidays. Discover the latest updates to Wear OS, how apps like yours are upgrading their experiences, and how you can get started building a beautiful, efficient Wear OS app.

Here’s What’s New in Wear OS

The Google Pixel Watch is built on Wear OS and includes the latest updates to the platform, Wear OS 3.5. This version of Wear OS is also available on some of your other favorite Wear OS devices! The new Wear OS experience is designed to feel fluid and easy to navigate, bringing users the information they need with a tap, swipe, or voice command. With a refreshed UI and rich notifications, your users can see even more at a glance.

To take advantage of building on top of all of these new features, earlier this year we released Compose for Wear OS, our modern declarative UI toolkit designed to help you get your app running with fewer development hours - and fewer lines of code. It's built from the bottom up with Kotlin, and it moved to 1.0 earlier this year, meaning the API is stable and ready for you to get building. Here's what's in the 1.0 release:

  • Material: The Compose Material catalog for Wear OS already offers more components than are available with View-based layouts. The components follow material styling and also implement material theming, which allows you to customize the design for your brand.
  • Declarative: Compose for Wear OS leverages Modern Android Development and works seamlessly with other Jetpack libraries. Compose-based UIs in most cases result in less code and accelerate the development process as a whole, read more.
  • Interoperable: If you have an existing Wear OS app with a large View-based codebase, it's possible to gradually adopt Compose for Wear OS by using the Compose Interoperability APIs rather than having to rewrite the whole codebase.
  • Handles different watch shapes: Compose for Wear OS extends the foundation of Compose, adding a DSL for all curved elements to make it easy to develop for all Wear OS device shapes: round, square, or rectangular with minimal code.
  • Performance: Each Compose for Wear OS library ships with its own baseline profiles that are automatically merged and distributed with your app’s APK and are compiled ahead of time on device. In most cases, this achieves app performance for production builds that is on-par with View-based apps. However, it’s important to know how to configure, develop, and test your app’s performance for the best results. Learn more.

Another exciting update for Wear OS is the launch of the Tiles Material library to help you build tiles more quickly. The Tiles Material Library includes pre-built Material components and layouts that embrace the latest Material Design for Wear OS. This easy to use library includes components for buttons, progress arcs and more - saving you the time of building them from scratch. Plus, with the pre-built layouts, you can kickstart your tiles development knowing your layout follows Material design guidelines on how your tiles should be formatted.

Finally, in the recently released Android Studio Dolphin, we added a range of Wear OS features to help get your apps, tiles, and watch faces ready for all of the Wear OS 3 devices. With an updated Wear OS Emulator Toolbar, an intuitive Pairing Assistant, and the new Direct Surface Launch feature to quickly test watch faces, tiles, and complication, it's now simpler and more efficient than ever to make great apps for WearOS.

Get Inspired with New App Experiences

Apps like yours are already providing fantastic experiences for Wear OS, from Google apps to others like Spotify, Strava, Bitmoji, adidas Running, MyFitnessPal, and Calm. This year, Todoist, PeriodTracker, and Outdooractive all rebuilt their app with Compose - taking advantage of the tools and APIs that make building their app simpler and more efficient; in fact, Outdooractive found that using Compose for Wear OS cut development time by 30% for their team.

With the launch of the Google Pixel Watch, we are seeing fantastic new experiences from Google apps - using the new hardware features as another way to provide an exceptional user experience. Google Photos now allows you to set your favorite picture as your watch face on the Google Pixel Watch, which has 19 customizable watch faces, each with many personalization options. With Google Assistant built in, Google Pixel Watch users can interact with their favorite apps by using the Wear OS app or leveraging the built-in integration with Google Assistant. For example, Google Home’s latest updates users can easily control their smart home devices through the Wear OS app or by saying “Hey Google” to their watch to do everything from adjusting the thermostat to getting notifications from their Nest doorbell when a person or package at the door2.

Health and fitness apps have a lot of opportunity with the latest Wear OS platform and hardware updates. Google Pixel Watch includes Fitbit’s amazing health and fitness features, including accurate heart rate tracking with on-device machine learning and deep optimization down to the processor level. Users can get insights into key metrics like breathing rate, heart rate variability, sleep quality and more right on their Google Pixel Watch. With this improved data, there are more opportunities for health and fitness apps to provide meaningful insights and experiences for their users.

The updates and improvements from Wear OS and the Google Pixel Watch make building differentiated app experiences more tangible. Apps are using those capabilities to excite and delight users and so can you.

Get started

The Google Pixel Watch is the latest addition to an already incredible Wear OS device ecosystem. From improved APIs and tools to exciting new hardware, there is no time like the present to get started on your Wear OS app. To begin developing with Compose for Wear OS, get started on our curated learning pathway for a step-by-step learning journey. Then, check out the documentation including a quick start guide and get hands on experience with the Compose for Wear OS codelab!

Discover even more with the Wear OS session from Google I/O and hear the absolute latest and greatest from Wear OS by tuning into the keynote and technical sessions at the upcoming Android Developer Summit!

Want to learn more about all the MBG announcements? Check out the official blog here. Plus, get started with another exciting form factor coming to the Pixel ecosystem, the Google Pixel Tablet, by optimizing your app for tablets!


1. The Google Pixel Tablet has not been authorized as required by the rules of the Federal Communications Commission or other regulators. This device may not be sold or otherwise distributed until required legal authorizations have been obtained. 
2. Requires compatible smart home devices (sold separately).

Compose for Wear OS is now 1.0: time to build wearable apps with Compose!

Posted by Kseniia Shumelchyk, Android Developer Relations Engineer

Today we’re launching version 1.0 of Compose for Wear OS, the first stable release of our modern declarative UI toolkit designed to help developers create beautiful, responsive apps for Google’s smartwatch platform.

Compose for Wear OS was built from the bottom up in Kotlin with assumptions of modern app architecture. It makes building apps for Wear OS easier, faster, and more intuitive by following the declarative approach and offering powerful Kotlin syntax.

The toolkit not only simplifies UI development, but also provides a rich set of UI components optimized for the watch experience with built-in support of Material design for Wear OS, and it’s accompanied by many powerful tools in Android Studio to streamline UI iteration.

What this means

The Compose for Wear OS 1.0 release means that the API is stable and has what you need to build production-ready apps. Moving forward, Compose for Wear OS is our recommended approach for building user interfaces for Wear OS apps.

Your feedback has helped shape the development of Compose for Wear OS; our developer community has been with us each step of the way, engaging with us on Slack and providing feedback on the APIs, components, and tooling. As we are working on bringing new features to future versions of Compose for Wear OS, we will continue to welcome developer feedback and suggestions.

We are also excited to share how developers have already adopted Compose in their Wear OS apps and what they like about it.

What developers are saying

Todoist helps people organize, plan and collaborate on projects. They are one of the first companies to completely rebuild their Wear OS app using Compose and redesign all screens and interactions:

“When the new Wear design language and Compose for Wear OS were announced, we were thrilled. It gave us new motivation and opportunity to invest into the platform.

Todoist application
Relying on Compose for Wear OS has improved both developer and user experience for Todoist:

“Compose for Wear OS helped us tremendously both on the development side and the design side. The guides and documentation made it easy for our product designers to prepare mockups matching the new design language of the platform. And the libraries made it very easy for us to implement these, providing all the necessary widgets and customizations. Swipe to dismiss, TimeText, ScalingLazyList were all components that worked very well out-of-the-box for us, while still allowing us to make a recognizable and distinct app.”

Outdooractive helps people plan routes for hiking, cycling, running, and other outdoor adventures. As wearables are a key aspect of their product strategy, they have been quick to update their offering with an app for the user's wrist.
Outdooractive application
Outdooractive has already embraced Wear OS 3, and by migrating to Compose for Wear OS they aimed for developer-side benefits such as having a modern code base and increased development productivity:

Huge improvement is how lists are created. Thanks to ScalingLazyColumn it is easier (compared to RecyclerView) to create scrolling screens without wasting resources. Availability of standard components like Chip helps saving time by being able to use pre-fabricated design-/view-components. What would have taken us days now takes us hours.

The Outdooractive team also highlighted that Compose for Wear OS usage help them to strive for better app quality:

Improved animations were a nice surprise, allowing smoothly hiding/revealing components by just wrapping components in “AnimatedVisibility” for example, which we used in places where we would normally not have invested any time in implementing animations.

Another developer we’ve been working with, Period Tracker helps keep track of period cycles, ovulation, and the chance of conception.

Period Tracker application

They have taken advantage of our UI toolkit to significantly improve user interface and quickly develop new features available exclusively on Wear OS:

“Compose for Wear OS provided us with many kits to help us bring our designs to life. For example, we used Chips to design the main buttons for period recording, water drinking, and taking medication, and it also helped us create a unique look for the latest version of Kegel workout.

Similarly to other developers, Period Tracker noted that Compose for Wear OS helped them to achieve better developer experience and improved collaboration with design and development teams:

“For example, before Chips components were available, we had to use a custom way to load images on buttons which caused a lot of adaptation work. Yes, Compose for Wear OS improved our productivity and made our designers more willing to design a better user experience on wearables.

Check out the in-depth case studies to learn more about how other developers are using Jetpack Compose.

1.0 release

Let’s look into the key features available with 1.0 release:

  • Material: The Compose Material catalog for Wear OS already offers more components than are available with View-based layouts. The components follow material styling and also implement material theming, which allows you to customize the design for your brand.
  • Declarative: Compose for Wear OS leverages Modern Android Development and works seamlessly with other Jetpack libraries. Compose-based UIs in most cases result in less code and accelerate the development process as a whole, read more.
  • Interoperable: If you have an existing Wear OS app with a large View-based codebase, it's possible to gradually adopt Compose for Wear OS by using the Compose Interoperability APIs rather than having to rewrite the whole codebase.
  • Handles different watch shapes: Compose for Wear OS extends the foundation of Compose, adding a DSL for all curved elements to make it easy to develop for all Wear OS device shapes: round, square, or rectangular with minimal code.
  • Performance: Each Compose for Wear OS library ships with its own baseline profiles that are automatically merged and distributed with your app’s APK and are compiled ahead of time on device. In most cases, this achieves app performance for production builds that is on-par with View-based apps. However, it’s important to know how to configure, develop, and test your app’s performance for the best results. Learn more.

Note that using version 1.0 of Compose for Wear OS requires using the version 1.2 of androidx.compose libraries and therefore Kotlin 1.7.0. Read more about Jetpack Compose 1.2 release here.

Tools and libraries

Android Studio

The declarative paradigm shift also alters the development workflow. The Compose tooling available in Android Studio will help you build apps more productively.

Android Studio Dolphin includes a new project template with Compose for Wear OS to help you get started.

The Composable Preview annotation allows you to instantly verify how your app’s layout behaves on different watch shapes and sizes. You can configure the device preview to show different Wear OS device types (round, rectangle, etc):

import androidx.compose.ui.tooling.preview


    device = Devices.WEAR_OS_LARGE_ROUND,

    showSystemUi = true,

    backgroundColor = 0xff000000,

    showBackground = true



fun PreviewCustomComposable() {



Starting with Android Studio Electric Eel, Live Edit supports iterative code development for Wear OS, providing quick feedback as you make changes in the editor and immediately reflecting UI in the Preview or running app on the device.


Horologist is a group of open-source libraries from Google that supplement Wear OS development, which we announced with the beta release of Compose for Wear OS. Horologist has graduated a number of experimental APIs to stable including TimeText fadeAway modifiers, WearNavScaffold, the Date and Time pickers.

Date and Time pickers from Horologist library     

Learning Compose

If you are unfamiliar with using Jetpack Compose, we recommend starting with the tutorial. Many of the development principles there also apply to Compose for Wear OS.

To learn more about Compose for Wear OS check out:

Now that Compose for Wear OS has reached its first stable release, it’s time to create beautiful apps built for the wrist with Compose!

Join the community

Join the discussion in the Kotlin Slack #compose-wear channel to connect with the team and other developers and share what you’re building.

Provide feedback

Please keep providing us feedback on the issue tracker and let us know your experience!

For more information about building apps for Wear OS, check out the developer site.

Jetpack Compose 1.2 is now stable!

Posted by Jolanda Verhoef, Android Developer Relations Engineer

Today, we’re releasing version 1.2 of Jetpack Compose, Android's modern, native UI toolkit, continuing to build out our roadmap. This release contains new features like downloadable fonts, lazy grids, and improvements for tablets and Chrome OS with better focus, mouse, and input handling.

Compose is our recommended way to build new Android apps for phone, tablets and foldables. Today we also released Compose for Wear OS 1.0 - making Compose the best way to build a Wear OS app as well.

We continue to see developers like the Twitter engineering team ship faster using Compose:

Compose increased our productivity dramatically. It’s much easier and faster to write a Composable function than to create a custom view, and it’s also made it much easier to fulfill our designers’ requirements.

Compose 1.2 includes a number of updates for Compose on Phones, Tablets and Foldables - it contains new stable APIs graduated from being experimental, and supports newer versions of Kotlin. We've already updated our samples, codelabs, Accompanist library and MDC-Android Compose Theme Adapter to work with Compose 1.2.

Note: Updating the Compose Compiler library to 1.2 requires using Kotlin 1.7.0. From this point forward the Compiler releases will be decoupled from the releases of other Compose libraries. Read more about the rationale for this in our blog post on independent versioning of Jetpack Compose libraries.

New stable features and APIs

Several features and APIs were added as stable. Highlights include:

New Experimental APIs

We’re continuing to bring new features to Compose. Here are a few highlights:

Try out the new APIs using @OptIn and give us feedback!

Fixed Bugs

We fixed a lot of issues raised by the community, most notably:

We’re grateful for all of the bug reports and feature requests submitted to our issue tracker - they help us to improve Compose and build the APIs you need. Do continue providing your feedback and help us make Compose better!

Wondering what’s next? Check out our updated roadmap to see the features we’re currently thinking about and working on, such as animations for lazy item additions and removals, flow layouts, text editing improvements and more!

Jetpack Compose continues to evolve with the features you’ve been asking for. We’ve been thrilled to see tens of thousands of apps using Jetpack Compose in production already, and many of you shared how it’s improved your app development. We can’t wait to see what you’ll build next!

Happy composing!

13 Things to know for Android developers at Google I/O!

Posted by Maru Ahues Bouza, Director of Android Developer Relations

Android I/O updates: Jetpack, Wear OS, etc 

There aren’t many platforms where you can build something and instantly reach billions of people around the world, not only on their phones—but their TVs, cars, tablets, watches, and more. Today, at Google I/O, we covered a number of ways Android helps you make the most of this opportunity, and how Modern Android Development brings as much commonality as possible, to make it faster and easier for you to create experiences that tailor to all the different screens we use in our daily lives.

We’ve rounded up the top 13 things to know for Android developers—from Jetpack Compose to tablets to Wear OS and of course… Android 13! And stick around for Day 2 of Google I/O, when Android’s full track of 26 technical talks and 4 workshops drop. We’re also bringing back the Android fireside Q&A in another episode of #TheAndroidShow; tweet us your questions now using #AskAndroid, and we’ve assembled a team of experts to answer live on-air, May 12 at 12:30PM PT.


#1: Jetpack Compose Beta 1.2, with support for more advanced use cases

Android’s modern UI toolkit, Jetpack Compose, continues to bring the APIs you need to support more advanced use cases like downloadable fonts, LazyGrids, window insets, nested scrolling interop and more tooling support with features like LiveEdit, Recomposition Debugging and Animation Preview. Check out the blog post for more details.

Jetpack Compose 1.2 Beta  

#2: Android Studio: introducing Live Edit

Get more done faster with Android Studio Dolphin Beta and Electric Eel Canary! Android Studio Dolphin includes new features and improvements for Jetpack Compose and Wear OS development and an updated Logcat experience. Android Studio Electric Eel comes with integrations with the new Google Play SDK Index and Firebase Crashlytics. It also offers a new resizable emulator to test your app on large screens and the new Live Edit feature to immediately deploy code changes made within composable functions. Watch the What’s new in Android Development Tools session and read the Android Studio I/O blog post here.

#3: Baseline Profiles - speed up your app load time!

The speed of your app right after installation can make a big difference on user retention. To improve that experience, we created Baseline Profiles. Baseline Profiles allow apps and libraries to provide the Android runtime with metadata about code path usage, which it uses to prioritize ahead-of-time compilation. We've seen up to 30% faster app startup times thanks to adding baseline profiles alone, no other code changes required! We’re already using baseline profiles within Jetpack: we’ve added baselines to popular libraries like Fragments and Compose – to help provide a better end-user experience. Watch the What’s new in app performance talk, and read the Jetpack blog post here.

Modern Android Development 


#4: Going big on Android tablets

Google is all in on tablets. Since last I/O we launched Android 12L, a release focused on large screen optimizations, and Android 13 includes all those improvements and more. We also announced the Pixel tablet, coming next year. With amazing new hardware, an updated operating system & Google apps, improved guidelines and libraries, and exciting changes to the Play store, there has never been a better time to review your apps and get them ready for large screens and Android 13. That’s why at this year’s I/O we have four talks and a workshop to take you from design to implementation for large screens.

#5: Wear OS: Compose + more!

With the latest updates to Wear OS, you can rethink what is possible when developing for wearables. Jetpack Compose for Wear OS is now in beta, so you can create beautiful Wear OS apps with fewer lines of code. Health Services is also now in beta, bringing a ton of innovation to the health and fitness developer community. And last, but certainly not least, we announced the launch of The Google Pixel Watch - coming this Fall - which brings together the best of Fitbit and Wear OS. You can learn more about all the most exciting updates for wearables by watching the Wear OS technical session and reading our Jetpack Compose for Wear OS announcement.

Compose for Wear OS 

#6: Introducing Health Connect

Health Connect is a new platform built in close collaboration between Google and Samsung, that simplifies connectivity between apps making it easier to reach more users with less work, so you can securely access and share user health and fitness data across apps and devices. Today, we’re opening up access to Health Connect through Jetpack Health—read our announcement or watch the I/O session to find out more!

#7: Android for Cars & Android TV OS

Android for Cars and Android TV OS continue to grow in the US and abroad. As more users drive connected or tune-in, we’re introducing new features to make it even easier to develop apps for cars and TV this year. Catch the “What’s new with Android for Cars” and “What's new with Google TV and Android TV” sessions on Day 2 (May 12th) at 9:00 AM PT to learn more.

#8: Add Voice Across Devices

We’re making it easier for users to access your apps via voice across devices with Google Assistant, by expanding developer access to Shortcuts API for Android for Cars, with support for Wear OS apps coming later this year. We’re also making it easier to build those experiences with Smarter Custom Intents, enabling Assistant to better detect broader instances of user queries through ML, without any NLU training heavy lift. Additionally, we’re introducing improvements that drive discovery to your apps via voice on Mobile, first through Brandless Queries, that drive app usage even when the user hasn’t explicitly said your app’s name, and App Install Suggestions that appear if your isn’t installed yet–these are automatically enabled for existing App Actions today.


#9: What’s new in Play!

Get the latest updates from Google Play, including new ways Play can help you grow your business. Highlights include the ability to deep-link and create up to 50 custom listings; our LiveOps beta, which will allow more developers to submit content to be considered for featuring on the Play Store; and even more flexibility in selling subscriptions. Learn about these updates and more in our blog post.

#10: Google Play SDK Index

Evaluate if an SDK is right for your app with the new Google Play SDK index. This new public portal lists over 100 of the most widely used commercial SDKs and information like which app permissions the SDK requests, statistics on the apps that use them, and which version of the SDK is most popular. Learn more on our blog post and watch “What’s new in Google Play” and “What’s new in Android development tools” sessions.

#11: Privacy Sandbox on Android

Privacy Sandbox on Android provides a path for new advertising solutions to improve user privacy without putting access to free content and services at risk. We recently released the first Privacy Sandbox on Android Developer Preview so you can get an early look at the SDK Runtime and Topics API. You can conduct preliminary testing of these new technologies, evaluate how you might adopt them for your solutions, and share feedback with us.

#12: The new Google Wallet API

The new Google Wallet gives users fast and secure access to everyday essentials across Android and Wear OS. We’re enhancing the Google Wallet API, previously called Google Pay Passes API, to support generic passes, grouping and mixing passes together, for example grouping an event ticket with a voucher, and launching a new Android SDK which allows you to save passes directly from your app without a backend integration. To learn more, read the full blog post, watch the session, or read the docs at developers.google.com/wallet.

#13: And of course, Android 13!

The second Beta of Android 13 is available today! Get your apps ready for the latest features for privacy and security, like the new notification permission, the privacy-protecting photo picker, and improved permissions for pairing with nearby devices and accessing media files. Enhance your app with features like app-specific language support and themed app icons. Build with modern standards like HDR video and Bluetooth LE Audio. You can get started by enrolling your Pixel device here, or try Android 13 Beta on select phones, tablets, and foldables from our partners - visit developer.android.com/13 to learn more.

That’s just a snapshot of some of the highlights for Android developers at this year’s Google I/O. Be sure to watch the What’s New in Android talk to get the landscape on the full Android technical track at Google I/O, which includes 26 talks and 4 workshops. Enjoy!

Google I/O 2022: What’s new in Android Development Tools

Posted by Juan Sebastian Oviedo, Senior Product Manager

Blue Android Studio 

Today at Google I/O 2022, we announced an exciting set of new features available in Android Studio Dolphin Beta and Electric Eel Canary, both available for download. You told us that you want to be more productive while creating Android apps, so we focused on improvements that make the development experience faster and more informative.

In the Android Studio Dolphin release you will find the following features and improvements that you can start using in the Beta channel, which is close to stable quality:

  • View Compose animations and coordinate them with Animation Preview.
  • Define annotation classes to easily include and apply multiple Compose preview definitions at once.
  • Track recomposition counts for your composables in the Layout Inspector.
  • Easily pair and control Wear OS emulators and launch tiles, watch faces, and complications directly from Android Studio.
  • Diagnose app issues faster with Logcat V2.

For even more cutting edge features, you can take a sneak peek at the Android Studio Electric Eel release in the Canary channel:

  • View dependency insights from the new Google Play SDK Index, a public portal with information about popular dependencies/SDKs. If a specific version of a library has been marked as “outdated” by its author, a corresponding Lint warning will appear when viewing that dependency definition. This enables you to discover and update dependency issues during development instead of later when you go to publish your app on the Play Console. You can learn more about this new tool here.
  • See Firebase Crashlytics reports directly in Android Studio using the new App Quality Insights window. The App Quality Insights window allows you to navigate from stack traces into your code with a few simple clicks. The IDE also highlights lines of code in the editor as you're editing files containing recent crashes. This saves you time by presenting actionable crash information from users directly in the IDE, so you can focus on providing your users with the best app experience.
  • Test your app’s UI on representative reference devices using a single resizable Android Emulator. Instead of having to set up emulators specifically for tablets, phones, or desktops, you can use a single resizable emulator and change its configuration without needing to re-deploy to test your app.
  • With the experimental Live Edit feature, make code changes and have those immediately reflected in the Compose Preview and running app on an emulator or physical device.

These features will be promoted to more stable channels once we have your feedback and make improvements, so please try them out.

To see all the new features in action, watch the What’s new in Android Developer Tools session.

Below is a list of key new features and improvements in Android Studio Dolphin:

Jetpack Compose

  • Compose Animation Coordination - See all your animations at once and coordinate them in Animation Preview. You can also freeze a specific animation.
Compose Animation Coordination

Compose Animation Coordination

  • Compose Multipreview Annotations - Define an annotation class that includes multiple Preview definitions and use that new annotation to generate those previews at once. Use this new annotation to preview multiple devices, fonts, and themes at the same time — without repeating those definitions for every single composable.
Multipreview annotations

Multipreview annotations

  • Compose Recomposition Counts in Layout Inspector - View recomposition counts for a Compose app in the Layout Inspector. Recomposition counts and skip counts can optionally be shown in the Component Tree and Attributes panels. Learn more.
Compose Recomposition Counts

Compose Recomposition Counts

Wear OS

  • Wear OS Emulator Pairing Assistant - Using the Wear OS Emulator Pairing Assistant, you can now see Wear Devices in the Device Manager, and pair multiple watch emulators with a single phone. You also don't have to re-pair devices as often because Android Studio remembers pairings after being closed.
Wear OS Emulator Pairing Assistant

Wear OS Emulator Pairing Assistant

  • Wear OS Emulator Side Toolbar - Use Wear-specific emulator buttons that resemble and simulate physical buttons, including main buttons, palm buttons, and tilt buttons.
Wear OS Emulator Side Toolbar

Wear OS Emulator Side Toolbar

  • Wear OS Direct Surface Launch - Create Run/Debug configurations for Wear OS tiles, watch faces, and complications, and launch them directly from Android Studio.
New Wear OS Run/Debug configuration types

New Wear OS Run/Debug configuration types

Development tools

  • Logcat V2 - Rebuilt from the ground up, the new Logcat makes it easier to parse, query, and track logs. Logcat V2 includes new formatting that makes it easier to scan useful information, new split views to allow you to track more at a glance, and a brand new powerful syntax for filtering logs. Learn more.
Logcat V2

Logcat V2

  • Gradle Managed Devices - Describe the virtual devices you need for your automated tests as a part of your build, and let Gradle take care of the rest. From SDK downloading, to device provisioning and setup, to test execution and teardown, Gradle manages the lifecycle of your virtual devices during instrumentation tests. Gradle is also able to apply intelligent functionality, such as snapshot management, test caching, and test sharding to ensure your tests run efficiently, quickly, and consistently. Gradle Managed Devices also introduces a completely new type of device, called the Automated Test Device, which optimizes devices for automated tests, resulting in significant reduction in CPU and memory usage during test execution. Learn more.
Gradle Managed Devices

Gradle Managed Devices

Below is a list of key new features and improvements in Android Studio Electric Eel:

Jetpack Compose

  • Live Edit - Make code changes to Composables in Android Studio and see those changes reflected immediately in the Compose Preview and your emulator or physical device. Live Edit is an opt-in feature that you can enable in Android Studio settings. Learn more.
Live Edit on emulator

Live Edit on emulator

Live Edit on Preview

Live Edit on Preview

Google Play and Firebase

  • SDK Insights - Get Lint warnings for SDKs/libraries that have been marked as outdated by their authors in the Google Play SDK Index. Update outdated dependency versions during development to avoid issues when your app is submitted to the Play Console.
Google Play SDK Index insights

Google Play SDK Index insights

  • App Quality Insights from Firebase Crashlytics - Discover, investigate, and resolve issues reported by Crashlytics in Android Studio and within the context of your local source code. This integration helps reduce friction when navigating from crashes to code (and from code to crash), and surfaces important contextual data about each crash to help you reproduce issues locally.
App Quality Insights from Firebase Crashlytics

App Quality Insights from Firebase Crashlytics

Large Screens

  • Resizable Emulator - Rapidly toggle between representative reference devices to quickly test various application layout states with a single running emulator instance. You can create these emulators by selecting the “Resizable” type in the Device Manager’s “Create device” flow.
Resizable Emulator

Resizable Emulator

  • Visual Linting - Discover and fix your layout issues across different devices (for example, when a button is hidden out of bounds on a larger tablet) by opening the Layout Validation panel. We automatically run your layout to check for Visual Lint issues across different screen sizes.
Visual Linting

Visual Linting

Development Tools

  • Emulated Bluetooth - You can now discover and connect two phone emulators using virtual Bluetooth. This feature is available on Android Emulator 31.3.8 and higher with system image T (API 33). We plan to add more support for creating sample virtual peripherals, such as beacons and heart rate monitors, and integration testing for your Bluetooth features!
Pairing two Android Emulators using Emulated Bluetooth

Pairing two Android Emulators using Emulated Bluetooth

  • Device Mirroring - Minimize the number of interruptions when developing by streaming your device display directly to Android Studio. Device Mirroring gives you the ability to interact with a physical device using the Running Devices window in Studio. To enable this feature, go to Preferences > Experimental and select Device Mirroring. Once enabled, plug in your device and open the Running Devices window to begin streaming your display.
Device Mirroring

Device Mirroring

To recap, these new features and improvements are available in the Android Studio Dolphin Beta, near stable quality:

Jetpack Compose

  • Compose Animation Coordination
  • Compose Multipreview Annotations
  • Compose Recomposition Counts in Layout Inspector

Wear OS

  • Wear OS Emulator Pairing Assistant
  • Wear OS Emulator Side Toolbar
  • Wear OS Direct Surface Launch

Development tools

  • Logcat V2
  • Gradle Managed Devices

These brand new features and improvements are available in the Android Studio Electric Eel Canary:

Jetpack Compose

  • Live Edit

Google Play and Firebase

  • SDK Insights
  • App Quality Insights from Firebase Crashlytics

Large Screens

  • Resizable Emulator
  • Visual Linting

Development tools

  • Emulated Bluetooth
  • Device Mirroring

Getting started

Android Studio Dolphin Beta and Electric Eel Canary are both available for download. You can install them side by side with the current stable version of Android Studio following these instructions. The Beta release is near stable release quality, but bugs might still exist, so, if you do find an issue, please let us know so we can work to fix it. Likewise, if you find an issue or have feedback for the features in the Canary release, please let us know.

We really appreciate your feedback on issues and feature requests. You can follow us—the Android Studio development team—on Twitter and on Medium.

Check out the preview release notes for more details.

What’s new in Jetpack Compose

Posted by Jolanda Verhoef, Android Developer Relations Engineer, and Anna-Chiara Bellini, Android Toolkit UI Product Manager

blog header featuring Android logos 

It’s been almost a year since Jetpack Compose 1.0 was released, and during this time we've seen the community adopt it with enthusiasm. You’ve told us you’re appreciating the conciseness of the Kotlin syntax and the declarative approach that makes thinking about UI so much faster and easier.

Compose in the Community

We've seen many companies adopt Compose at scale for the newest and boldest features of their apps. For instance, we've worked closely with the Play Store team, who started experimenting with Compose in the very early days, and learned that not only is it more enjoyable, it is beneficial to their developer productivity. They told us that "All new Play Store features are built on top of this framework. Compose has been instrumental in unlocking better velocity and smoother landings for the app." The team at Twitter has been using Jetpack Compose across different parts of the app, and they are reaping the benefits, as "Compose makes it much easier to define our own components and to make their API contracts more explicit, flexible, and intuitive." The Airbnb team adopted Compose as well: "Jetpack Compose is a critical part of our technical strategy. The productivity gains are massive."

We're very glad to see that these teams, who have carefully evaluated Compose in large, complex production environments, are experiencing not just more fun and clarity in their UI development, but broader engineering benefits! And these are just a few examples, because over 100 of the top 1000 apps in the Play Store are now using Compose.

These close collaborations, and listening carefully to feedback from the broader Android community, are always at the heart of our development process and are key to advancing our roadmap. We're now focusing on supporting your more advanced use cases, with new APIs and feature improvements, all together with new tools to make building with Compose easier. We know that Compose fundamentally changes the way UI is built. To help you with the necessary mindset shift, we're publishing more guidance, talks and codelabs on advanced topics, and more in-depth videos so you can write apps that look great and perform great. Here's what is new:

Compose 1.2 beta

Today, we’re releasing the first beta version of Compose 1.2, which includes a lot of features and improvements.

Text improvements

Font Padding

We’ve addressed one of the top-voted bugs in our issue tracker by making includeFontPadding a customizable parameter. We recommend you set this value to false, as this will enable more precise alignment of text within layout. We aim to eventually make this the default value in a future release. Please let us know in the issue above if setting the value to false leads to issues with your app. Additionally, when includeFontPadding is set to false, you can adapt the line height of your Text composable by setting the lineHeightStyle parameter. Combined it can look like this:

an image of multi-line text

Multi-line Text with includeFontPadding set to true (left, current default) vs false (right) and lineHeightStyle.

 text = myText,
 style = TextStyle(
   lineHeight = 2.5.em,
   platformStyle = PlatformTextStyle(
     includeFontPadding = false
   lineHeightStyle = LineHeightStyle(
     alignment = Alignment.Center,
     trim = Trim.None

Downloadable Fonts

Compose 1.2 also introduces downloadable fonts in Compose. You can use the new APIs for Compose to access Google Fonts asynchronously, even defining fallback fonts, without any complex setup. With downloadable fonts, you can keep your APK size small and improve your user’s system health as multiple apps can share the same font through a provider.

Text Magnifier

Android text provides a magnifier widget, which makes selecting text easier. Compose now supports the text magnifier.

an image of text and maginifer widget

The magnifier is shown when dragging a selection handle to help you see what’s under your finger. Compose 1.1.0 brought the magnifier to selection within text fields, and now Compose 1.2.0 supports magnifier in both text fields and SelectionContainer. The magnifier has also been enhanced to match the precise behavior of the Android magnifier in Views.

Layout features and improvements

Lazy Layouts

Lazy layouts continue to evolve, with the grid APIs LazyVerticalGrid and LazyHorizontalGrid graduating out of experimental, and a new experimental API being added, called LazyLayout, that lets you implement your own custom lazy layouts. Learn more about these APIs in the I/O talk Lazy layouts in Compose.

Interop with CoordinatorLayout

When you embed a scrolling composable in a CoordinatorLayout from the view system, you can now make sure their scroll behaviors are interoperable. This makes the setup of a collapsible toolbar much easier. You can opt-in to this behavior by passing the result of calling the new experimental rememberNestedScrollInteropConnection method into the nestedScroll modifier. Here’s a sample demonstrating this new functionality.

Window insets

The insets library in Accompanist has now graduated to the Compose Foundation library, using the WindowInsets class. Read more about it in our documentation on Integrating Compose with your existing UI.

Window size classes

To make it easier to design, develop and test resizable layouts, we’ve released window size classes - a set of opinionated viewport breakpoints. They are now available in alpha in a new library material3-window-size-class, as part of the Material 3 set of libraries. You can read more about size classes in the Supporting different screen sizes documentation and take a look at a sample implementation in Crane.

Focus on performance

To help you understand and improve your app’s performance, we focused a lot on new performance tooling and guidance. With this, it becomes much easier to understand why and where your app might be lagging.

Starting from Android Studio Dolphin, you can inspect how often composables recompose using the Layout Inspector. Unexpectedly high numbers of recomposition can point you to a composable that could be optimized. In addition, Android Studio Electric Eel now includes a recomposition highlighter, a visual aid to see which composables recompose when. Read more about this new tooling in the What’s new in Android Studio blog.

Layout Inspector showing recomposition count and recomposition highlighter

Layout Inspector showing recomposition count and recomposition highlighter.

Compose changes the way you write your UI at a fundamental level, so there are some best practices that you can adopt to make sure your app is performant. The newly released documentation page suggests how to write and configure your Compose app for best performance. In the I/O talk Common performance gotchas in Jetpack Compose, the Compose team describe common performance mistakes and how to fix them.

Performance is an ongoing area of focus and we’re working hard on improving and extending tooling and guidance. In the meantime, we’d really appreciate your feedback on the work we’ve done so far. Please raise your bugs in the issue tracker or ask your questions on the KotlinLang Slack group.

New tools

On top of improvements, there are also new tooling updates to help you use Compose more effectively. Android Studio Dolphin, now in Beta, brings exciting features for Compose development. Beyond recomposition counts, new tools include Animation Coordination so you can see and scrub through all your animations at once, and the MultiPreview annotation to help you build for multiple screen sizes. To enable you to iterate faster Android Studio Electric Eel (in Canary) brings LiveEdit.

Gif of Android Studio. On left side there is code and the right side there is a celebration text for Android Developers reaching one million subscribers on YouTube.

Check out What's new in Android Development Tools for all the details, and make sure you share your feedback to help shape the tooling support you need for Compose.

Compose for Wear OS

If there is something better than Compose, it is more Compose! So we're very excited to see Compose for Wear OS moving to Beta! Following the same principle as any other Jetpack library, Beta means that it's feature complete and API stable, and you can start building your production-ready apps. Go ahead and watch the talk, and read the blog post!

New and improved guidance

We’ve added and revamped a lot of the guidance on Compose:

Happy Composing!

We hope that you find these new features as exciting as we do. If you haven't started yet, it's time to learn Jetpack Compose and see how it will fit in your team and development process, so that you can experience all the benefits of improved velocity and developer productivity. Happy Composing!

Android Studio Chipmunk

Posted by Paris Hsu, Product & Design, Android; Takeshi Hagikura, Developer Relations Engineer, Android

Android Studio Chipmunk splash screen 

Today, we are thrilled to announce the stable release of Android Studio Chipmunk ?: The official IDE for building Android applications! This release is a smaller feature release, but we included the latest IntelliJ update and devoted more time to quality and stability. In this release alone, we address over 175+ quality issues.

If you want to be on the latest stable version of Android Studio you can download it today!

What’s in Android Studio Chipmunk

Below is a full list of new features in Android Studio Chipmunk:

Compose Animation Preview

This previously experimental feature is now available to allow Jetpack Compose developers to inspect and debug their animations built with Compose. If an animation is described in a composable preview, you can inspect the exact value of each animated value at a given time, pause the animation, loop it, fast-forward it, or slow it down. It is especially useful to compare animations with their design specs frame by frame.

Compose Animation Preview currently supports AnimatedVisibility and updateTransition. It will support more animation types in the future.

Compose Animation Shrine Cart

Compose Animation Shrine Cart

CPU Profiler

Android Studio Chipmunk now shows updated jank information, including jank types, and expected and actual deadlines that help you spot the actual cause of the jank. This jank information is available when you use the Android Emulator or physical devices with API level 31 (Android 12) or higher. Learn more here.

Showing Jank Information in CPU Profiler 
Showing Jank Information in CPU Profiler

Showing Jank Information in CPU Profiler

Build Analyzer: Check Jetifier

In Chipmunk we have introduced a new Jetifier check in Build Analyzer that will notify you if you can remove the Jetifier flag to improve performance during build.

The Jetifier flag was designed to automatically migrate third-party libraries to use AndroidX, and the vast majority of Android Studio projects still have it enabled. However, the library ecosystem has mostly moved to support AndroidX natively, and having the flag now usually adds unnecessary build overhead -- turning it off will typically save 5-10% on build times.

Showing Jetifier Check in Build Analyzer

Showing Jetifier Check in Build Analyzer

IntelliJ Platform Update

Although the number of Android specific features is light for Android Studio Chipmunk, it however includes the IntelliJ 2021.2 platform major release ?, which has many new features such as project-wide analysis, a new powerful Package Search UI, and IDE actions enhancements to speed up your workflow. Learn more.

Getting Started

In short, Android Studio Chipmunk ? is the update you don’t want to miss! Even though it was a shorter release, with the new version for IntelliJ, our continual efforts to improve quality, performance, and stability of the IDE, and the features listed earlier, we can’t wait for you to download and try it today!

As always, we appreciate any feedback on things you like, and issues or features you would like to see. If you find a bug or issue, please file an issue. To stay up-to-date with the latest features, follow us -- the Android Studio development team ‐ on Twitter and on Medium.