Author Archives: Google AI

VideoPoet: A large language model for zero-shot video generation

A recent wave of video generation models has burst onto the scene, in many cases showcasing stunning picturesque quality. One of the current bottlenecks in video generation is in the ability to produce coherent large motions. In many cases, even the current leading models either generate small motion or, when producing larger motions, exhibit noticeable artifacts.

To explore the application of language models in video generation, we introduce VideoPoet, a large language model (LLM) that is capable of a wide variety of video generation tasks, including text-to-video, image-to-video, video stylization, video inpainting and outpainting, and video-to-audio. One notable observation is that the leading video generation models are almost exclusively diffusion-based (for one example, see Imagen Video). On the other hand, LLMs are widely recognized as the de facto standard due to their exceptional learning capabilities across various modalities, including language, code, and audio (e.g., AudioPaLM). In contrast to alternative models in this space, our approach seamlessly integrates many video generation capabilities within a single LLM, rather than relying on separately trained components that specialize on each task.


Overview

The diagram below illustrates VideoPoet’s capabilities. Input images can be animated to produce motion, and (optionally cropped or masked) video can be edited for inpainting or outpainting. For stylization, the model takes in a video representing the depth and optical flow, which represent the motion, and paints contents on top to produce the text-guided style.

An overview of VideoPoet, capable of multitasking on a variety of video-centric inputs and outputs. The LLM can optionally take text as input to guide generation for text-to-video, image-to-video, video-to-audio, stylization, and outpainting tasks. Resources used: Wikimedia Commons and DAVIS.

Language models as video generators

One key advantage of using LLMs for training is that one can reuse many of the scalable efficiency improvements that have been introduced in existing LLM training infrastructure. However, LLMs operate on discrete tokens, which can make video generation challenging. Fortunately, there exist video and audio tokenizers, which serve to encode video and audio clips as sequences of discrete tokens (i.e., integer indices), and which can also be converted back into the original representation.

VideoPoet trains an autoregressive language model to learn across video, image, audio, and text modalities through the use of multiple tokenizers (MAGVIT V2 for video and image and SoundStream for audio). Once the model generates tokens conditioned on some context, these can be converted back into a viewable representation with the tokenizer decoders.

A detailed look at the VideoPoet task design, showing the training and inference inputs and outputs of various tasks. Modalities are converted to and from tokens using tokenizer encoder and decoders. Each modality is surrounded by boundary tokens, and a task token indicates the type of task to perform.

Examples generated by VideoPoet

Some examples generated by our model are shown below.

Videos generated by VideoPoet from various text prompts. For specific text prompts refer to the website.

For text-to-video, video outputs are variable length and can apply a range of motions and styles depending on the text content. To ensure responsible practices, we reference artworks and styles in the public domain e.g., Van Gogh’s “Starry Night”.

Text Input    “A Raccoon dancing in Times Square”    “A horse galloping through Van-Gogh’s ‘Starry Night’”    “Two pandas playing cards”    “A large blob of exploding splashing rainbow paint, with an apple emerging, 8k”
Video Output            

For image-to-video, VideoPoet can take the input image and animate it with a prompt.

An example of image-to-video with text prompts to guide the motion. Each video is paired with an image to its left. Left: “A ship navigating the rough seas, thunderstorm and lightning, animated oil on canvas”. Middle: “Flying through a nebula with many twinkling stars”. Right: “A wanderer on a cliff with a cane looking down at the swirling sea fog below on a windy day”. Reference: Wikimedia Commons, public domain**.

For video stylization, we predict the optical flow and depth information before feeding into VideoPoet with some additional input text.

Examples of video stylization on top of VideoPoet text-to-video generated videos with text prompts, depth, and optical flow used as conditioning. The left video in each pair is the input video, the right is the stylized output. Left: “Wombat wearing sunglasses holding a beach ball on a sunny beach.” Middle: “Teddy bears ice skating on a crystal clear frozen lake.” Right: “A metal lion roaring in the light of a forge.”

VideoPoet is also capable of generating audio. Here we first generate 2-second clips from the model and then try to predict the audio without any text guidance. This enables generation of video and audio from a single model.



        

An example of video-to-audio, generating audio from a video example without any text input.

By default, the VideoPoet model generates videos in portrait orientation to tailor its output towards short-form content. To showcase its capabilities, we have produced a brief movie composed of many short clips generated by VideoPoet. For the script, we asked Bard to write a short story about a traveling raccoon with a scene-by-scene breakdown and a list of accompanying prompts. We then generated video clips for each prompt, and stitched together all resulting clips to produce the final video below.




When we developed VideoPoet, we noticed some nice properties of the model’s capabilities, which we highlight below.


Long video

We are able to generate longer videos simply by conditioning on the last 1 second of video and predicting the next 1 second. By chaining this repeatedly, we show that the model can not only extend the video well but also faithfully preserve the appearance of all objects even over several iterations.

Here are two examples of VideoPoet generating long video from text input:

Text Input    “An astronaut starts dancing on Mars. Colorful fireworks then explode in the background.”    “FPV footage of a very sharp elven city of stone in the jungle with a brilliant blue river, waterfall, and large steep vertical cliff faces.”           
Video Output                 

It is also possible to interactively edit existing video clips generated by VideoPoet. If we supply an input video, we can change the motion of objects to perform different actions. The object manipulation can be centered at the first frame or the middle frames, which allow for a high degree of editing control.

For example, we can randomly generate some clips from the input video and select the desired next clip.

An input video on the left is used as conditioning to generate four choices given the initial prompt: “Closeup of an adorable rusty broken-down steampunk robot covered in moss moist and budding vegetation, surrounded by tall grass”. For the first three outputs we show what would happen for unprompted motions. For the last video in the list below, we add to the prompt, “powering up with smoke in the background” to guide the action.

Image to video control

Similarly, we can apply motion to an input image to edit its contents towards the desired state, conditioned on a text prompt.

Animating a painting with different prompts. Left: “A woman turning to look at the camera.” Right: “A woman yawning.” **

Camera motion

We can also accurately control camera movements by appending the type of desired camera motion to the text prompt. As an example, we generated an image by our model with the prompt, “Adventure game concept art of a sunrise over a snowy mountain by a crystal clear river”. The examples below append the given text suffix to apply the desired motion.

Prompts from left to right: “Zoom out”, “Dolly zoom”, “Pan left”, “Arc shot”, “Crane shot”, “FPV drone shot”.

Evaluation results

We evaluate VideoPoet on text-to-video generation with a variety of benchmarks to compare the results to other approaches. To ensure a neutral evaluation, we ran all models on a wide variation of prompts without cherry-picking examples and asked people to rate their preferences. The figure below highlights the percentage of the time VideoPoet was chosen as the preferred option in green for the following questions.


Text fidelity

User preference ratings for text fidelity, i.e., what percentage of videos are preferred in terms of accurately following a prompt.

Motion interestingness

User preference ratings for motion interestingness, i.e., what percentage of videos are preferred in terms of producing interesting motion.

Based on the above, on average people selected 24–35% of examples from VideoPoet as following prompts better than a competing model vs. 8–11% for competing models. Raters also preferred 41–54% of examples from VideoPoet for more interesting motion than 11–21% for other models.


Conclusion

Through VideoPoet, we have demonstrated LLMs’ highly-competitive video generation quality across a wide variety of tasks, especially in producing interesting and high quality motions within videos. Our results suggest the promising potential of LLMs in the field of video generation. For future directions, our framework should be able to support “any-to-any” generation, e.g., extending to text-to-audio, audio-to-video, and video captioning should be possible, among many others.

To view more examples in original quality, see the website demo.


Acknowledgements

This research has been supported by a large body of contributors, including Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Rachel Hornung, Hartwig Adam, Hassan Akbari, Yair Alon, Vighnesh Birodkar, Yong Cheng, Ming-Chang Chiu, Josh Dillon, Irfan Essa, Agrim Gupta, Meera Hahn, Anja Hauth, David Hendon, Alonso Martinez, David Minnen, David Ross, Grant Schindler, Mikhail Sirotenko, Kihyuk Sohn, Krishna Somandepalli, Huisheng Wang, Jimmy Yan, Ming-Hsuan Yang, Xuan Yang, Bryan Seybold, and Lu Jiang.

We give special thanks to Alex Siegman and Victor Gomes for managing computing resources. We also give thanks to Aren Jansen, Marco Tagliasacchi, Neil Zeghidour, John Hershey for audio tokenization and processing, Angad Singh for storyboarding in “Rookie the Raccoon”, Cordelia Schmid for research discussions, Alonso Martinez for graphic design, David Salesin, Tomas Izo, and Rahul Sukthankar for their support, and Jay Yagnik as architect of the initial concept.


**
(a) The Storm on the Sea of Galilee, by Rembrandt 1633, public domain.
(b) Pillars of Creation, by NASA 2014, public domain.
(c) Wanderer above the Sea of Fog, by Caspar David Friedrich, 1818, public domain
(d) Mona Lisa, by Leonardo Da Vinci, 1503, public domain.

Source: Google AI Blog


Simulations illuminate the path to post-event traffic flow

Fifteen minutes. That’s how long it took to empty the Colosseum, an engineering marvel that’s still standing as the largest amphitheater in the world. Two thousand years later, this design continues to work well to move enormous crowds out of sporting and entertainment venues.

But of course, exiting the arena is only the first step. Next, people must navigate the traffic that builds up in the surrounding streets. This is an age-old problem that remains unsolved to this day. In Rome, they addressed the issue by prohibiting private traffic on the street that passes directly by the Colosseum. This policy worked there, but what if you’re not in Rome? What if you’re at the Superbowl? Or at a Taylor Swift concert?

An approach to addressing this problem is to use simulation models, sometimes called "digital twins", which are virtual replicas of real-world transportation networks that attempt to capture every detail from the layout of streets and intersections to the flow of vehicles. These models allow traffic experts to mitigate congestion, reduce accidents, and improve the experience of drivers, riders, and walkers alike. Previously, our team used these models to quantify sustainability impact of routing, test evacuation plans and show simulated traffic in Maps Immersive View.

Calibrating high-resolution traffic simulations to match the specific dynamics of a particular setting is a longstanding challenge in the field. The availability of aggregate mobility data, detailed Google Maps road network data, advances in transportation science (such as understanding the relationship between segment demands and speeds for road segments with traffic signals), and calibration techniques which make use of speed data in physics-informed traffic models are paving the way for compute-efficient optimization at a global scale.

To test this technology in the real world, Google Research partnered with the Seattle Department of Transportation (SDOT) to develop simulation-based traffic guidance plans. Our goal is to help thousands of attendees of major sports and entertainment events leave the stadium area quickly and safely. The proposed plan reduced average trip travel times by 7 minutes for vehicles leaving the stadium region during large events. We deployed it in collaboration with SDOT using Dynamic Message Signs (DMS) and verified impact over multiple events between August and November, 2023.

One policy recommendation we made was to divert traffic from S Spokane St, a major thoroughfare that connects the area to highways I-5 and SR 99, and is often congested after events. Suggested changes improved the flow of traffic through highways and arterial streets near the stadium, and reduced the length of vehicle queues that formed behind traffic signals. (Note that vehicles are larger than reality in this clip for demonstration.)

Simulation model

For this project, we created a new simulation model of the area around Seattle’s stadiums. The intent for this model is to replay each traffic situation for a specified day as closely as possible. We use an open-source simulation software, Simulation of Urban MObility (SUMO). SUMO’s behavioral models help us describe traffic dynamics, for instance, how drivers make decisions, like car-following, lane-changing and speed limit compliance. We also use insights from Google Maps to define the network’s structure and various static segment attributes (e.g., number of lanes, speed limit, presence of traffic lights).

Overview of the Simulation framework.

Travel demand is an important simulator input. To compute it, we first decompose the road network of a given metropolitan area into zones, specifically level 13 S2 cells with 1.27 km2 area per cell. From there, we define the travel demand as the expected number of trips that travel from an origin zone to a destination zone in a given time period. The demand is represented as aggregated origin–destination (OD) matrices.

To get the initial expected number of trips between an origin zone and a destination zone, we use aggregated and anonymized mobility statistics. Then we solve the OD calibration problem by combining initial demand with observed traffic statistics, like segment speeds, travel times and vehicular counts, to reproduce event scenarios.

We model the traffic around multiple past events in Seattle’s T-Mobile Park and Lumen Field and evaluate the accuracy by computing aggregated and anonymized traffic statistics. Analyzing these event scenarios helps us understand the effect of different routing policies on congestion in the region.

Heatmaps demonstrate a substantial increase in numbers of trips in the region after a game as compared to the same time on a non-game day.
The graph shows observed segment speeds on the x-axis and simulated speeds on the y-axis for a modeled event. The concentration of data points along the red x=y line demonstrates the ability of the simulation to reproduce realistic traffic conditions.

Routing policies

SDOT and the Seattle Police Department’s (SPD) local knowledge helped us determine the most congested routes that needed improvement:

  • Traffic from T-Mobile Park stadium parking lot’s Edgar Martinez Dr. S exit to eastbound I-5 highway / westbound SR 99 highway
  • Traffic through Lumen Field stadium parking lot to northbound Cherry St. I-5 on-ramp
  • Traffic going southbound through Seattle’s SODO neighborhood to S Spokane St.

We developed routing policies and evaluated them using the simulation model. To disperse traffic faster, we tried policies that would route northbound/southbound traffic from the nearest ramps to further highway ramps, to shorten the wait times. We also experimented with opening HOV lanes to event traffic, recommending alternate routes (e.g., SR 99), or load sharing between different lanes to get to the nearest stadium ramps.


Evaluation results

We model multiple events with different traffic conditions, event times, and attendee counts. For each policy, the simulation reproduces post-game traffic and reports the travel time for vehicles, from departing the stadium to reaching their destination or leaving the Seattle SODO area. The time savings are computed as the difference of travel time before/after the policy, and are shown in the below table, per policy, for small and large events. We apply each policy to a percentage of traffic, and re-estimate the travel times. Results are shown if 10%, 30%, or 50% of vehicles are affected by a policy.

Based on these simulation results, the feasibility of implementation, and other considerations, SDOT has decided to implement the “Northbound Cherry St ramp” and “Southbound S Spokane St ramp” policies using DMS during large events. The signs suggest drivers take alternative routes to reach their destinations. The combination of these two policies leads to an average of 7 minutes of travel time savings per vehicle, based on rerouting 30% of traffic during large events.


Conclusion

This work demonstrates the power of simulations to model, identify, and quantify the effect of proposed traffic guidance policies. Simulations allow network planners to identify underused segments and evaluate the effects of different routing policies, leading to a better spatial distribution of traffic. The offline modeling and online testing show that our approach can reduce total travel time. Further improvements can be made by adding more traffic management strategies, such as optimizing traffic lights. Simulation models have been historically time consuming and hence affordable only for the largest cities and high stake projects. By investing in more scalable techniques, we hope to bring these models to more cities and use cases around the world.


Acknowledgements

In collaboration with Alex Shashko, Andrew Tomkins, Ashley Carrick, Carolina Osorio, Chao Zhang, Damien Pierce, Iveel Tsogsuren, Sheila de Guia, and Yi-fan Chen. Visual design by John Guilyard. We would like to thank our SDOT partners Carter Danne, Chun Kwan, Ethan Bancroft, Jason Cambridge, Laura Wojcicki, Michael Minor, Mohammed Said, Trevor Partap, and SPD partners Lt. Bryan Clenna and Sgt. Brian Kokesh.

Source: Google AI Blog


Advancements in machine learning for machine learning

With the recent and accelerated advances in machine learning (ML), machines can understand natural language, engage in conversations, draw images, create videos and more. Modern ML models are programmed and trained using ML programming frameworks, such as TensorFlow, JAX, PyTorch, among many others. These libraries provide high-level instructions to ML practitioners, such as linear algebra operations (e.g., matrix multiplication, convolution, etc.) and neural network layers (e.g., 2D convolution layers, transformer layers). Importantly, practitioners need not worry about how to make their models run efficiently on hardware because an ML framework will automatically optimize the user's model through an underlying compiler. The efficiency of the ML workload, thus, depends on how good the compiler is. A compiler typically relies on heuristics to solve complex optimization problems, often resulting in suboptimal performance.

In this blog post, we present exciting advancements in ML for ML. In particular, we show how we use ML to improve efficiency of ML workloads! Prior works, both internal and external, have shown that we can use ML to improve performance of ML programs by selecting better ML compiler decisions. Although there exist a few datasets for program performance prediction, they target small sub-programs, such as basic blocks or kernels. We introduce “TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs” (presented at NeurIPS 2023), which we recently released to fuel more research in ML for program optimization. We hosted a Kaggle competition on the dataset, which recently completed with 792 participants on 616 teams from 66 countries. Furthermore, in “Learning Large Graph Property Prediction via Graph Segment Training”, we cover a novel method to scale graph neural network (GNN) training to handle large programs represented as graphs. The technique both enables training arbitrarily large graphs on a device with limited memory capacity and improves generalization of the model.


ML compilers

ML compilers are software routines that convert user-written programs (here, mathematical instructions provided by libraries such as TensorFlow) to executables (instructions to execute on the actual hardware). An ML program can be represented as a computation graph, where a node represents a tensor operation (such as matrix multiplication), and an edge represents a tensor flowing from one node to another. ML compilers have to solve many complex optimization problems, including graph-level and kernel-level optimizations. A graph-level optimization requires the context of the entire graph to make optimal decisions and transforms the entire graph accordingly. A kernel-level optimization transforms one kernel (a fused subgraph) at a time, independently of other kernels.

Important optimizations in ML compilers include graph-level and kernel-level optimizations.

To provide a concrete example, imagine a matrix (2D tensor):

It can be stored in computer memory as [A B C a b c] or [A a B b C c], known as row- and column-major memory layout, respectively. One important ML compiler optimization is to assign memory layouts to all intermediate tensors in the program. The figure below shows two different layout configurations for the same program. Let’s assume that on the left-hand side, the assigned layouts (in red) are the most efficient option for each individual operator. However, this layout configuration requires the compiler to insert a copy operation to transform the memory layout between the add and convolution operations. On the other hand, the right-hand side configuration might be less efficient for each individual operator, but it doesn’t require the additional memory transformation. The layout assignment optimization has to trade off between local computation efficiency and layout transformation overhead.

A node represents a tensor operator, annotated with its output tensor shape [n0, n1, ...], where ni is the size of dimension i. Layout {d0, d1, ...} represents minor-to-major ordering in memory. Applied configurations are highlighted in red, and other valid configurations are highlighted in blue. A layout configuration specifies the layouts of inputs and outputs of influential operators (i.e., convolution and reshape). A copy operator is inserted when there is a layout mismatch.

If the compiler makes optimal choices, significant speedups can be made. For example, we have seen up to a 32% speedup when choosing an optimal layout configuration over the default compiler’s configuration in the XLA benchmark suite.


TpuGraphs dataset

Given the above, we aim to improve ML model efficiency by improving the ML compiler. Specifically, it can be very effective to equip the compiler with a learned cost model that takes in an input program and compiler configuration and then outputs the predicted runtime of the program.

With this motivation, we release TpuGraphs, a dataset for learning cost models for programs running on Google’s custom Tensor Processing Units (TPUs). The dataset targets two XLA compiler configurations: layout (generalization of row- and column-major ordering, from matrices, to higher dimension tensors) and tiling (configurations of tile sizes). We provide download instructions and starter code on the TpuGraphs GitHub. Each example in the dataset contains a computational graph of an ML workload, a compilation configuration, and the execution time of the graph when compiled with the configuration. The graphs in the dataset are collected from open-source ML programs, featuring popular model architectures, e.g., ResNet, EfficientNet, Mask R-CNN, and Transformer. The dataset provides 25× more graphs than the largest (earlier) graph property prediction dataset (with comparable graph sizes), and graph size is 770× larger on average compared to existing performance prediction datasets on ML programs. With this greatly expanded scale, for the first time we can explore the graph-level prediction task on large graphs, which is subject to challenges such as scalability, training efficiency, and model quality.

Scale of TpuGraphs compared to other graph property prediction datasets.

We provide baseline learned cost models with our dataset (architecture shown below). Our baseline models are based on a GNN since the input program is represented as a graph. Node features, shown in blue below, consist of two parts. The first part is an opcode id, the most important information of a node, which indicates the type of tensor operation. Our baseline models, thus, map an opcode id to an opcode embedding via an embedding lookup table. The opcode embedding is then concatenated with the second part, the rest of the node features, as inputs to a GNN. We combine the node embeddings produced by the GNN to create the fixed-size embedding of the graph using a simple graph pooling reduction (i.e., sum and mean). The resulting graph embedding is then linearly transformed into the final scalar output by a feedforward layer.

Our baseline learned cost model employs a GNN since programs can be naturally represented as graphs.

Furthermore we present Graph Segment Training (GST), a method for scaling GNN training to handle large graphs on a device with limited memory capacity in cases where the prediction task is on the entire-graph (i.e., graph-level prediction). Unlike scaling training for node- or edge-level prediction, scaling for graph-level prediction is understudied but crucial to our domain, as computation graphs can contain hundreds of thousands of nodes. In a typical GNN training (“Full Graph Training”, on the left below), a GNN model is trained using an entire graph, meaning all nodes and edges of the graph are used to compute gradients. For large graphs, this might be computationally infeasible. In GST, each large graph is partitioned into smaller segments, and a random subset of segments is selected to update the model; embeddings for the remaining segments are produced without saving their intermediate activations (to avoid consuming memory). The embeddings of all segments are then combined to generate an embedding for the original large graph, which is then used for prediction. In addition, we introduce the historical embedding table to efficiently obtain graph segments’ embeddings and segment dropout to mitigate the staleness from historical embeddings. Together, our complete method speeds up the end-to-end training time by 3×.

Comparing Full Graph Training (typical method) vs Graph Segment Training (our proposed method).

Kaggle competition

Finally, we ran the “Fast or Slow? Predict AI Model Runtime” competition over the TpuGraph dataset. This competition ended with 792 participants on 616 teams. We had 10507 submissions from 66 countries. For 153 users (including 47 in the top 100), this was their first competition. We learned many interesting new techniques employed by the participating teams, such as:

  • Graph pruning / compression: Instead of using the GST method, many teams experimented with different ways to compress large graphs (e.g., keeping only subgraphs that include the configurable nodes and their immediate neighbors).
  • Feature padding value: Some teams observed that the default padding value of 0 is problematic because 0 clashes with a valid feature value, so using a padding value of -1 can improve the model accuracy significantly.
  • Node features: Some teams observed that additional node features (such as dot general’s contracting dimensions) are important. A few teams found that different encodings of node features also matter.
  • Cross-configuration attention: A winning team designed a simple layer that allows the model to explicitly "compare" configs against each other. This technique is shown to be much better than letting the model infer for each config individually.

We will debrief the competition and preview the winning solutions at the competition session at the ML for Systems workshop at NeurIPS on December 16, 2023. Finally, congratulations to all the winners and thank you for your contributions to advancing research in ML for systems!


NeurIPS expo

If you are interested in more research about structured data and artificial intelligence, we hosted the NeurIPS Expo panel Graph Learning Meets Artificial Intelligence on December 9, which covered advancing learned cost models and more!


Acknowledgements

Sami Abu-el-Haija (Google Research) contributed significantly to this work and write-up. The research in this post describes joint work with many additional collaborators including Mike Burrows, Kaidi Cao, Bahare Fatemi, Jure Leskovec, Charith Mendis, Dustin Zelle, and Yanqi Zhou.

Source: Google AI Blog


StyleDrop: Text-to-image generation in any style

Text-to-image models trained on large volumes of image-text pairs have enabled the creation of rich and diverse images encompassing many genres and themes. Moreover, popular styles such as “anime” or “steampunk”, when added to the input text prompt, may translate to specific visual outputs. While many efforts have been put into prompt engineering, a wide range of styles are simply hard to describe in text form due to the nuances of color schemes, illumination, and other characteristics. As an example, “watercolor painting” may refer to various styles, and using a text prompt that simply says “watercolor painting style” may either result in one specific style or an unpredictable mix of several.

When we refer to "watercolor painting style," which do we mean? Instead of specifying the style in natural language, StyleDrop allows the generation of images that are consistent in style by referring to a style reference image*.

In this blog we introduce “StyleDrop: Text-to-Image Generation in Any Style”, a tool that allows a significantly higher level of stylized text-to-image synthesis. Instead of seeking text prompts to describe the style, StyleDrop uses one or more style reference images that describe the style for text-to-image generation. By doing so, StyleDrop enables the generation of images in a style consistent with the reference, while effectively circumventing the burden of text prompt engineering. This is done by efficiently fine-tuning the pre-trained text-to-image generation models via adapter tuning on a few style reference images. Moreover, by iteratively fine-tuning the StyleDrop on a set of images it generated, it achieves the style-consistent image generation from text prompts.


Method overview

StyleDrop is a text-to-image generation model that allows generation of images whose visual styles are consistent with the user-provided style reference images. This is achieved by a couple of iterations of parameter-efficient fine-tuning of pre-trained text-to-image generation models. Specifically, we build StyleDrop on Muse, a text-to-image generative vision transformer.


Muse: text-to-image generative vision transformer

Muse is a state-of-the-art text-to-image generation model based on the masked generative image transformer (MaskGIT). Unlike diffusion models, such as Imagen or Stable Diffusion, Muse represents an image as a sequence of discrete tokens and models their distribution using a transformer architecture. Compared to diffusion models, Muse is known to be faster while achieving competitive generation quality.


Parameter-efficient adapter tuning

StyleDrop is built by fine-tuning the pre-trained Muse model on a few style reference images and their corresponding text prompts. There have been many works on parameter-efficient fine-tuning of transformers, including prompt tuning and Low-Rank Adaptation (LoRA) of large language models. Among those, we opt for adapter tuning, which is shown to be effective at fine-tuning a large transformer network for language and image generation tasks in a parameter-efficient manner. For example, it introduces less than one million trainable parameters to fine-tune a Muse model of 3B parameters, and it requires only 1000 training steps to converge.

Parameter-efficient adapter tuning of Muse.

Iterative training with feedback

While StyleDrop is effective at learning styles from a few style reference images, it is still challenging to learn from a single style reference image. This is because the model may not effectively disentangle the content (i.e., what is in the image) and the style (i.e., how it is being presented), leading to reduced text controllability in generation. For example, as shown below in Step 1 and 2, a generated image of a chihuahua from StyleDrop trained from a single style reference image shows a leakage of content (i.e., the house) from the style reference image. Furthermore, a generated image of a temple looks too similar to the house in the reference image (concept collapse).

We address this issue by training a new StyleDrop model on a subset of synthetic images, chosen by the user or by image-text alignment models (e.g., CLIP), whose images are generated by the first round of the StyleDrop model trained on a single image. By training on multiple synthetic image-text aligned images, the model can easily disentangle the style from the content, thus achieving improved image-text alignment.

Iterative training with feedback*. The first round of StyleDrop may result in reduced text controllability, such as a content leakage or concept collapse, due to the difficulty of content-style disentanglement. Iterative training using synthetic images, generated by the previous rounds of StyleDrop models and chosen by human or image-text alignment models, improves the text adherence of stylized text-to-image generation.

Experiments


StyleDrop gallery

We show the effectiveness of StyleDrop by running experiments on 24 distinct style reference images. As shown below, the images generated by StyleDrop are highly consistent in style with each other and with the style reference image, while depicting various contexts, such as a baby penguin, banana, piano, etc. Moreover, the model can render alphabet images with a consistent style.

Stylized text-to-image generation. Style reference images* are on the left inside the yellow box. Text prompts used are:
First row: a baby penguin, a banana, a bench.
Second row: a butterfly, an F1 race car, a Christmas tree.
Third row: a coffee maker, a hat, a moose.
Fourth row: a robot, a towel, a wood cabin.
Stylized visual character generation. Style reference images* are on the left inside the yellow box. Text prompts used are: (first row) letter 'A', letter 'B', letter 'C', (second row) letter 'E', letter 'F', letter 'G'.

Generating images of my object in my style

Below we show generated images by sampling from two personalized generation distributions, one for an object and another for the style.

Images at the top in the blue border are object reference images from the DreamBooth dataset (teapot, vase, dog and cat), and the image on the left at the bottom in the red border is the style reference image*. Images in the purple border (i.e. the four lower right images) are generated from the style image of the specific object.

Quantitative results

For the quantitative evaluation, we synthesize images from a subset of Parti prompts and measure the image-to-image CLIP score for style consistency and image-to-text CLIP score for text consistency. We study non–fine-tuned models of Muse and Imagen. Among fine-tuned models, we make a comparison to DreamBooth on Imagen, state-of-the-art personalized text-to-image method for subjects. We show two versions of StyleDrop, one trained from a single style reference image, and another, “StyleDrop (HF)”, that is trained iteratively using synthetic images with human feedback as described above. As shown below, StyleDrop (HF) shows significantly improved style consistency score over its non–fine-tuned counterpart (0.694 vs. 0.556), as well as DreamBooth on Imagen (0.694 vs. 0.644). We observe an improved text consistency score with StyleDrop (HF) over StyleDrop (0.322 vs. 0.313). In addition, in a human preference study between DreamBooth on Imagen and StyleDrop on Muse, we found that 86% of the human raters preferred StyleDrop on Muse over DreamBooth on Imagen in terms of consistency to the style reference image.


Conclusion

StyleDrop achieves style consistency at text-to-image generation using a few style reference images. Google’s AI Principles guided our development of Style Drop, and we urge the responsible use of the technology. StyleDrop was adapted to create a custom style model in Vertex AI, and we believe it could be a helpful tool for art directors and graphic designers — who might want to brainstorm or prototype visual assets in their own styles, to improve their productivity and boost their creativity — or businesses that want to generate new media assets that reflect a particular brand. As with other generative AI capabilities, we recommend that practitioners ensure they align with copyrights of any media assets they use. More results are found on our project website and YouTube video.


Acknowledgements

This research was conducted by Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, and Dilip Krishnan. We thank owners of images used in our experiments (links for attribution) for sharing their valuable assets.


*See image sources 

Source: Google AI Blog


Google at NeurIPS 2023

This week the 37th annual Conference on Neural Information Processing Systems (NeurIPS 2023), the biggest machine learning conference of the year, kicks off in New Orleans, LA. Google is proud to be a Diamond Level sponsor of NeurIPS this year and will have a strong presence with >170 accepted papers, two keynote talks, and additional contributions to the broader research community through organizational support and involvement in >20 workshops and tutorials. Google is also proud to be a Platinum Sponsor for both the Women in Machine Learning and LatinX in AI workshops. We look forward to sharing some of our extensive ML research and expanding our partnership with the broader ML research community.

Attending for NeurIPS 2023 in person? Come visit the Google Research booth to learn more about the exciting work we’re doing to solve some of the field’s most interesting challenges. Visit the @GoogleAI X (Twitter) account to find out about Google booth activities (e.g., demos and Q&A sessions).

You can learn more about our latest cutting edge work being presented at the conference in the list below (Google affiliations highlighted in bold). And see Google DeepMind’s blog to learn more about their participation at NeurIPS 2023.


Board & Organizing Committee

NeurIPS Board: Corinna Cortes
Advisory Board: John C. Platt
Senior Area Chair: Inderjit S. Dhillon
Creative AI Chair: Isabelle Guyon
Program Chair: Amir Globerson
Datasets and Benchmarks Chair: Remi Denton


Google Research Booth Demo/Q&A Schedule

This schedule is subject to change. Please visit the Google booth (#215) for more information.

What You See is What You Read? Improving Text-Image Alignment Evaluation
Presenter: Yonatan Bitton
Monday, Dec 11 | 12:15PM - 1:45PM

Talk like a Graph: Encoding Graphs for Large Language Models
Presenters: Bahar Fatemi, Jonathan Halcrow, Bryan Perozzi
Monday, Dec 11 | 4:00PM - 4:45PM

VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use
Presenter: Yonatan Bitton
Monday, Dec 11 | 4:00PM - 4:45PM

MLCommons Croissant
Presenters: Omar Benjelloun, Meg Risdal, Lora Aroyo
Tuesday, Dec 12 | 9:15AM - 10:00AM

DaTaSeg: Taming a Universal Multi-Dataset Multi-Task Segmentation Model
Presenter: Xiuye Gu
Tuesday, Dec 12 | 12:45PM - 2:15PM

Embedding Large Graphs
Presenters: Bryan Perozzi, Anton Tsitsulin
Tuesday, Dec 12 | 3:20PM - 3:40PM

Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Presenter: Krishna Pillutla
Tuesday, Dec 12 | 3:20PM - 3:40PM

Med-PaLM
Presenter: Tao Tu
Tuesday, Dec 12 | 4:45PM - 5:15PM

StyleDrop: Text-to-Image Generation in Any Style
Presenters: Kihyuk Sohn, Lu Jiang, Irfan Essa
Tuesday, Dec 12 | 4:45PM - 5:15PM

DICES Dataset: Diversity in Conversational AI Evaluation for Safety
Presenters: Lora Aroyo, Alicia Parrish, Vinodkumar Prabhakaran
Wednesday, Dec 13 | 9:15AM - 10:00AM

Resonator: Scalable Game-Based Evaluation of Large Models
Presenters: Erin Drake Kajioka, Michal Todorovic
Wednesday, Dec 13 | 12:45PM - 2:15PM

Adversarial Nibbler
Presenter: Lora Aroyo
Wednesday, Dec 13 | 12:45PM - 2:15PM

Towards Generalist Biomedical AI
Presenter: Tao Tu
Wednesday, Dec 13 | 3:15PM - 3:30PM

Conditional Adaptors
Presenter: Junwen Bai
Wednesday, Dec 13 | 3:15PM - 3:30PM

Patient Assistance with Multimodal RAG
Presenters: Ryan Knuffman, Milica Cvetkovic
Wednesday, Dec 13 | 4:15PM - 5:00PM

How Hessian Structure Explains Mysteries in Sharpness Regularization
Presenter: Hossein Mobahi
Wednesday, Dec 13 | 4:15PM - 5:00PM


Keynote Speakers


Affinity Workshops

Women in ML
Google Sponsored - Platinum

LatinX in AI
Google Sponsored - Platinum

New in ML
Organizer: Isabelle Guyon


Workshops

AI for Accelerated Materials Design (AI4Mat-2023)
Fireside Chat: Gowoon Cheon

Associative Memory & Hopfield Networks in 2023
Panelist: Blaise Agüera y Arcas

Information-Theoretic Principles in Cognitive Systems (InfoCog)
Speaker: Alexander Alemi

Machine Learning and the Physical Sciences
Speaker: Alexander Alemi

UniReps: Unifying Representations in Neural Models
Organizer: Mathilde Caron

Robustness of Zero/Few-shot Learning in Foundation Models (R0-FoMo)
Speaker: Partha Talukdar
Organizer: Ananth Balashankar, Yao Qin, Ahmad Beirami

Workshop on Diffusion Models
Speaker: Tali Dekel

Algorithmic Fairness through the Lens of Time
Roundtable Lead: Stephen Pfohl
Organizer: Golnoosh Farnadi

Backdoors in Deep Learning: The Good, the Bad, and the Ugly
Organizer: Eugene Bagdasaryan

OPT 2023: Optimization for Machine Learning
Organizer: Cristóbal Guzmán

Machine Learning for Creativity and Design
Speaker: Aleksander Holynski, Alexander Mordvintsev

Robot Learning Workshop: Pretraining, Fine-Tuning, and Generalization with Large Scale Models
Speaker: Matt Barnes

Machine Learning for Audio
Organizer: Shrikanth Narayanan

Federated Learning in the Age of Foundation Models (FL@FM-NeurIPS’23)
Speaker: Cho-Jui Hsieh, Zheng Xu

Socially Responsible Language Modelling Research (SoLaR)
Panelist: Vinodkumar Prabhakaran

I Can’t Believe It’s Not Better (ICBINB): Failure Modes in the Age of Foundation Models
Advisory Board: Javier Antorán

Machine Learning for Systems
Organizer: Yawen Wang
Competition Committee: Bryan Perozzi, Sami Abu-el-haija
Steering Committee: Milad Hashemi

Self-Supervised Learning: Theory and Practice
Organizer: Mathilde Caron


Competitions

NeurIPS 2023 Machine Unlearning Competition
Organizer: Isabelle Guyon, Peter Kairouz

Lux AI Challenge Season 2 NeurIPS Edition
Organizer: Bovard Doerschuk-Tiberi, Addison Howard


Tutorials

Data-Centric AI for Reliable and Responsible AI: From Theory to Practice
Isabelle Guyon, Nabeel Seedat, Mihaela va der Schaar


Creative AI Track

Creative AI Performances 1 & 2
Speaker: Erin Drake Kajioka, Yonatan Bitton
Organizer: Isabelle Guyon
Performance 1: Mon, Dec 11 | 6:30PM - 8:30PM, Lobby Stage
Performance 2: Thu, Dec 14 | 7:00PM - 9:00PM, Lobby Stage

Creative AI Sessions 1 – 3
Speaker: Erin Drake Kajioka, Yonatan Bitton
Organizer: Isabelle Guyon
Session 1: Tue, Dec 12 | 3:05PM - 3:40PM, Hall D2
Session 2: Wed, Dec 13 | 10:45AM - 2:15PM, Hall D2
Session 3: Thu, Dec 14 | 10:45 AM - 2:15PM, Hall D2

Creative AI Videos
Organizer: Isabelle Guyon


Expo Talks

Graph Learning Meets Artificial Intelligence
Speaker: Bryan Perozzi

Resonator: Music Space
Speakers: Erin Drake Kajioka, Michal Todorovic

Empirical Rigor in ML as a Massively Parallelizable Challenge
Speaker: Megan Risdal (Kaggle)


Oral Talks

Ordering-based Conditions for Global Convergence of Policy Gradient Methods
Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh*, Csaba Szepesvari, Dale Schuurmans

Private Everlasting Prediction
Moni Naor, Kobbi Nissim, Uri Stemmer, Chao Yan

User-Level Differential Privacy With Few Examples Per User
Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Raghu Meka, Chiyuan Zhang

DataComp: In Search of the Next Generation of Multimodal Datasets
Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt

Optimal Learners for Realizable Regression: PAC Learning and Online Learning
Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas

The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation
Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek Kar, Mohammad Norouzi*, Deqing Sun, David J. Fleet


Journal Track

Graph Clustering with Graph Neural Networks
Anton Tsitsulin, John Palowitch, Bryan Perozzi, Emmanuel Müller


Spotlight Papers

Alternating Updates for Efficient Transformers (see blog post)
Cenk Baykal, Dylan Cutler, Nishanth Dikkala, Nikhil Ghosh*, Rina Panigrahy, Xin Wang

Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models
Peter Hase, Mohit Bansal, Been Kim, Asma Ghandeharioun

Is Learning in Games Good for the Learners?
William Brown, Jon Schneider, Kiran Vodrahalli

Participatory Personalization in Classification
Hailey Joren, Chirag Nagpal, Katherine Heller, Berk Ustun

Tight Risk Bounds for Gradient Descent on Separable Data
Matan Schliserman, Tomer Koren

Counterfactual Memorization in Neural Language Models
Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, Nicholas Carlini

Debias Coarsely, Sample Conditionally: Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models
Zhong Yi Wan, Ricardo Baptista, Anudhyan Boral, Yi-Fan Chen, John Anderson, Fei Sha, Leonardo Zepeda-Nunez

Faster Margin Maximization Rates for Generic Optimization Methods
Guanghui Wang, Zihao Hu, Vidya Muthukumar, Jacob Abernethy

From Pixels to UI Actions: Learning to Follow Instructions via Graphical User Interfaces
Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi Khandelwal, Kenton Lee, Kristina N Toutanova

PAC Learning Linear Thresholds from Label Proportions
Anand Brahmbhatt, Rishi Saket, Aravindan Raghuveer

SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs
Lijun Yu*, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolfgang Macherey, Yanping Huang, David Ross, Irfan Essa, Yonatan Bisk, Ming-Hsuan Yang, Kevin Murphy, Alexander Hauptmann, Lu Jiang

Adaptive Data Analysis in a Balanced Adversarial Model
Kobbi Nissim, Uri Stemmer, Eliad Tsfadia

Lexinvariant Language Models
Qian Huang, Eric Zelikman, Sarah Chen, Yuhuai Wu, Gregory Valiant, Percy Liang

On Quantum Backpropagation, Information Reuse, and Cheating Measurement Collapse
Amira Abbas, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh, Dar Gilboa, Jarrod McClean

Private Estimation Algorithms for Stochastic Block Models and Mixture Models
Hongjie Chen, Vincent Cohen-Addad, Tommaso d’Orsi, Alessandro Epasto, Jacob Imola, David Steurer, Stefan Tiegel

Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das, Dheeraj Nagaraj

Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh, Daogao Liu*, Sewoong Oh, Abhradeep Guha Thakurta

Uncovering the Hidden Dynamics of Video Self-supervised Learning under Distribution Shifts
Pritam Sarkar, Ahmad Beirami, Ali Etemad

AIMS: All-Inclusive Multi-Level Segmentation for Anything
Lu Qi, Jason Kuen, Weidong Guo, Jiuxiang Gu, Zhe Lin, Bo Du, Yu Xu, Ming-Hsuan Yang

DreamHuman: Animatable 3D Avatars from Text
Nikos Kolotouros, Thiemo Alldieck, Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Fieraru, Cristian Sminchisescu

Follow-ups Also Matter: Improving Contextual Bandits via Post-serving Contexts
Chaoqi Wang, Ziyu Ye, Zhe Feng, Ashwinkumar Badanidiyuru, Haifeng Xu

Learning List-Level Domain-Invariant Representations for Ranking
Ruicheng Xian*, Honglei Zhuang, Zhen Qin, Hamed Zamani*, Jing Lu, Ji Ma, Kai Hui, Han Zhao, Xuanhui Wang, Michael Bendersky

Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
Liang Zhang, Junchi Yang, Amin Karbasi, Niao He

Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems
Benjamin Coleman, Wang-Cheng Kang, Matthew Fahrbach, Ruoxi Wang, Lichan Hong, Ed Chi, Derek Cheng

Proximity-Informed Calibration for Deep Neural Networks
Miao Xiong, Ailin Deng, Pang Wei Koh, Jiaying Wu, Shen Li, Jianqing Xu, Bryan Hooi


Papers

Anonymous Learning via Look-Alike Clustering: A Precise Analysis of Model Generalization
Adel Javanmard, Vahab Mirrokni

Better Private Linear Regression Through Better Private Feature Selection
Travis Dick, Jennifer Gillenwater*, Matthew Joseph

Binarized Neural Machine Translation
Yichi Zhang, Ankush Garg, Yuan Cao, Łukasz Lew, Behrooz Ghorbani*, Zhiru Zhang, Orhan Firat

BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory Information
Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, Deepak Ramachandran

Boosting with Tempered Exponential Measures
Richard Nock, Ehsan Amid, Manfred Warmuth

Concept Algebra for (Score-Based) Text-Controlled Generative Models
Zihao Wang, Lin Gui, Jeffrey Negrea, Victor Veitch

Deep Contract Design via Discontinuous Networks
Tonghan Wang, Paul Dütting, Dmitry Ivanov, Inbal Talgam-Cohen, David C. Parkes

Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection
Cheng-Ju Ho, Chen-Hsuan Tai, Yen-Yu Lin, Ming-Hsuan Yang, Yi-Hsuan Tsai

Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback
Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, Matthew Walter

Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Anastasia Koloskova*, Ryan McKenna, Zachary Charles, J Keith Rush, Hugh Brendan McMahan

Hardness of Low Rank Approximation of Entrywise Transformed Matrix Products
Tamas Sarlos, Xingyou Song, David P. Woodruff, Qiuyi (Richard) Zhang

Module-wise Adaptive Distillation for Multimodality Foundation Models

Chen Liang, Jiahui Yu, Ming-Hsuan Yang, Matthew Brown, Yin Cui, Tuo Zhao, Boqing Gong, Tianyi Zhou

Multi-Swap k-Means++
Lorenzo Beretta, Vincent Cohen-Addad, Silvio Lattanzi, Nikos Parotsidis

OpenMask3D: Open-Vocabulary 3D Instance Segmentation
Ayça Takmaz, Elisabetta Fedele, Robert Sumner, Marc Pollefeys, Federico Tombari, Francis Engelmann

Order Matters in the Presence of Dataset Imbalance for Multilingual Learning
Dami Choi*, Derrick Xin, Hamid Dadkhahi, Justin Gilmer, Ankush Garg, Orhan Firat, Chih-Kuan Yeh, Andrew M. Dai, Behrooz Ghorbani

PopSign ASL v1.0: An Isolated American Sign Language Dataset Collected via Smartphones
Thad Starner, Sean Forbes, Matthew So, David Martin, Rohit Sridhar, Gururaj Deshpande, Sam Sepah, Sahir Shahryar, Khushi Bhardwaj, Tyler Kwok, Daksh Sehgal, Saad Hassan, Bill Neubauer, Sofia Vempala, Alec Tan, Jocelyn Heath, Unnathi Kumar, Priyanka Mosur, Tavenner Hall, Rajandeep Singh, Christopher Cui, Glenn Cameron, Sohier Dane, Garrett Tanzer

Semi-Implicit Denoising Diffusion Models (SIDDMs)
Yanwu Xu*, Mingming Gong, Shaoan Xie, Wei Wei, Matthias Grundmann, Kayhan Batmanghelich, Tingbo Hou

State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding
Devleena Das, Sonia Chernova, Been Kim

StoryBench: A Multifaceted Benchmark for Continuous Story Visualization
Emanuele Bugliarello*, Hernan Moraldo, Ruben Villegas, Mohammad Babaeizadeh, Mohammad Taghi Saffar, Han Zhang, Dumitru Erhan, Vittorio Ferrari, Pieter-Jan Kindermans, Paul Voigtlaender

Subject-driven Text-to-Image Generation via Apprenticeship Learning
Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, William W. Cohen

TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs
Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao*, Bahare Fatemi, Mike Burrows, Charith Mendis*, Bryan Perozzi

Training Chain-of-Thought via Latent-Variable Inference
Du Phan, Matthew D. Hoffman, David Dohan*, Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel Sountsov, Charles Sutton, Sharad Vikram, Rif A. Saurous

Unified Lower Bounds for Interactive High-dimensional Estimation under Information Constraints
Jayadev Acharya, Clement L. Canonne, Ziteng Sun, Himanshu Tyagi

What You See is What You Read? Improving Text-Image Alignment Evaluation
Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran Lang, Eran Ofek, Idan Szpektor

When Does Confidence-Based Cascade Deferral Suffice?
Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar

Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekström Kelvinius, Dimitar Georgiev, Artur Petrov Toshev, Johannes Gasteiger

AVIS: Autonomous Visual Information Seeking with Large Language Model Agent
Ziniu Hu*, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David Ross, Cordelia Schmid, Alireza Fathi

Beyond Invariance: Test-Time Label-Shift Adaptation for Addressing "Spurious" Correlations
Qingyao Sun, Kevin Patrick Murphy, Sayna Ebrahimi, Alexander D'Amour

Collaborative Score Distillation for Consistent Visual Editing
Subin Kim, Kyungmin Lee, June Suk Choi, Jongheon Jeong, Kihyuk Sohn, Jinwoo Shin

CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graphs
Guangyao Zhai, Evin Pınar Örnek, Shun-Cheng Wu, Yan Di, Federico Tombari, Nassir Navab, Benjamin Busam

Computational Complexity of Learning Neural Networks: Smoothness and Degeneracy
Amit Daniely, Nathan Srebro, Gal Vardi

A Computationally Efficient Sparsified Online Newton Method
Fnu Devvrit*, Sai Surya Duvvuri, Rohan Anil, Vineet Gupta, Cho-Jui Hsieh, Inderjit S Dhillon

DDF-HO: Hand-Held Object Reconstruction via Conditional Directed Distance Field
Chenyangguang Zhang, Yan Di, Ruida Zhang, Guangyao Zhai, Fabian Manhardt, Federico Tombari, Xiangyang Ji

Double Auctions with Two-sided Bandit Feedback
Soumya Basu, Abishek Sankararaman

Grammar Prompting for Domain-Specific Language Generation with Large Language Models
Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, Yoon Kim

Inconsistency, Instability, and Generalization Gap of Deep Neural Network Training
Rie Johnson, Tong Zhang*

Large Graph Property Prediction via Graph Segment Training
Kaidi Cao*, Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Dustin Zelle, Yanqi Zhou, Charith Mendis*, Jure Leskovec, Bryan Perozzi

On Computing Pairwise Statistics with Local Differential Privacy
Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Adam Sealfon

On Student-teacher Deviations in Distillation: Does it Pay to Disobey?
Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, Sanjiv Kumar

Optimal Cross-learning for Contextual Bandits with Unknown Context Distributions
Jon Schneider, Julian Zimmert

Near-Optimal k-Clustering in the Sliding Window Model
David Woodruff, Peilin Zhong, Samson Zhou

Post Hoc Explanations of Language Models Can Improve Language Models
Satyapriya Krishna, Jiaqi Ma, Dylan Z Slack, Asma Ghandeharioun, Sameer Singh, Himabindu Lakkaraju

Recommender Systems with Generative Retrieval
Shashank Rajput*, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, Maheswaran Sathiamoorthy

Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models
Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh*, Kangwook Lee, Kimin Lee*

Replicable Clustering
Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, Felix Zhou

Replicability in Reinforcement Learning
Amin Karbasi, Grigoris Velegkas, Lin Yang, Felix Zhou

Riemannian Projection-free Online Learning
Zihao Hu, Guanghui Wang, Jacob Abernethy

Sharpness-Aware Minimization Leads to Low-Rank Features
Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, Nicolas Flammarion

What is the Inductive Bias of Flatness Regularization? A Study of Deep Matrix Factorization Models
Khashayar Gatmiry, Zhiyuan Li, Ching-Yao Chuang, Sashank Reddi, Tengyu Ma, Stefanie Jegelka

Block Low-Rank Preconditioner with Shared Basis for Stochastic Optimization
Jui-Nan Yen, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh

Blocked Collaborative Bandits: Online Collaborative Filtering with Per-Item Budget Constraints
Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, Prateek Jain

Boundary Guided Learning-Free Semantic Control with Diffusion Models
Ye Zhu, Yu Wu, Zhiwei Deng, Olga Russakovsky, Yan Yan

Conditional Adapters: Parameter-efficient Transfer Learning with Fast Inference
Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du*, Vincent Y. Zhao, Yuexin Wu, Bo Li, Yu Zhang, Ming-Wei Chang

Conformal Prediction for Time Series with Modern Hopfield Networks
Andreas Auer, Martin Gauch, Daniel Klotz, Sepp Hochreiter

Does Visual Pretraining Help End-to-End Reasoning?
Chen Sun, Calvin Luo, Xingyi Zhou, Anurag Arnab, Cordelia Schmid

Effective Robustness Against Natural Distribution Shifts for Models with Different Training Data
Zhouxing Shi*, Nicholas Carlini, Ananth Balashankar, Ludwig Schmidt, Cho-Jui Hsieh, Alex Beutel*, Yao Qin

Improving Neural Network Representations Using Human Similarity Judgments
Lukas Muttenthaler*, Lorenz Linhardt, Jonas Dippel, Robert A. Vandermeulen, Katherine Hermann, Andrew K. Lampinen, Simon Kornblith

Label Robust and Differentially Private Linear Regression: Computational and Statistical Efficiency
Xiyang Liu, Prateek Jain, Weihao Kong, Sewoong Oh, Arun Sai Suggala

Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain, Krzysztof Choromanski, Avinava Dubey, Sumeet Singh, Vikas Sindhwani, Tingnan Zhang, Jie Tan

Nash Regret Guarantees for Linear Bandits
Ayush Sawarni, Soumyabrata Pal, Siddharth Barman

A Near-Linear Time Algorithm for the Chamfer Distance
Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, Erik Waingarten.

On Differentially Private Sampling from Gaussian and Product Distributions
Badih Ghazi, Xiao Hu*, Ravi Kumar, Pasin Manurangsi

On Dynamic Programming Decompositions of Static Risk Measures in Markov Decision Processes
Jia Lin Hau, Erick Delage, Mohammad Ghavamzadeh*, Marek Petrik

ResMem: Learn What You Can and Memorize the Rest
Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Sanjiv Kumar

Responsible AI (RAI) Games and Ensembles
Yash Gupta, Runtian Zhai, Arun Suggala, Pradeep Ravikumar

RoboCLIP: One Demonstration Is Enough to Learn Robot Policies
Sumedh A Sontakke, Jesse Zhang, Sébastien M. R. Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh, Chelsea Finn, Laurent Itti

Robust Concept Erasure via Kernelized Rate-Distortion Maximization
Somnath Basu Roy Chowdhury, Nicholas Monath, Kumar Avinava Dubey, Amr Ahmed, Snigdha Chaturvedi

Robust Multi-Agent Reinforcement Learning via Adversarial Regularization: Theoretical Foundation and Stable Algorithms
Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang, Songan Zhang, Tuo Zhao

Simplicity Bias in 1-Hidden Layer Neural Networks
Depen Morwani*, Jatin Batra, Prateek Jain, Praneeth Netrapalli

SLaM: Student-Label Mixing for Distillation with Unlabeled Examples
Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, Cenk Baykal, Gaurav Menghani, Erik Vee

SNAP: Self-Supervised Neural Maps for Visual Positioning and Semantic Understanding
Paul-Edouard Sarlin*, Eduard Trulls, Marc Pollefeys, Jan Hosang, Simon Lynen

SOAR: Improved Indexing for Approximate Nearest Neighbor Search
Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, Sanjiv Kumar

StyleDrop: Text-to-Image Synthesis of Any Style
Kihyuk Sohn, Lu Jiang, Jarred Barber, Kimin Lee*, Nataniel Ruiz, Dilip Krishnan, Huiwen Chang*, Yuanzhen Li, Irfan Essa, Michael Rubinstein, Yuan Hao, Glenn Entis, Irina Blok, Daniel Castro Chin

Three Towers: Flexible Contrastive Learning with Pretrained Image Models
Jannik Kossen*, Mark Collier, Basil Mustafa, Xiao Wang, Xiaohua Zhai, Lucas Beyer, Andreas Steiner, Jesse Berent, Rodolphe Jenatton, Efi Kokiopoulou

Two-Stage Learning to Defer with Multiple Experts
Anqi Mao, Christopher Mohri, Mehryar Mohri, Yutao Zhong

AdANNS: A Framework for Adaptive Semantic Search
Aniket Rege, Aditya Kusupati, Sharan Ranjit S, Alan Fan, Qingqing Cao, Sham Kakade, Prateek Jain, Ali Farhadi

Cappy: Outperforming and Boosting Large Multi-Task LMs with a Small Scorer
Bowen Tan*, Yun Zhu, Lijuan Liu, Eric Xing, Zhiting Hu, Jindong Chen

Causal-structure Driven Augmentations for Text OOD Generalization
Amir Feder, Yoav Wald, Claudia Shi, Suchi Saria, David Blei

Dense-Exponential Random Features: Sharp Positive Estimators of the Gaussian Kernel
Valerii Likhosherstov, Krzysztof Choromanski, Avinava Dubey, Frederick Liu, Tamas Sarlos, Adrian Weller

Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence
Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, Trevor Darrell

Diffusion Self-Guidance for Controllable Image Generation
Dave Epstein, Allan Jabri, Ben Poole, Alexei A Efros, Aleksander Holynski

Fully Dynamic k-Clustering in Õ(k) Update Time
Sayan Bhattacharya, Martin Nicolas Costa, Silvio Lattanzi, Nikos Parotsidis

Improving CLIP Training with Language Rewrites
Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, Yonglong Tian

LayoutGPT: Compositional Visual Planning and Generation with Large Language Models
Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Xuehai He, Sugato Basu, Xin Eric Wang, William Yang Wang

Offline Reinforcement Learning for Mixture-of-Expert Dialogue Management
Dhawal Gupta*, Yinlam Chow, Azamat Tulepbergenov, Mohammad Ghavamzadeh*, Craig Boutilier

Optimal Unbiased Randomizers for Regression with Label Differential Privacy
Ashwinkumar Badanidiyuru, Badih Ghazi, Pritish Kamath, Ravi Kumar, Ethan Jacob Leeman, Pasin Manurangsi, Avinash V Varadarajan, Chiyuan Zhang

Paraphrasing Evades Detectors of AI-generated Text, but Retrieval Is an Effective Defense
Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, Mohit Iyyer

ReMaX: Relaxing for Better Training on Efficient Panoptic Segmentation
Shuyang Sun*, Weijun Wang, Qihang Yu*, Andrew Howard, Philip Torr, Liang-Chieh Chen*

Robust and Actively Secure Serverless Collaborative Learning
Nicholas Franzese, Adam Dziedzic, Christopher A. Choquette-Choo, Mark R. Thomas, Muhammad Ahmad Kaleem, Stephan Rabanser, Congyu Fang, Somesh Jha, Nicolas Papernot, Xiao Wang

SpecTr: Fast Speculative Decoding via Optimal Transport
Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, Felix Yu

Structured Prediction with Stronger Consistency Guarantees
Anqi Mao, Mehryar Mohri, Yutao Zhong

Affinity-Aware Graph Networks
Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Veličković, Sreenivas Gollapudi

ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collections
Chun-Han Yao*, Amit Raj, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, Varun Jampani

Black-Box Differential Privacy for Interactive ML
Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer

Bypassing the Simulator: Near-Optimal Adversarial Linear Contextual Bandits
Haolin Liu, Chen-Yu Wei, Julian Zimmert

DaTaSeg: Taming a Universal Multi-Dataset Multi-Task Segmentation Model

Xiuye Gu, Yin Cui*, Jonathan Huang, Abdullah Rashwan, Xuan Yang, Xingyi Zhou, Golnaz Ghiasi, Weicheng Kuo, Huizhong Chen, Liang-Chieh Chen*, David Ross

Easy Learning from Label Proportions
Robert Busa-Fekete, Heejin Choi*, Travis Dick, Claudio Gentile, Andres Munoz Medina

Efficient Data Subset Selection to Generalize Training Across Models: Transductive and Inductive Networks
Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish Tendulkar, Rishabh Iyer, Abir De

Faster Differentially Private Convex Optimization via Second-Order Methods
Arun Ganesh, Mahdi Haghifam*, Thomas Steinke, Abhradeep Guha Thakurta

Finding Safe Zones of Markov Decision Processes Policies
Lee Cohen, Yishay Mansour, Michal Moshkovitz

Focused Transformer: Contrastive Training for Context Scaling
Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu*, Henryk Michalewski, Piotr Miłoś

Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge
Abhin Shah, Karthikeyan Shanmugam, Murat Kocaoglu

H-Consistency Bounds: Characterization and Extensions
Anqi Mao, Mehryar Mohri, Yutao Zhong

Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation
David Brandfonbrener, Ofir Nachum, Joan Bruna

Most Neural Networks Are Almost Learnable
Amit Daniely, Nathan Srebro, Gal Vardi

Multiclass Boosting: Simple and Intuitive Weak Learning Criteria
Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran

NeRF Revisited: Fixing Quadrature Instability in Volume Rendering
Mikaela Angelina Uy, Kiyohiro Nakayama, Guandao Yang, Rahul Krishna Thomas, Leonidas Guibas, Ke Li

Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation
Wei-Ning Chen, Dan Song, Ayfer Ozgur, Peter Kairouz

Private Federated Frequency Estimation: Adapting to the Hardness of the Instance
Jingfeng Wu*, Wennan Zhu, Peter Kairouz, Vladimir Braverman

RETVec: Resilient and Efficient Text Vectorizer
Elie Bursztein, Marina Zhang, Owen Skipper Vallis, Xinyu Jia, Alexey Kurakin

Symbolic Discovery of Optimization Algorithms
Xiangning Chen*, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le

A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa F. Polania, Varun Jampani, Deqing Sun, Ming-Hsuan Yang

A Trichotomy for Transductive Online Learning
Steve Hanneke, Shay Moran, Jonathan Shafer

A Unified Fast Gradient Clipping Framework for DP-SGD
William Kong, Andres Munoz Medina

Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla, Galen Andrew, Peter Kairouz, H. Brendan McMahan, Alina Oprea, Sewoong Oh

(Amplified) Banded Matrix Factorization: A unified approach to private training
Christopher A Choquette-Choo, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Keith Rush, Abhradeep Guha Thakurta, Zheng Xu

Adversarial Resilience in Sequential Prediction via Abstention
Surbhi Goel, Steve Hanneke, Shay Moran, Abhishek Shetty

Alternating Gradient Descent and Mixture-of-Experts for Integrated Multimodal Perception
Hassan Akbari, Dan Kondratyuk, Yin Cui, Rachel Hornung, Huisheng Wang, Hartwig Adam

Android in the Wild: A Large-Scale Dataset for Android Device Control
Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, Timothy Lillicrap

Benchmarking Robustness to Adversarial Image Obfuscations
Florian Stimberg, Ayan Chakrabarti, Chun-Ta Lu, Hussein Hazimeh, Otilia Stretcu, Wei Qiao, Yintao Liu, Merve Kaya, Cyrus Rashtchian, Ariel Fuxman, Mehmet Tek, Sven Gowal

Building Socio-culturally Inclusive Stereotype Resources with Community Engagement
Sunipa Dev, Jaya Goyal, Dinesh Tewari, Shachi Dave, Vinodkumar Prabhakaran

Consensus and Subjectivity of Skin Tone Annotation for ML Fairness
Candice Schumann, Gbolahan O Olanubi, Auriel Wright, Ellis Monk Jr*, Courtney Heldreth, Susanna Ricco

Counting Distinct Elements Under Person-Level Differential Privacy
Alexander Knop, Thomas Steinke

DICES Dataset: Diversity in Conversational AI Evaluation for Safety
Lora Aroyo, Alex S. Taylor, Mark Diaz, Christopher M. Homan, Alicia Parrish, Greg Serapio-García, Vinodkumar Prabhakaran, Ding Wang

Does Progress on ImageNet Transfer to Real-world Datasets?
Alex Fang, Simon Kornblith, Ludwig Schmidt

Estimating Generic 3D Room Structures from 2D Annotations
Denys Rozumnyi*, Stefan Popov, Kevis-kokitsi Maninis, Matthias Nießner, Vittorio Ferrari

Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias
Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander Ratner, Ranjay Krishna, Jiaming Shen, Chao Zhang

MADLAD-400: A Multilingual And Document-Level Large Audited Dataset
Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat

Mechanic: A Learning Rate Tuner
Ashok Cutkosky, Aaron Defazio, Harsh Mehta

NAVI: Category-Agnostic Image Collections with High-Quality 3D Shape and Pose Annotations
Varun Jampani, Kevis-kokitsi Maninis, Andreas Engelhardt, Arjun Karpur, Karen Truong, Kyle Sargent, Stefan Popov, Andre Araujo, Ricardo Martin Brualla, Kaushal Patel, Daniel Vlasic, Vittorio Ferrari, Ameesh Makadia, Ce Liu*, Yuanzhen Li, Howard Zhou

Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations
Anudhyan Boral, Zhong Yi Wan, Leonardo Zepeda-Nunez, James Lottes, Qing Wang, Yi-Fan Chen, John Roberts Anderson, Fei Sha

Restart Sampling for Improving Generative Processes
Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, Tommi Jaakkola

Rethinking Incentives in Recommender Systems: Are Monotone Rewards Always Beneficial?
Fan Yao, Chuanhao Li, Karthik Abinav Sankararaman, Yiming Liao, Yan Zhu, Qifan Wang, Hongning Wang, Haifeng Xu

Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union
Zifu Wang, Maxim Berman, Amal Rannen-Triki, Philip Torr, Devis Tuia, Tinne Tuytelaars, Luc Van Gool, Jiaqian Yu, Matthew B. Blaschko

RoboHive: A Unified Framework for Robot Learning
Vikash Kumar, Rutav Shah, Gaoyue Zhou, Vincent Moens, Vittorio Caggiano, Abhishek Gupta, Aravind Rajeswaran

SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng, Amna Elmustafa, Benjamin Akera, Yoshua Bengio, Hager Radi, Hugo Larochelle, David Rolnick

Sparsity-Preserving Differentially Private Training of Large Embedding Models
Badih Ghazi, Yangsibo Huang*, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, Chiyuan Zhang

StableRep: Synthetic Images from Text-to-Image Models Make Strong Visual Representation Learners
Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, Dilip Krishnan

Towards Federated Foundation Models: Scalable Dataset Pipelines for Group-Structured Learning
Zachary Charles, Nicole Mitchell, Krishna Pillutla, Michael Reneer, Zachary Garrett

Universality and Limitations of Prompt Tuning
Yihan Wang, Jatin Chauhan, Wei Wang, Cho-Jui Hsieh

Unsupervised Semantic Correspondence Using Stable Diffusion
Eric Hedlin, Gopal Sharma, Shweta Mahajan, Hossam Isack, Abhishek Kar, Andrea Tagliasacchi, Kwang Moo Yi

YouTube-ASL: A Large-Scale, Open-Domain American Sign Language-English Parallel Corpus
Dave Uthus, Garrett Tanzer, Manfred Georg

The Noise Level in Linear Regression with Dependent Data
Ingvar Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni


* Work done while at Google

Source: Google AI Blog


Sparsity-preserving differentially private training

Large embedding models have emerged as a fundamental tool for various applications in recommendation systems [1, 2] and natural language processing [3, 4, 5]. Such models enable the integration of non-numerical data into deep learning models by mapping categorical or string-valued input attributes with large vocabularies to fixed-length representation vectors using embedding layers. These models are widely deployed in personalized recommendation systems and achieve state-of-the-art performance in language tasks, such as language modeling, sentiment analysis, and question answering. In many such scenarios, privacy is an equally important feature when deploying those models. As a result, various techniques have been proposed to enable private data analysis. Among those, differential privacy (DP) is a widely adopted definition that limits exposure of individual user information while still allowing for the analysis of population-level patterns.

For training deep neural networks with DP guarantees, the most widely used algorithm is DP-SGD (DP stochastic gradient descent). One key component of DP-SGD is adding Gaussian noise to every coordinate of the gradient vectors during training. However, this creates scalability challenges when applied to large embedding models, because they rely on gradient sparsity for efficient training, but adding noise to all the coordinates destroys sparsity.

To mitigate this gradient sparsity problem, in “Sparsity-Preserving Differentially Private Training of Large Embedding Models” (to be presented at NeurIPS 2023), we propose a new algorithm called adaptive filtering-enabled sparse training (DP-AdaFEST). At a high level, the algorithm maintains the sparsity of the gradient by selecting only a subset of feature rows to which noise is added at each iteration. The key is to make such selections differentially private so that a three-way balance is achieved among the privacy cost, the training efficiency, and the model utility. Our empirical evaluation shows that DP-AdaFEST achieves a substantially sparser gradient, with a reduction in gradient size of over 105X compared to the dense gradient produced by standard DP-SGD, while maintaining comparable levels of accuracy. This gradient size reduction could translate into 20X wall-clock time improvement.


Overview

To better understand the challenges and our solutions to the gradient sparsity problem, let us start with an overview of how DP-SGD works during training. As illustrated by the figure below, DP-SGD operates by clipping the gradient contribution from each example in the current random subset of samples (called a mini-batch), and adding coordinate-wise Gaussian noise to the average gradient during each iteration of stochastic gradient descent (SGD). DP-SGD has demonstrated its effectiveness in protecting user privacy while maintaining model utility in a variety of applications [6, 7].

An illustration of how DP-SGD works. During each training step, a mini-batch of examples is sampled, and used to compute the per-example gradients. Those gradients are processed through clipping, aggregation and summation of Gaussian noise to produce the final privatized gradients.

The challenges of applying DP-SGD to large embedding models mainly come from 1) the non-numerical feature fields like user/product IDs and categories, and 2) words and tokens that are transformed into dense vectors through an embedding layer. Due to the vocabulary sizes of those features, the process requires large embedding tables with a substantial number of parameters. In contrast to the number of parameters, the gradient updates are usually extremely sparse because each mini-batch of examples only activates a tiny fraction of embedding rows (the figure below visualizes the ratio of zero-valued coordinates, i.e., the sparsity, of the gradients under various batch sizes). This sparsity is heavily leveraged for industrial applications that efficiently handle the training of large-scale embeddings. For example, Google Cloud TPUs, custom-designed AI accelerators that are optimized for training and inference of large AI models, have dedicated APIs to handle large embeddings with sparse updates. This leads to significantly improved training throughput compared to training on GPUs, which at this time did not have specialized optimization for sparse embedding lookups. On the other hand, DP-SGD completely destroys the gradient sparsity because it requires adding independent Gaussian noise to all the coordinates. This creates a road block for private training of large embedding models as the training efficiency would be significantly reduced compared to non-private training.

Embedding gradient sparsity (the fraction of zero-value gradient coordinates) in the Criteo pCTR model (see below). The figure reports the gradient sparsity, averaged over 50 update steps, of the top five categorical features (out of a total of 26) with the highest number of buckets, as well as the sparsity of all categorical features. The sprasity decreases with the batch size as more examples hit more rows in the embedding table, creating non-zero gradients. However, the sparsity is above 0.97 even for very large batch sizes. This pattern is consistently observed for all the five features.

Algorithm

Our algorithm is built by extending standard DP-SGD with an extra mechanism at each iteration to privately select the “hot features”, which are the features that are activated by multiple training examples in the current mini-batch. As illustrated below, the mechanism works in a few steps:

  1. Compute how many examples contributed to each feature bucket (we call each of the possible values of a categorical feature a “bucket”).
  2. Restrict the total contribution from each example by clipping their counts.
  3. Add Gaussian noise to the contribution count of each feature bucket.
  4. Select only the features to be included in the gradient update that have a count above a given threshold (a sparsity-controlling parameter), thus maintaining sparsity. This mechanism is differentially private, and the privacy cost can be easily computed by composing it with the standard DP-SGD iterations.
Illustration of the process of the algorithm on a synthetic categorical feature that has 20 buckets. We compute the number of examples contributing to each bucket, adjust the value based on per-example total contributions (including those to other features), add Gaussian noise, and retain only those buckets with a noisy contribution exceeding the threshold for (noisy) gradient update.

Theoretical motivation

We provide the theoretical motivation that underlies DP-AdaFEST by viewing it as optimization using stochastic gradient oracles. Standard analysis of stochastic gradient descent in a theoretical setting decomposes the test error of the model into “bias” and “variance” terms. The advantage of DP-AdaFEST can be viewed as reducing variance at the cost of slightly increasing the bias. This is because DP-AdaFEST adds noise to a smaller set of coordinates compared to DP-SGD, which adds noise to all the coordinates. On the other hand, DP-AdaFEST introduces some bias to the gradients since the gradient on the embedding features are dropped with some probability. We refer the interested reader to Section 3.4 of the paper for more details.


Experiments

We evaluate the effectiveness of our algorithm with large embedding model applications, on public datasets, including one ad prediction dataset (Criteo-Kaggle) and one language understanding dataset (SST-2). We use DP-SGD with exponential selection as a baseline comparison.

The effectiveness of DP-AdaFEST is evident in the figure below, where it achieves significantly higher gradient size reduction (i.e., gradient sparsity) than the baseline while maintaining the same level of utility (i.e., only minimal performance degradation).

Specifically, on the Criteo-Kaggle dataset, DP-AdaFEST reduces the gradient computation cost of regular DP-SGD by more than 5x105 times while maintaining a comparable AUC (which we define as a loss of less than 0.005). This reduction translates into a more efficient and cost-effective training process. In comparison, as shown by the green line below, the baseline method is not able to achieve reasonable cost reduction within such a small utility loss threshold.

In language tasks, there isn't as much potential for reducing the size of gradients, because the vocabulary used is often smaller and already quite compact (shown on the right below). However, the adoption of sparsity-preserving DP-SGD effectively obviates the dense gradient computation. Furthermore, in line with the bias-variance trade-off presented in the theoretical analysis, we note that DP-AdaFEST occasionally exhibits superior utility compared to DP-SGD when the reduction in gradient size is minimal. Conversely, when incorporating sparsity, the baseline algorithm faces challenges in maintaining utility.

A comparison of the best gradient size reduction (the ratio of the non-zero gradient value counts between regular DP-SGD and sparsity-preserving algorithms) achieved under ε =1.0 by DP-AdaFEST (our algorithm) and the baseline algorithm (DP-SGD with exponential selection) compared to DP-SGD at different thresholds for utility difference. A higher curve indicates a better utility/efficiency trade-off.

In practice, most ad prediction models are being continuously trained and evaluated. To simulate this online learning setup, we also evaluate with time-series data, which are notoriously challenging due to being non-stationary. Our evaluation uses the Criteo-1TB dataset, which comprises real-world user-click data collected over 24 days. Consistently, DP-AdaFEST reduces the gradient computation cost of regular DP-SGD by more than 104 times while maintaining a comparable AUC.

A comparison of the best gradient size reduction achieved under ε =1.0 by DP-AdaFEST (our algorithm) and DP-SGD with exponential selection (a previous algorithm) compared to DP-SGD at different thresholds for utility difference. A higher curve indicates a better utility/efficiency trade-off. DP-AdaFEST consistently outperforms the previous method.

Conclusion

We present a new algorithm, DP-AdaFEST, for preserving gradient sparsity in differentially private training — particularly in applications involving large embedding models, a fundamental tool for various applications in recommendation systems and natural language processing. Our algorithm achieves significant reductions in gradient size while maintaining accuracy on real-world benchmark datasets. Moreover, it offers flexible options for balancing utility and efficiency via sparsity-controlling parameters, while our proposals offer much better privacy-utility loss.


Acknowledgements

This work was a collaboration with Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi and Amer Sinha.

Source: Google AI Blog


VALID: A perceptually validated virtual avatar library for inclusion and diversity

As virtual reality (VR) and augmented reality (AR) technologies continue to grow in popularity, virtual avatars are becoming an increasingly important part of our digital interactions. In particular, virtual avatars are at the center of many social VR and AR interactions, as they are key to representing remote participants and facilitating collaboration.

In the last decade, interdisciplinary scientists have dedicated a significant amount of effort to better understand the use of avatars, and have made many interesting observations, including the capacity of the users to embody their avatar (i.e., the illusion that the avatar body is their own) and the self-avatar follower effect, which creates a binding between the actions of the avatar and the user strong enough that the avatar can actually affect user behavior.

The use of avatars in experiments isn’t just about how users will interact and behave in VR spaces, but also about discovering the limits of human perception and neuroscience. In fact, some VR social experiments often rely on recreating scenarios that can’t be reproduced easily in the real world, such as bar crawls to explore ingroup vs. outgroup effects, or deception experiments, such as the Milgram obedience to authority inside virtual reality. Other studies try to explore deep neuroscientific phenomena, like the human mechanisms for motor control. This perhaps follows the trail of the rubber hand illusion on brain plasticity, where a person can start feeling as if they own a rubber hand while their real hand is hidden behind a curtain. There is also an increased number of possible therapies for psychiatric treatment using personalized avatars. In these cases, VR becomes an ecologically valid tool that allows scientists to explore or treat human behavior and perception.

None of these experiments and therapies could exist without good access to research tools and libraries that can enable easy experimentation. As such, multiple systems and open source tools have been released around avatar creation and animation over recent years. However, existing avatar libraries have not been validated systematically on the diversity spectrum. Societal bias and dynamics also transfer to VR/AR when interacting with avatars, which could lead to incomplete conclusions for studies on human behavior inside VR/AR.

To partially overcome this problem, we partnered with the University of Central Florida to create and release the open-source Virtual Avatar Library for Inclusion and Diversity (VALID). Described in our recent paper, published in Frontiers in Virtual Reality, this library of avatars is readily available for usage in VR/AR experiments and includes 210 avatars of seven different races and ethnicities recognized by the US Census Bureau. The avatars have been perceptually validated and designed to advance diversity and inclusion in virtual avatar research.

Headshots of all 42 base avatars available on the VALID library were created in extensive interaction with members of the 7 ethnic and racial groups from the Federal Register, which include (AIAN, Asian, Black, Hispanic, MENA, NHPI and White).

Creation and validation of the library

Our initial selection of races and ethnicities for the diverse avatar library follows the most recent guidelines of the US Census Bureau that as of 2023 recommended the use of 7 ethnic and racial groups representing a large demographic of the US society, which can also be extrapolated to the global population. These groups include Hispanic or Latino, American Indian or Alaska Native (AIAN), Asian, Black or African American, Native Hawaiian or Other Pacific Islander (NHPI), White, Middle East or North Africa (MENA). We envision the library will continue to evolve to bring even more diversity and representation with future additions of avatars.

The avatars were hand modeled and created using a process that combined average facial features with extensive collaboration with representative stakeholders from each racial group, where their feedback was used to artistically modify the facial mesh of the avatars. Then we conducted an online study with participants from 33 countries to determine whether the race and gender of each avatar in the library are recognizable. In addition to the avatars, we also provide labels statistically validated through observation of users for the race and gender of all 42 base avatars (see below).

Example of the headshots of a Black/African American avatar presented to participants during the validation of the library.

We found that all Asian, Black, and White avatars were universally identified as their modeled race by all participants, while our American Indian or Native Alaskan (AIAN), Hispanic, and Middle Eastern or North African (MENA) avatars were typically only identified by participants of the same race. This also indicates that participant race can improve identification of a virtual avatar of the same race. The paper accompanying the library release highlights how this ingroup familiarity should also be taken into account when studying avatar behavior in VR.

Confusion matrix heatmap of agreement rates for the 42 base avatars separated by other-race participants and same-race participants. One interesting aspect visible in this matrix, is that participants were significantly better at identifying the avatars of their own race than other races.

Dataset details

Our models are available in FBX format, are compatible with previous avatar libraries like the commonly used Rocketbox, and can be easily integrated into most game engines such as Unity and Unreal. Additionally, the avatars come with 69 bones and 65 facial blendshapes to enable researchers and developers to easily create and apply dynamic facial expressions and animations. The avatars were intentionally made to be partially cartoonish to avoid extreme look-a-like scenarios in which a person could be impersonated, but still representative enough to be able to run reliable user studies and social experiments.

Images of the skeleton rigging (bones that allow for animation) and some facial blend shapes included with the VALID avatars.

The avatars can be further combined with variations of casual attires and five professional attires, including medical, military, worker and business. This is an intentional improvement from prior libraries that in some cases reproduced stereotypical gender and racial bias into the avatar attires, and provided very limited diversity to certain professional avatars.

Images of some sample attire included with the VALID avatars.

Get started with VALID

We believe that the Virtual Avatar Library for Inclusion and Diversity (VALID) will be a valuable resource for researchers and developers working on VR/AR applications. We hope it will help to create more inclusive and equitable virtual experiences. To this end, we invite you to explore the avatar library, which we have released under the open source MIT license. You can download the avatars and use them in a variety of settings at no charge.


Acknowledgements

This library of avatars was born out of a collaboration with Tiffany D. Do, Steve Zelenty and Prof. Ryan P McMahan from the University of Central Florida.

Source: Google AI Blog


Google at EMNLP 2023

Google is proud to be a Diamond Sponsor of Empirical Methods in Natural Language Processing (EMNLP 2023), a premier annual conference, which is being held this week in Sentosa, Singapore. Google has a strong presence at this year’s conference with over 65 accepted papers and active involvement in 11 workshops and tutorials. Google is also happy to be a Major Sponsor for the Widening NLP workshop (WiNLP), which aims to highlight global representations of people, perspectives, and cultures in AI and ML. We look forward to sharing some of our extensive NLP research and expanding our partnership with the broader research community.

We hope you’ll visit the Google booth to chat with researchers who are actively pursuing the latest innovations in NLP, and check out some of the scheduled booth activities (e.g., demos and Q&A sessions listed below). Visit the @GoogleAI X (Twitter) and LinkedIn accounts to find out more about the Google booth activities at EMNLP 2023.

Take a look below to learn more about the Google research being presented at EMNLP 2023 (Google affiliations in bold).



Board & Organizing Committee

Sponsorship Chair: Shyam Upadyay
Industry Track Chair: Imed Zitouni
Senior Program Committee: Roee Aharoni, Annie Louis, Vinodkumar Prabhakaran, Shruti Rijhwani, Brian Roark, Partha Talukdar


Google Research booth activities

This schedule is subject to change. Please visit the Google booth for more information.

Developing and Utilizing Evaluation Metrics for Machine Translation & Improving Multilingual NLP
Presenter: Isaac Caswell, Dan Deutch, Jan-Thorsten Peter, David Vilar Torres
Fri, Dec 8 | 10:30AM -11:00AM SST

Differentiable Search Indexes & Generative Retrieval
Presenter: Sanket Vaibhav Mehta, Vinh Tran, Kai Hui, Ronak Pradeep*
Fri, Dec 8 | 3:30PM -4:00PM SST

Retrieval and Generation in a single pass
Presenter: Palak Jain, Livio Baldini Soares
Sat, Dec 9 | 10:30AM -11:00AM SST

Amplifying Adversarial Attacks
Presenter: Anu Sinha
Sat, Dec 9 | 12:30PM -1:45PM SST

Automate prompt design: Universal Self-Adaptive Prompting (see blog post)
Presenter: Xingchen Qian*, Ruoxi Sun
Sat, Dec 9 | 3:30PM -4:00PM SST


Papers

SynJax: Structured Probability Distributions for JAX
Miloš Stanojević, Laurent Sartran

Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning
Clifton Poth, Hannah Sterz, Indraneil Paul, Sukannya Purkayastha, Leon Engländer, Timo Imhof, Ivan Vulić, Sebastian Ruder, Iryna Gurevych, Jonas Pfeiffer

DocumentNet: Bridging the Data Gap in Document Pre-training
Lijun Yu, Jin Miao, Xiaoyu Sun, Jiayi Chen, Alexander Hauptmann, Hanjun Dai, Wei Wei

AART: AI-Assisted Red-Teaming with Diverse Data Generation for New LLM-Powered Applications
Bhaktipriya Radharapu, Kevin Robinson, Lora Aroyo, Preethi Lahoti

CRoW: Benchmarking Commonsense Reasoning in Real-World Tasks
Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor Geva, Antoine Bosselut

Large Language Models Can Self-Improve
Jiaxin Huang*, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, Jiawei Han

Dissecting Recall of Factual Associations in Auto-Regressive Language Models
Mor Geva, Jasmijn Bastings, Katja Filippova, Amir Globerson

Stop Uploading Test Data in Plain Text: Practical Strategies for Mitigating Data Contamination by Evaluation Benchmarks
Alon Jacovi, Avi Caciularu, Omer Goldman, Yoav Goldberg

Selective Labeling: How to Radically Lower Data-Labeling Costs for Document Extraction Models
Yichao Zhou, James Bradley Wendt, Navneet Potti, Jing Xie, Sandeep Tata

Measuring Attribution in Natural Language Generation Models
Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, Lora Aroyo, Michael Collins, Dipanjan Das, Slav Petrov, Gaurav Singh Tomar, Iulia Turc, David Reitter

Inverse Scaling Can Become U-Shaped
Jason Wei*, Najoung Kim, Yi Tay*, Quoc Le

INSTRUCTSCORE: Towards Explainable Text Generation Evaluation with Automatic Feedback
Wenda Xu, Danqing Wang, Liangming Pan, Zhenqiao Song, Markus Freitag, William Yang Wang, Lei Li

On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-Based Method
Zorik Gekhman, Nadav Oved, Orgad Keller, Idan Szpektor, Roi Reichart

Investigating Efficiently Extending Transformers for Long-Input Summarization
Jason Phang*, Yao Zhao, Peter J Liu

DSI++: Updating Transformer Memory with New Documents
Sanket Vaibhav Mehta*, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Jinfeng Rao, Marc Najork, Emma Strubell, Donald Metzler

MultiTurnCleanup: A Benchmark for Multi-Turn Spoken Conversational Transcript Cleanup
Hua Shen*, Vicky Zayats, Johann C Rocholl, Daniel David Walker, Dirk Padfield


Findings of EMNLP

Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs
Jiefeng Chen*, Jinsung Yoon, Sayna Ebrahimi, Sercan O Arik, Tomas Pfister, Somesh Jha

A Comprehensive Evaluation of Tool-Assisted Generation Strategies
Alon Jacovi*, Avi Caciularu, Jonathan Herzig, Roee Aharoni, Bernd Bohnet, Mor Geva

1-PAGER: One Pass Answer Generation and Evidence Retrieval
Palak Jain, Livio Baldini Soares, Tom Kwiatkowski

MaXM: Towards Multilingual Visual Question Answering
Soravit Changpinyo, Linting Xue, Michal Yarom, Ashish V. Thapliyal, Idan Szpektor, Julien Amelot, Xi Chen, Radu Soricut

SDOH-NLI: A Dataset for Inferring Social Determinants of Health from Clinical Notes
Adam D. Lelkes, Eric Loreaux*, Tal Schuster, Ming-Jun Chen, Alvin Rajkomar

Machine Reading Comprehension Using Case-based Reasoning
Dung Ngoc Thai, Dhruv Agarwal, Mudit Chaudhary, Wenlong Zhao, Rajarshi Das, Jay-Yoon Lee, Hannaneh Hajishirzi, Manzil Zaheer, Andrew McCallum

Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo, Tajuddeen Gwadabe, Clara E. Rivera, Jonathan H. Clark, Sebastian Ruder, David Ifeoluwa Adelani, Bonaventure F. P. Dossou, Abdou Aziz DIOP, Claytone Sikasote, Gilles HACHEME, Happy Buzaaba, Ignatius Ezeani, Rooweither Mabuya, Salomey Osei, Chris Chinenye Emezue, Albert Kahira, Shamsuddeen Hassan Muhammad, Akintunde Oladipo, Abraham Toluwase Owodunni, Atnafu Lambebo Tonja, Iyanuoluwa Shode, Akari Asai, Anuoluwapo Aremu, Ayodele Awokoya, Bernard Opoku, Chiamaka Ijeoma Chukwuneke, Christine Mwase, Clemencia Siro, Stephen Arthur, Tunde Oluwaseyi Ajayi, Verrah Akinyi Otiende, Andre Niyongabo Rubungo, Boyd Sinkala, Daniel Ajisafe, Emeka Felix Onwuegbuzia, Falalu Ibrahim Lawan, Ibrahim Said Ahmad, Jesujoba Oluwadara Alabi, CHINEDU EMMANUEL MBONU, Mofetoluwa Adeyemi, Mofya Phiri, Orevaoghene Ahia, Ruqayya Nasir Iro, Sonia Adhiambo

On Uncertainty Calibration and Selective Generation in Probabilistic Neural Summarization: A Benchmark Study
Polina Zablotskaia, Du Phan, Joshua Maynez, Shashi Narayan, Jie Ren, Jeremiah Zhe Liu

Epsilon Sampling Rocks: Investigating Sampling Strategies for Minimum Bayes Risk Decoding for Machine Translation
Markus Freitag, Behrooz Ghorbani*, Patrick Fernandes*

Sources of Hallucination by Large Language Models on Inference Tasks
Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Javad Hosseini, Mark Johnson, Mark Steedman

Don’t Add, Don’t Miss: Effective Content Preserving Generation from Pre-selected Text Spans
Aviv Slobodkin, Avi Caciularu, Eran Hirsch, Ido Dagan

What Makes Chain-of-Thought Prompting Effective? A Counterfactual Study
Aman Madaan*, Katherine Hermann, Amir Yazdanbakhsh

Understanding HTML with Large Language Models
Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery, Sharan Narang, Noah Fiedel, Aleksandra Faust

Improving the Robustness of Summarization Models by Detecting and Removing Input Noise
Kundan Krishna*, Yao Zhao, Jie Ren, Balaji Lakshminarayanan, Jiaming Luo, Mohammad Saleh, Peter J. Liu

In-Context Learning Creates Task Vectors
Roee Hendel, Mor Geva, Amir Globerson

Pre-training Without Attention
Junxiong Wang, Jing Nathan Yan, Albert Gu, Alexander M Rush

MUX-PLMs: Data Multiplexing for High-Throughput Language Models
Vishvak Murahari, Ameet Deshpande, Carlos E Jimenez, Izhak Shafran, Mingqiu Wang, Yuan Cao, Karthik R Narasimhan

PaRaDe: Passage Ranking Using Demonstrations with LLMs
Andrew Drozdov*, Honglei Zhuang, Zhuyun Dai, Zhen Qin, Razieh Rahimi, Xuanhui Wang, Dana Alon, Mohit Iyyer, Andrew McCallum, Donald Metzler*, Kai Hui

Long-Form Speech Translation Through Segmentation with Finite-State Decoding Constraints on Large Language Models
Arya D. McCarthy, Hao Zhang, Shankar Kumar, Felix Stahlberg, Ke Wu

Unsupervised Opinion Summarization Using Approximate Geodesics
Somnath Basu Roy Chowdhury*, Nicholas Monath, Kumar Avinava Dubey, Amr Ahmed, Snigdha Chaturvedi

SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data
Ruoxi Sun, Sercan O. Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun Dai, Pengcheng Yin, Tomas Pfister

Retrieval-Augmented Parsing for Complex Graphs by Exploiting Structure and Uncertainty
Zi Lin, Quan Yuan, Panupong Pasupat, Jeremiah Zhe Liu, Jingbo Shang

A Zero-Shot Language Agent for Computer Control with Structured Reflection
Tao Li, Gang Li, Zhiwei Deng, Bryan Wang*, Yang Li

Pragmatics in Language Grounding: Phenomena, Tasks, and Modeling Approaches
Daniel Fried, Nicholas Tomlin, Jennifer Hu, Roma Patel, Aida Nematzadeh

Improving Classifier Robustness Through Active Generation of Pairwise Counterfactuals
Ananth Balashankar, Xuezhi Wang, Yao Qin, Ben Packer, Nithum Thain, Jilin Chen, Ed H. Chi, Alex Beutel

mmT5: Modular Multilingual Pre-training Solves Source Language Hallucinations
Jonas Pfeiffer, Francesco Piccinno, Massimo Nicosia, Xinyi Wang, Machel Reid, Sebastian Ruder

Scaling Laws vs Model Architectures: How Does Inductive Bias Influence Scaling?
Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan Narang, Vinh Q. Tran, Dani Yogatama, Donald Metzler

TaTA: A Multilingual Table-to-Text Dataset for African Languages
Sebastian Gehrmann, Sebastian Ruder, Vitaly Nikolaev, Jan A. Botha, Michael Chavinda, Ankur P Parikh, Clara E. Rivera

XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Sebastian Ruder, Jonathan H. Clark, Alexander Gutkin, Mihir Kale, Min Ma, Massimo Nicosia, Shruti Rijhwani, Parker Riley, Jean Michel Amath Sarr, Xinyi Wang, John Frederick Wieting, Nitish Gupta, Anna Katanova, Christo Kirov, Dana L Dickinson, Brian Roark, Bidisha Samanta, Connie Tao, David Ifeoluwa Adelani, Vera Axelrod, Isaac Rayburn Caswell, Colin Cherry, Dan Garrette, Reeve Ingle, Melvin Johnson, Dmitry Panteleev, Partha Talukdar

q2d: Turning Questions into Dialogs to Teach Models How to Search
Yonatan Bitton, Shlomi Cohen-Ganor, Ido Hakimi, Yoad Lewenberg, Roee Aharoni, Enav Weinreb

Emergence of Abstract State Representations in Embodied Sequence Modeling
Tian Yun*, Zilai Zeng, Kunal Handa, Ashish V Thapliyal, Bo Pang, Ellie Pavlick, Chen Sun

Evaluating and Modeling Attribution for Cross-Lingual Question Answering
Benjamin Muller*, John Wieting, Jonathan H. Clark, Tom Kwiatkowski, Sebastian Ruder, Livio Baldini Soares, Roee Aharoni, Jonathan Herzig, Xinyi Wang

Weakly-Supervised Learning of Visual Relations in Multimodal Pre-training
Emanuele Bugliarello, Aida Nematzadeh, Lisa Anne Hendricks

How Do Languages Influence Each Other? Studying Cross-Lingual Data Sharing During LM Fine-Tuning
Rochelle Choenni, Dan Garrette, Ekaterina Shutova

CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models
Benjamin Minixhofer, Jonas Pfeiffer, Ivan Vulić

IC3: Image Captioning by Committee Consensus
David Chan, Austin Myers, Sudheendra Vijayanarasimhan, David A Ross, John Canny

The Curious Case of Hallucinatory (Un)answerability: Finding Truths in the Hidden States of Over-Confident Large Language Models
Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido Dagan, Shauli Ravfogel

Evaluating Large Language Models on Controlled Generation Tasks
Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian Hu, Rahul Gupta, John Wieting, Nanyun Peng, Xuezhe Ma

Ties Matter: Meta-Evaluating Modern Metrics with Pairwise Accuracy and Tie Calibration
Daniel Deutsch, George Foster, Markus Freitag

Transcending Scaling Laws with 0.1% Extra Compute
Yi Tay*, Jason Wei*, Hyung Won Chung*, Vinh Q. Tran, David R. So*, Siamak Shakeri, Xavier Garcia, Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, Denny Zhou, Donald Metzler, Slav Petrov, Neil Houlsby, Quoc V. Le, Mostafa Dehghani

Data Similarity is Not Enough to Explain Language Model Performance
Gregory Yauney*, Emily Reif, David Mimno

Self-Influence Guided Data Reweighting for Language Model Pre-training
Megh Thakkar*, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, Partha Talukdar

ReTAG: Reasoning Aware Table to Analytic Text Generation
Deepanway Ghosal, Preksha Nema, Aravindan Raghuveer

GATITOS: Using a New Multilingual Lexicon for Low-Resource Machine Translation
Alex Jones*, Isaac Caswell, Ishank Saxena

Video-Helpful Multimodal Machine Translation
Yihang Li, Shuichiro Shimizu, Chenhui Chu, Sadao Kurohashi, Wei Li

Symbol Tuning Improves In-Context Learning in Language Models
Jerry Wei*, Le Hou, Andrew Kyle Lampinen, Xiangning Chen*, Da Huang, Yi Tay*, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma*, Quoc V Le

"Don't Take This Out of Context!" On the Need for Contextual Models and Evaluations for Stylistic Rewriting
Akhila Yerukola, Xuhui Zhou, Elizabeth Clark, Maarten Sap

QAmeleon: Multilingual QA with Only 5 Examples
Priyanka Agrawal, Chris Alberti, Fantine Huot, Joshua Maynez, Ji Ma, Sebastian Ruder, Kuzman Ganchev, Dipanjan Das, Mirella Lapata

Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision
Eugene Kharitonov, Damien Vincent, Zalán Borsos, Raphaël Marinier, Sertan Girgin, Olivier Pietquin, Matt Sharifi, Marco Tagliasacchi, Neil Zeghidour

AnyTOD: A Programmable Task-Oriented Dialog System
Jeffrey Zhao, Yuan Cao, Raghav Gupta, Harrison Lee, Abhinav Rastogi, Mingqiu Wang, Hagen Soltau, Izhak Shafran, Yonghui Wu

Selectively Answering Ambiguous Questions
Jeremy R. Cole, Michael JQ Zhang, Daniel Gillick, Julian Martin Eisenschlos, Bhuwan Dhingra, Jacob Eisenstein

PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs (see blog post)
Rahul Goel, Waleed Ammar, Aditya Gupta, Siddharth Vashishtha, Motoki Sano, Faiz Surani*, Max Chang, HyunJeong Choe, David Greene, Chuan He, Rattima Nitisaroj, Anna Trukhina, Shachi Paul, Pararth Shah, Rushin Shah, Zhou Yu

LM vs LM: Detecting Factual Errors via Cross Examination
Roi Cohen, May Hamri, Mor Geva, Amir Globerson

A Suite of Generative Tasks for Multi-Level Multimodal Webpage Understanding
Andrea Burns*, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A. Plummer, Kate Saenko, Jianmo Ni, Mandy Guo

AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages
Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, Nedjma Ousidhoum, David Ifeoluwa Adelani, Seid Muhie Yimam, Ibrahim Said Ahmad, Meriem Beloucif, Saif M. Mohammad, Sebastian Ruder, Oumaima Hourrane, Alipio Jorge, Pavel Brazdil, Felermino D. M. A. Ali, Davis David, Salomey Osei, Bello Shehu-Bello, Falalu Ibrahim Lawan, Tajuddeen Gwadabe, Samuel Rutunda, Tadesse Destaw Belay, Wendimu Baye Messelle, Hailu Beshada Balcha, Sisay Adugna Chala, Hagos Tesfahun Gebremichael, Bernard Opoku, Stephen Arthur

Optimizing Retrieval-Augmented Reader Models via Token Elimination
Moshe Berchansky, Peter Izsak, Avi Caciularu, Ido Dagan, Moshe Wasserblat

SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization Evaluation
Elizabeth Clark, Shruti Rijhwani, Sebastian Gehrmann, Joshua Maynez, Roee Aharoni, Vitaly Nikolaev, Thibault Sellam, Aditya Siddhant, Dipanjan Das, Ankur P Parikh

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
Joshua Ainslie, James Lee-Thorp, Michiel de Jong*, Yury Zemlyanskiy, Federico Lebron, Sumit Sanghai

CoLT5: Faster Long-Range Transformers with Conditional Computation
Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago Ontanon, Siddhartha Brahma, Yury Zemlyanskiy, David Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, Yun-Hsuan Sung, Sumit Sanghai

Improving Diversity of Demographic Representation in Large Language Models via Collective-Critiques and Self-Voting
Preethi Lahoti, Nicholas Blumm, Xiao Ma, Raghavendra Kotikalapudi, Sahitya Potluri, Qijun Tan, Hansa Srinivasan, Ben Packer, Ahmad Beirami, Alex Beutel, Jilin Chen

Universal Self-Adaptive Prompting (see blog post)
Xingchen Wan*, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Martin Eisenschlos, Sercan O. Arik, Tomas Pfister

TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models
Zorik Gekhman, Jonathan Herzig, Roee Aharoni, Chen Elkind, Idan Szpektor

Hierarchical Pre-training on Multimodal Electronic Health Records
Xiaochen Wang, Junyu Luo, Jiaqi Wang, Ziyi Yin, Suhan Cui, Yuan Zhong, Yaqing Wang, Fenglong Ma

NAIL: Lexical Retrieval Indices with Efficient Non-Autoregressive Decoders
Livio Baldini Soares, Daniel Gillick, Jeremy R. Cole, Tom Kwiatkowski

How Does Generative Retrieval Scale to Millions of Passages?
Ronak Pradeep*, Kai Hui, Jai Gupta, Adam D. Lelkes, Honglei Zhuang, Jimmy Lin, Donald Metzler, Vinh Q. Tran

Make Every Example Count: On the Stability and Utility of Self-Influence for Learning from Noisy NLP Datasets
Irina Bejan*, Artem Sokolov, Katja Filippova


Workshops

The Seventh Widening NLP Workshop (WiNLP)
Major Sponsor
Organizers: Sunipa Dev
Panelist: Preethi Lahoti

The Sixth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC)
Invited Speaker: Bernd Bohnet

The 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS)
Organizer: Geeticka Chauhan

Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics (SpLU-RoboNLP)
Invited Speaker: Andy Zeng

Natural Language Generation, Evaluation, and Metric (GEM)
Organizer: Elizabeth Clark

The First Arabic Natural Language Processing Conference (ArabicNLP)
Organizer: Imed Zitouni

The Big Picture: Crafting a Research Narrative (BigPicture)
Organizer: Nora Kassner, Sebastian Ruder

BlackboxNLP 2023: The 6th Workshop on Analysing and Interpreting Neural Networks for NLP
Organizer: Najoung Kim
Panelist: Neel Nanda

The SIGNLL Conference on Computational Natural Language Learning (CoNLL)
Co-Chair: David Reitter
Areas and ACs: Kyle Gorman (Speech and Phonology), Fei Liu (Natural Language Generation)

The Third Workshop on Multi-lingual Representation Learning (MRL)
Organizer: Omer Goldman, Sebastian Ruder
Invited Speaker: Orhan Firat


Tutorials

Creative Natural Language Generation
Organizer: Tuhin Chakrabarty*


* Work done while at Google

Source: Google AI Blog


A new quantum algorithm for classical mechanics with an exponential speedup

Quantum computers promise to solve some problems exponentially faster than classical computers, but there are only a handful of examples with such a dramatic speedup, such as Shor’s factoring algorithm and quantum simulation. Of those few examples, the majority of them involve simulating physical systems that are inherently quantum mechanical — a natural application for quantum computers. But what about simulating systems that are not inherently quantum? Can quantum computers offer an exponential advantage for this?

In “Exponential quantum speedup in simulating coupled classical oscillators”, published in Physical Review X (PRX) and presented at the Symposium on Foundations of Computer Science (FOCS 2023), we report on the discovery of a new quantum algorithm that offers an exponential advantage for simulating coupled classical harmonic oscillators. These are some of the most fundamental, ubiquitous systems in nature and can describe the physics of countless natural systems, from electrical circuits to molecular vibrations to the mechanics of bridges. In collaboration with Dominic Berry of Macquarie University and Nathan Wiebe of the University of Toronto, we found a mapping that can transform any system involving coupled oscillators into a problem describing the time evolution of a quantum system. Given certain constraints, this problem can be solved with a quantum computer exponentially faster than it can with a classical computer. Further, we use this mapping to prove that any problem efficiently solvable by a quantum algorithm can be recast as a problem involving a network of coupled oscillators, albeit exponentially many of them. In addition to unlocking previously unknown applications of quantum computers, this result provides a new method of designing new quantum algorithms by reasoning purely about classical systems.


Simulating coupled oscillators

The systems we consider consist of classical harmonic oscillators. An example of a single harmonic oscillator is a mass (such as a ball) attached to a spring. If you displace the mass from its rest position, then the spring will induce a restoring force, pushing or pulling the mass in the opposite direction. This restoring force causes the mass to oscillate back and forth.

A simple example of a harmonic oscillator is a mass connected to a wall by a spring. [Image Source: Wikimedia]

Now consider coupled harmonic oscillators, where multiple masses are attached to one another through springs. Displace one mass, and it will induce a wave of oscillations to pulse through the system. As one might expect, simulating the oscillations of a large number of masses on a classical computer gets increasingly difficult.

An example system of masses connected by springs that can be simulated with the quantum algorithm.

To enable the simulation of a large number of coupled harmonic oscillators, we came up with a mapping that encodes the positions and velocities of all masses and springs into the quantum wavefunction of a system of qubits. Since the number of parameters describing the wavefunction of a system of qubits grows exponentially with the number of qubits, we can encode the information of N balls into a quantum mechanical system of only about log(N) qubits. As long as there is a compact description of the system (i.e., the properties of the masses and the springs), we can evolve the wavefunction to learn coordinates of the balls and springs at a later time with far fewer resources than if we had used a naïve classical approach to simulate the balls and springs.

We showed that a certain class of coupled-classical oscillator systems can be efficiently simulated on a quantum computer. But this alone does not rule out the possibility that there exists some as-yet-unknown clever classical algorithm that is similarly efficient in its use of resources. To show that our quantum algorithm achieves an exponential speedup over any possible classical algorithm, we provide two additional pieces of evidence.


The glued-trees problem and the quantum oracle

For the first piece of evidence, we use our mapping to show that the quantum algorithm can efficiently solve a famous problem about graphs known to be difficult to solve classically, called the glued-trees problem. The problem takes two branching trees — a graph whose nodes each branch to two more nodes, resembling the branching paths of a tree — and glues their branches together through a random set of edges, as shown in the figure below.

A visual representation of the glued trees problem. Here we start at the node labeled ENTRANCE and are allowed to locally explore the graph, which is obtained by randomly gluing together two binary trees. The goal is to find the node labeled EXIT.

The goal of the glued-trees problem is to find the exit node — the “root” of the second tree — as efficiently as possible. But the exact configuration of the nodes and edges of the glued trees are initially hidden from us. To learn about the system, we must query an oracle, which can answer specific questions about the setup. This oracle allows us to explore the trees, but only locally. Decades ago, it was shown that the number of queries required to find the exit node on a classical computer is proportional to a polynomial factor of N, the total number of nodes.

But recasting this as a problem with balls and springs, we can imagine each node as a ball and each connection between two nodes as a spring. Pluck the entrance node (the root of the first tree), and the oscillations will pulse through the trees. It only takes a time that scales with the depth of the tree — which is exponentially smaller than N — to reach the exit node. So, by mapping the glued-trees ball-and-spring system to a quantum system and evolving it for that time, we can detect the vibrations of the exit node and determine it exponentially faster than we could using a classical computer.


BQP-completeness

The second and strongest piece of evidence that our algorithm is exponentially more efficient than any possible classical algorithm is revealed by examination of the set of problems a quantum computer can solve efficiently (i.e., solvable in polynomial time), referred to as bounded-error quantum polynomial time or BQP. The hardest problems in BQP are called “BQP-complete”.

While it is generally accepted that there exist some problems that a quantum algorithm can solve efficiently and a classical algorithm cannot, this has not yet been proven. So, the best evidence we can provide is that our problem is BQP-complete, that is, it is among the hardest problems in BQP. If someone were to find an efficient classical algorithm for solving our problem, then every problem solved by a quantum computer efficiently would be classically solvable! Not even the factoring problem (finding the prime factors of a given large number), which forms the basis of modern encryption and was famously solved by Shor’s algorithm, is expected to be BQP-complete.

A diagram showing the believed relationships of the classes BPP and BQP, which are the set of problems that can be efficiently solved on a classical computer and quantum computer, respectively. BQP-complete problems are the hardest problems in BQP.

To show that our problem of simulating balls and springs is indeed BQP-complete, we start with a standard BQP-complete problem of simulating universal quantum circuits, and show that every quantum circuit can be expressed as a system of many balls coupled with springs. Therefore, our problem is also BQP-complete.


Implications and future work

This effort also sheds light on work from 2002, when theoretical computer scientist Lov K. Grover and his colleague, Anirvan M. Sengupta, used an analogy to coupled pendulums to illustrate how Grover’s famous quantum search algorithm could find the correct element in an unsorted database quadratically faster than could be done classically. With the proper setup and initial conditions, it would be possible to tell whether one of N pendulums was different from the others — the analogue of finding the correct element in a database — after the system had evolved for time that was only ~√(N). While this hints at a connection between certain classical oscillating systems and quantum algorithms, it falls short of explaining why Grover’s quantum algorithm achieves a quantum advantage.

Our results make that connection precise. We showed that the dynamics of any classical system of harmonic oscillators can indeed be equivalently understood as the dynamics of a corresponding quantum system of exponentially smaller size. In this way we can simulate Grover and Sengupta’s system of pendulums on a quantum computer of log(N) qubits, and find a different quantum algorithm that can find the correct element in time ~√(N). The analogy we discovered between classical and quantum systems can be used to construct other quantum algorithms offering exponential speedups, where the reason for the speedups is now more evident from the way that classical waves propagate.

Our work also reveals that every quantum algorithm can be equivalently understood as the propagation of a classical wave in a system of coupled oscillators. This would imply that, for example, we can in principle build a classical system that solves the factoring problem after it has evolved for time that is exponentially smaller than the runtime of any known classical algorithm that solves factoring. This may look like an efficient classical algorithm for factoring, but the catch is that the number of oscillators is exponentially large, making it an impractical way to solve factoring.

Coupled harmonic oscillators are ubiquitous in nature, describing a broad range of systems from electrical circuits to chains of molecules to structures such as bridges. While our work here focuses on the fundamental complexity of this broad class of problems, we expect that it will guide us in searching for real-world examples of harmonic oscillator problems in which a quantum computer could offer an exponential advantage.


Acknowledgements

We would like to thank our Quantum Computing Science Communicator, Katie McCormick, for helping to write this blog post.

Source: Google AI Blog


Summary report optimization in the Privacy Sandbox Attribution Reporting API

In recent years, the Privacy Sandbox initiative was launched to explore responsible ways for advertisers to measure the effectiveness of their campaigns, by aiming to deprecate third-party cookies (subject to resolving any competition concerns with the UK’s Competition and Markets Authority). Cookies are small pieces of data containing user preferences that websites store on a user’s device; they can be used to provide a better browsing experience (e.g., allowing users to automatically sign in) and to serve relevant content or ads. The Privacy Sandbox attempts to address concerns around the use of cookies for tracking browsing data across the web by providing a privacy-preserving alternative.

Many browsers use differential privacy (DP) to provide privacy-preserving APIs, such as the Attribution Reporting API (ARA), that don’t rely on cookies for ad conversion measurement. ARA encrypts individual user actions and collects them in an aggregated summary report, which estimates measurement goals like the number and value of conversions (useful actions on a website, such as making a purchase or signing up for a mailing list) attributed to ad campaigns.

The task of configuring API parameters, e.g., allocating a contribution budget across different conversions, is important for maximizing the utility of the summary reports. In “Summary Report Optimization in the Privacy Sandbox Attribution Reporting API”, we introduce a formal mathematical framework for modeling summary reports. Then, we formulate the problem of maximizing the utility of summary reports as an optimization problem to obtain the optimal ARA parameters. Finally, we evaluate the method using real and synthetic datasets, and demonstrate significantly improved utility compared to baseline non-optimized summary reports.


ARA summary reports

We use the following example to illustrate our notation. Imagine a fictional gift shop called Du & Penc that uses digital advertising to reach its customers. The table below captures their holiday sales, where each record contains impression features with (i) an impression ID, (ii) the campaign, and (iii) the city in which the ad was shown, as well as conversion features with (i) the number of items purchased and (ii) the total dollar value of those items.

Impression and conversion feature logs for Du & Penc.


Mathematical model

ARA summary reports can be modeled by four algorithms: (1) Contribution Vector, (2) Contribution Bounding, (3) Summary Reports, and (4) Reconstruct Values. Contribution Bounding and Summary Reports are performed by the ARA, while Contribution Vector and Reconstruct Values are performed by an AdTech provider — tools and systems that enable businesses to buy and sell digital advertising. The objective of this work is to assist AdTechs in optimizing summary report algorithms.

The Contribution Vector algorithm converts measurements into an ARA format that is discretized and scaled. Scaling needs to account for the overall contribution limit per impression. Here we propose a method that clips and performs randomized rounding. The outcome of the algorithm is a histogram of aggregatable keys and values.

Next, the Contribution Bounding algorithm runs on client devices and enforces the contribution bound on attributed reports where any further contributions exceeding the limit are dropped. The output is a histogram of attributed conversions.

The Summary Reports algorithm runs on the server side inside a trusted execution environment and returns noisy aggregate results that satisfy DP. Noise is sampled from the discrete Laplace distribution, and to enforce privacy budgeting, a report may be queried only once.

Finally, the Reconstruct Values algorithm converts measurements back to the original scale. Reconstruct Values and Contribution Vector Algorithms are designed by the AdTech, and both impact the utility received from the summary report.

Illustrative usage of ARA summary reports, which include Contribution Vector (Algorithm A), Contribution Bounding (Algorithm C), Summary Reports (Algorithm S), and Reconstruct Values (Algorithm R). Algorithms C and S are fixed in the API. The AdTech designs A and R.


Error metrics

There are several factors to consider when selecting an error metric for evaluating the quality of an approximation. To choose a particular metric, we considered the desirable properties of an error metric that further can be used as an objective function. Considering desired properties, we have chosen 𝜏-truncated root mean square relative error (RMSRE𝜏) as our error metric for its properties. See the paper for a detailed discussion and comparison to other possible metrics.


Optimization

To optimize utility as measured by RMSRE𝜏, we choose a capping parameter, C, and privacy budget, 𝛼, for each slice. The combination of both determines how an actual measurement (such as two conversions with a total value of $3) is encoded on the AdTech side and then passed to the ARA for Contribution Bounding algorithm processing. RMSRE𝜏 can be computed exactly, since it can be expressed in terms of the bias from clipping and the variance of the noise distribution. Following those steps we find out that RMSRE𝜏 for a fixed privacy budget, 𝛼, or a capping parameter, C, is convex (so the error-minimizing value for the other parameter can be obtained efficiently), while for joint variables (C, 𝛼) it becomes non-convex (so we may not always be able to select the best possible parameters). In any case, any off-the-shelf optimizer can be used to select privacy budgets and capping parameters. In our experiments, we use the SLSQP minimizer from the scipy.optimize library.


Synthetic data

Different ARA configurations can be evaluated empirically by testing them on a conversion dataset. However, access to such data can be restricted or slow due to privacy concerns, or simply unavailable. One way to address these limitations is to use synthetic data that replicates the characteristics of real data.

We present a method for generating synthetic data responsibly through statistical modeling of real-world conversion datasets. We first perform an empirical analysis of real conversion datasets to uncover relevant characteristics for ARA. We then design a pipeline that uses this distribution knowledge to create a realistic synthetic dataset that can be customized via input parameters.

The pipeline first generates impressions drawn from a power-law distribution (step 1), then for each impression it generates conversions drawn from a Poisson distribution (step 2) and finally, for each conversion, it generates conversion values drawn from a log-normal distribution (step 3). With dataset-dependent parameters, we find that these distributions closely match ad-dataset characteristics. Thus, one can learn parameters from historical or public datasets and generate synthetic datasets for experimentation.

Overall dataset generation steps with features for illustration.


Experimental evaluation

We evaluate our algorithms on three real-world datasets (Criteo, AdTech Real Estate, and AdTech Travel) and three synthetic datasets. Criteo consists of 15M clicks, Real Estate consists of 100K conversions, and Travel consists of 30K conversions. Each dataset is partitioned into a training set and a test set. The training set is used to choose contribution budgets, clipping threshold parameters, and the conversion count limit (the real-world datasets have only one conversion per click), and the error is evaluated on the test set. Each dataset is partitioned into slices using impression features. For real-world datasets, we consider three queries for each slice; for synthetic datasets, we consider two queries for each slice.

For each query we choose the RMSRE𝝉 𝜏 value to be five times the median value of the query on the training dataset. This ensures invariance of the error metric to data rescaling, and allows us to combine the errors from features of different scales by using 𝝉 per each feature.

Scatter plots of real-world datasets illustrating the probability of observing a conversion value. The fitted curves represent best log-normal distribution models that effectively capture the underlying patterns in the data.


Results

We compare our optimization-based algorithm to a simple baseline approach. For each query, the baseline uses an equal contribution budget and a fixed quantile of the training data to choose the clipping threshold. Our algorithms produce substantially lower error than baselines on both real-world and synthetic datasets. Our optimization-based approach adapts to the privacy budget and data.

RMSREτ for privacy budgets {1, 2, 4, 8, 16, 32, 64} for our algorithms and baselines on three real-world and three synthetic datasets. Our optimization-based approach consistently achieves lower error than baselines that use a fixed quantile for the clipping threshold and split the contribution budget equally among the queries.


Conclusion

We study the optimization of summary reports in the ARA, which is currently deployed on hundreds of millions of Chrome browsers. We present a rigorous formulation of the contribution budgeting optimization problem for ARA with the goal of equipping researchers with a robust abstraction that facilitates practical improvements.

Our recipe, which leverages historical data to bound and scale the contributions of future data under differential privacy, is quite general and applicable to settings beyond advertising. One approach based on this work is to use past data to learn the parameters of the data distribution, and then to apply synthetic data derived from this distribution for privacy budgeting for queries on future data. Please see the paper and accompanying code for detailed algorithms and proofs.


Acknowledgements

This work was done in collaboration with Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Avinash Varadarajan. We thank Akash Nadan for his help.

Source: Google AI Blog