Python Version Support in the Google Ads API Client Library

In June 2023, support for Python 3.7 was deprecated in the Google Ads API Client Library for Python. In Q1 2024, a major version of the library will be released that makes it incompatible with Python 3.7. Library changes related to compatibility with Python 3.7 will be limited to critical security or stability patches.

Google Ads API users who depend on Python 3.7 can continue using version 22.1.0 of the library, which includes API v15 support, until v15 of the is sunset in September 2024. All Python users should upgrade to Python 3.8 or higher as soon as possible.

In the future, Python users should expect that the library will become incompatible with unsupported versions of Python as soon as they reach end-of-life status. When Python 3.8 becomes unsupported in October 2024, a major version of the library will be released that is incompatible with Python 3.8. At least two months before a Python version deprecation, we will publish a blog post to help remind users of the change.

The below resources are available to help users plan ahead for future language support removal: If you have any questions about this change, please file an issue on the client library repository on GitHub.

Exceptional Exception Handling

This is another post in our Code Health series. A version of this post originally appeared in Google bathrooms worldwide as a Google Testing on the Toilet episode. You can download a printer-friendly version to display in your office.

by Yiming Sun

Have you ever seen huge exception-handling blocks? Here is an example. Let's assume we are calling bakePizza() to bake a pizza, and it can be overbaked, throwing a PizzaOverbakedException.

class PizzaOverbakedException extends Exception {};


void bakePizza () throws PizzaOverbakedException {};


try {

  // 100+ lines of code to prepare pizza ingredients.

  ...

  bakePizza();

  // Another 100+ lines of code to deliver pizza to a customer.

  ...

} catch (Exception e) {

  throw new IllegalStateException(); // Root cause ignored while throwing new exception.

}

Here are the problems with the above code:

  • Obscuring the logic. The method bakePizza(), is obscured by the additional lines of code of preparation and delivery, so unintended exceptions from preparation and delivery may be caught.
  • Catching the general exception. catch (Exception e) will catch everything, despite that we might only want to handle PizzaOverbakedException here.
  • Rethrowing a general exception, with the original exception ignored. This means that the root cause is lost - we don't know what exactly goes wrong with pizza baking while debugging.

Here is a better alternative, rewritten to avoid the problems above.

class PizzaOverbakedException extends Exception {};


void bakePizza () throws PizzaOverbakedException {};


// 100+ lines of code to prepare pizza ingredients.

...

try {

  bakePizza();

} catch (PizzaOverbakedException e) {  // Other exceptions won’t be caught.

  // Rethrow a more meaningful exception; so that we know pizza is overbaked.

  throw new IllegalStateException(“You burned the pizza!”, e);  

}

// Another 100+ lines of code to deliver pizza to a customer.

...

Virtual Machine as a core Android Primitive

Posted by Sandeep Patil – Principal Software Engineer, and Irene Ang – Product Manager

The Android Virtualization Framework (AVF) will be available on upcoming select Android 14 devices. The AVF, first introduced in Android 13 on Pixel devices, provides new capabilities for platform developers working on privileged applications.

With AVF, we are more broadly supporting virtualization to Android. Virtualization is widely used and deployed to isolate workloads and operating systems from each other. It enables efficient scaling of infrastructure, testing environments, legacy software compatibility, creating virtual desktops and much more.

With AVF virtual machines become a core construct of the Android operating system, similar to the way Android utilizes Linux processes. Developers have the flexibility to choose the level of isolation for a virtual machine:

    • One-way isolation: Android (the host) can control and inspect the contents of the VM. These are most commonly used for sandboxing and separation, enabling multiple operating systems to run on the same machine / device, with one operating system host (Android) controlling and watching over all others.
    • Two-way isolation (Isolated VM): Android (the host) and the virtual machine (the guest) are completely isolated from each other. Developers who deal with or store sensitive data may benefit from an isolated virtual machine. An isolated virtual machine has a two-way barrier, where neither the host (Android) nor the VM have access to each other, except via explicitly-agreed-upon communication channels. This has 2 main properties:
  1. The workload and data inside the VM is inaccessible (confidential) from the host (Android).
  2. Even if Android is compromised all the way up to (and including) the host kernel, the isolated VM remains uncompromised.

Benefits of AVF

Isolation

With an isolated VM, developers now have an alternative to Trustzone for use cases that need isolation from Android without escalated privilege.

Portability

Virtual machines and the applications running inside them are far more portable than trusted applets. For example, a Linux-based virtual machine with a Linux-application payload will work on all devices that support AVF. This means that developers can build an application once and deploy it everywhere. VMs also make porting of existing Linux based applications seamless and easy, compared to porting into a Trustzone operating system.

Performance

AVF is designed to be lightweight, efficient and flexible. Virtual machines can:

    • be as small as a single C program and as big as an entire operating system depending on the developer’s need;
    • be persistent or intermittent;
    • grow in memory or shrink depending on the overall system health; and
    • honor Android’s scheduler hints and low-memory warnings.

Extensibility

AVF is designed with developers in mind. Virtual machines can be customized to meet specific use-case needs. Developers can deploy any VM payload as long as it conforms to certain boot and communication protocols specified by AVF.

In addition to bringing the power of virtualization to Android and enabling all the possibilities of virtual desktops, sandboxing, AVF’s use of isolated virtual machines can benefit the following common Android use cases (and many more):

    • Biometrics: By deploying biometric trusted applets in an isolated virtual machine, developers will have the isolation guarantee, access to more compute power for biometric algorithms, easy updatability regardless of the Trustzone operating system, and a more streamlined deployment.
    • DRM: Widevine enables streaming DRM on Android devices. Once deployed in an isolated Virtual Machine, updates to Widevine become much easier across Android devices, regardless of the details of the various Trustzone operating systems being deployed on those devices.

AVF Usage

AVF provides easy APIs to query the device’s ability to create virtual machines and their supported types, and to set up secure communication channels with these virtual machines from applications and services that create them.

For example, to check for the availability of the AVF APIs, and of isolated and regular VM:

VirtualMachineManager manager =
     (VirtualMachineManager)context.
          getSystemService(VirtualMachineManager.class);
if (manager == null) {
    // AVF not supported
} else {
    int capabilities = manager.getCapabilities();
    if ((capabilities & CAPABILITY_PROTECTED_VM) != 0) {
        // protected VM is supported
    }
    if ((capabilities & CAPABILITY_NON_PROTECTED_VM) != 0) {
        // non protected VM is supported
    }
}

Please find additional documentation on AVF and its APIs here.

AVF Components

AVF Component architecture

AVF consists of the framework APIs, the hypervisor, and the Virtual Machine Manager. The hypervisor guarantees virtual machines (including Android) are isolated from each other, much like how the Linux kernel does it for processes. The AVF hypervisor (pKVM), however, does that with a significantly smaller (~50x) code base compared to the Linux kernel.

The Hypervisor (pKVM)

The hypervisor is focused on open source availability, security, device assignment to VMs and security by isolation between virtual machines. It has a small attack surface that meets a higher security assurance level. AVF APIs and features are fully supported by the protected KVM hypervisor (pKVM).

pKVM is built on top of the industry standard Kernel-based Virtual Machine (KVM) in Linux. It means all existing operating systems and workloads that rely on KVM-based virtual machines can work seamlessly on Android devices with pKVM.

Virtual Machine Manager (crosvm)

crosvm, a Rust-based Virtual Machine Manager (VMM), provides the glue between the hypervisor and the AVF framework. It is responsible for creating, managing and destroying virtual machines. In addition, it provides an abstraction layer across multiple hypervisor implementations.

Isolated Virtual Machines

Isolated virtual machines are invisible to Android i.e. any process running in Android cannot inspect, see, tamper with the content of such a virtual machine. This guarantee is provided by the hypervisor.

Virtual Machines

Virtual machines are the same as isolated VMs, except they are accessible to Android processes with the right permissions and privilege.

Microdroid

Microdroid is a trimmed down Android OS package that is created to serve as a template for starting a virtual machine (VM). It provides developers with a familiar environment to build and run their workloads in a VM. Microdroid uses familiar Android tools and libraries, such as Bionic, Binder IPC and keystore support.

Virtualization Service

VirtualizationService manages all guest VMs, isolated or otherwise. It does so, primarily by managing instances of crosvm. It also exposes an AIDL API, which system services or privileged apps can use to start, monitor, and stop VMs.

RpcBinder

RpcBinder is an all-new backend developed for the Android Interface Definition Language (AIDL). RpcBinder enables communication to and from virtual machines using the existing binder wire protocol. This means:

  1. Developers can write interfaces to virtual machines using the language and infrastructure they are already familiar with - AIDL.
  2. Simply continue using existing AIDL interfaces even if the binder endpoint moves into a virtual machine.

What’s new in Android 14?

Android 14, not only makes AVF available on more devices, it also provides a new toolkit to enable building more with AVF and its components:

    • Android System API for AVF 
Privileged applications can now use VMs for executing their critical workload needing isolation; 

    • Hypervisor DevEx toolkit 
Added tracing capability, improved debuggability and monitoring capabilities to provide insights and assist platform developers in developing inside Isolated VMs; 

    • Hypervisor Vendor Modules 
With vendor module extensions, our partners can customize Google’s hypervisor (pKVM) to meet their specific need and differentiate themselves; 

    • System Health Improvements 
With Android 14, a microdroid based VM boots 2 times faster compared to Android 13 while using half the memory.

The rest of the AVF framework makes virtualization easy to use by Android services and apps. For example by abstracting inter-VM communication using AIDL as a transport layer, managing the VM lifecycle or how VMs are created.

Where can you start?

The AVF is only for developers of privileged applications and platform developers. TheAndroid Virtualization Framework overview provides a high level guidance on the detailed components of AVF. If you’re an Android Platform developer, try creating a Virtual Machine today and contact us at android-kvm if you have any questions.

A new quantum algorithm for classical mechanics with an exponential speedup

Quantum computers promise to solve some problems exponentially faster than classical computers, but there are only a handful of examples with such a dramatic speedup, such as Shor’s factoring algorithm and quantum simulation. Of those few examples, the majority of them involve simulating physical systems that are inherently quantum mechanical — a natural application for quantum computers. But what about simulating systems that are not inherently quantum? Can quantum computers offer an exponential advantage for this?

In “Exponential quantum speedup in simulating coupled classical oscillators”, published in Physical Review X (PRX) and presented at the Symposium on Foundations of Computer Science (FOCS 2023), we report on the discovery of a new quantum algorithm that offers an exponential advantage for simulating coupled classical harmonic oscillators. These are some of the most fundamental, ubiquitous systems in nature and can describe the physics of countless natural systems, from electrical circuits to molecular vibrations to the mechanics of bridges. In collaboration with Dominic Berry of Macquarie University and Nathan Wiebe of the University of Toronto, we found a mapping that can transform any system involving coupled oscillators into a problem describing the time evolution of a quantum system. Given certain constraints, this problem can be solved with a quantum computer exponentially faster than it can with a classical computer. Further, we use this mapping to prove that any problem efficiently solvable by a quantum algorithm can be recast as a problem involving a network of coupled oscillators, albeit exponentially many of them. In addition to unlocking previously unknown applications of quantum computers, this result provides a new method of designing new quantum algorithms by reasoning purely about classical systems.


Simulating coupled oscillators

The systems we consider consist of classical harmonic oscillators. An example of a single harmonic oscillator is a mass (such as a ball) attached to a spring. If you displace the mass from its rest position, then the spring will induce a restoring force, pushing or pulling the mass in the opposite direction. This restoring force causes the mass to oscillate back and forth.

A simple example of a harmonic oscillator is a mass connected to a wall by a spring. [Image Source: Wikimedia]

Now consider coupled harmonic oscillators, where multiple masses are attached to one another through springs. Displace one mass, and it will induce a wave of oscillations to pulse through the system. As one might expect, simulating the oscillations of a large number of masses on a classical computer gets increasingly difficult.

An example system of masses connected by springs that can be simulated with the quantum algorithm.

To enable the simulation of a large number of coupled harmonic oscillators, we came up with a mapping that encodes the positions and velocities of all masses and springs into the quantum wavefunction of a system of qubits. Since the number of parameters describing the wavefunction of a system of qubits grows exponentially with the number of qubits, we can encode the information of N balls into a quantum mechanical system of only about log(N) qubits. As long as there is a compact description of the system (i.e., the properties of the masses and the springs), we can evolve the wavefunction to learn coordinates of the balls and springs at a later time with far fewer resources than if we had used a naïve classical approach to simulate the balls and springs.

We showed that a certain class of coupled-classical oscillator systems can be efficiently simulated on a quantum computer. But this alone does not rule out the possibility that there exists some as-yet-unknown clever classical algorithm that is similarly efficient in its use of resources. To show that our quantum algorithm achieves an exponential speedup over any possible classical algorithm, we provide two additional pieces of evidence.


The glued-trees problem and the quantum oracle

For the first piece of evidence, we use our mapping to show that the quantum algorithm can efficiently solve a famous problem about graphs known to be difficult to solve classically, called the glued-trees problem. The problem takes two branching trees — a graph whose nodes each branch to two more nodes, resembling the branching paths of a tree — and glues their branches together through a random set of edges, as shown in the figure below.

A visual representation of the glued trees problem. Here we start at the node labeled ENTRANCE and are allowed to locally explore the graph, which is obtained by randomly gluing together two binary trees. The goal is to find the node labeled EXIT.

The goal of the glued-trees problem is to find the exit node — the “root” of the second tree — as efficiently as possible. But the exact configuration of the nodes and edges of the glued trees are initially hidden from us. To learn about the system, we must query an oracle, which can answer specific questions about the setup. This oracle allows us to explore the trees, but only locally. Decades ago, it was shown that the number of queries required to find the exit node on a classical computer is proportional to a polynomial factor of N, the total number of nodes.

But recasting this as a problem with balls and springs, we can imagine each node as a ball and each connection between two nodes as a spring. Pluck the entrance node (the root of the first tree), and the oscillations will pulse through the trees. It only takes a time that scales with the depth of the tree — which is exponentially smaller than N — to reach the exit node. So, by mapping the glued-trees ball-and-spring system to a quantum system and evolving it for that time, we can detect the vibrations of the exit node and determine it exponentially faster than we could using a classical computer.


BQP-completeness

The second and strongest piece of evidence that our algorithm is exponentially more efficient than any possible classical algorithm is revealed by examination of the set of problems a quantum computer can solve efficiently (i.e., solvable in polynomial time), referred to as bounded-error quantum polynomial time or BQP. The hardest problems in BQP are called “BQP-complete”.

While it is generally accepted that there exist some problems that a quantum algorithm can solve efficiently and a classical algorithm cannot, this has not yet been proven. So, the best evidence we can provide is that our problem is BQP-complete, that is, it is among the hardest problems in BQP. If someone were to find an efficient classical algorithm for solving our problem, then every problem solved by a quantum computer efficiently would be classically solvable! Not even the factoring problem (finding the prime factors of a given large number), which forms the basis of modern encryption and was famously solved by Shor’s algorithm, is expected to be BQP-complete.

A diagram showing the believed relationships of the classes BPP and BQP, which are the set of problems that can be efficiently solved on a classical computer and quantum computer, respectively. BQP-complete problems are the hardest problems in BQP.

To show that our problem of simulating balls and springs is indeed BQP-complete, we start with a standard BQP-complete problem of simulating universal quantum circuits, and show that every quantum circuit can be expressed as a system of many balls coupled with springs. Therefore, our problem is also BQP-complete.


Implications and future work

This effort also sheds light on work from 2002, when theoretical computer scientist Lov K. Grover and his colleague, Anirvan M. Sengupta, used an analogy to coupled pendulums to illustrate how Grover’s famous quantum search algorithm could find the correct element in an unsorted database quadratically faster than could be done classically. With the proper setup and initial conditions, it would be possible to tell whether one of N pendulums was different from the others — the analogue of finding the correct element in a database — after the system had evolved for time that was only ~√(N). While this hints at a connection between certain classical oscillating systems and quantum algorithms, it falls short of explaining why Grover’s quantum algorithm achieves a quantum advantage.

Our results make that connection precise. We showed that the dynamics of any classical system of harmonic oscillators can indeed be equivalently understood as the dynamics of a corresponding quantum system of exponentially smaller size. In this way we can simulate Grover and Sengupta’s system of pendulums on a quantum computer of log(N) qubits, and find a different quantum algorithm that can find the correct element in time ~√(N). The analogy we discovered between classical and quantum systems can be used to construct other quantum algorithms offering exponential speedups, where the reason for the speedups is now more evident from the way that classical waves propagate.

Our work also reveals that every quantum algorithm can be equivalently understood as the propagation of a classical wave in a system of coupled oscillators. This would imply that, for example, we can in principle build a classical system that solves the factoring problem after it has evolved for time that is exponentially smaller than the runtime of any known classical algorithm that solves factoring. This may look like an efficient classical algorithm for factoring, but the catch is that the number of oscillators is exponentially large, making it an impractical way to solve factoring.

Coupled harmonic oscillators are ubiquitous in nature, describing a broad range of systems from electrical circuits to chains of molecules to structures such as bridges. While our work here focuses on the fundamental complexity of this broad class of problems, we expect that it will guide us in searching for real-world examples of harmonic oscillator problems in which a quantum computer could offer an exponential advantage.


Acknowledgements

We would like to thank our Quantum Computing Science Communicator, Katie McCormick, for helping to write this blog post.

Source: Google AI Blog


Chrome Beta for Desktop Update

The Beta channel has been updated to 120.0.6099.62 for Windows, Mac and Linux.

A partial list of changes is available in the Git log. Interested in switching release channels? Find out how. If you find a new issue, please let us know by filing a bug. The community help forum is also a great place to reach out for help or learn about common issues.

Srinivas Sista
Google Chrome

Summary report optimization in the Privacy Sandbox Attribution Reporting API

In recent years, the Privacy Sandbox initiative was launched to explore responsible ways for advertisers to measure the effectiveness of their campaigns, by aiming to deprecate third-party cookies (subject to resolving any competition concerns with the UK’s Competition and Markets Authority). Cookies are small pieces of data containing user preferences that websites store on a user’s device; they can be used to provide a better browsing experience (e.g., allowing users to automatically sign in) and to serve relevant content or ads. The Privacy Sandbox attempts to address concerns around the use of cookies for tracking browsing data across the web by providing a privacy-preserving alternative.

Many browsers use differential privacy (DP) to provide privacy-preserving APIs, such as the Attribution Reporting API (ARA), that don’t rely on cookies for ad conversion measurement. ARA encrypts individual user actions and collects them in an aggregated summary report, which estimates measurement goals like the number and value of conversions (useful actions on a website, such as making a purchase or signing up for a mailing list) attributed to ad campaigns.

The task of configuring API parameters, e.g., allocating a contribution budget across different conversions, is important for maximizing the utility of the summary reports. In “Summary Report Optimization in the Privacy Sandbox Attribution Reporting API”, we introduce a formal mathematical framework for modeling summary reports. Then, we formulate the problem of maximizing the utility of summary reports as an optimization problem to obtain the optimal ARA parameters. Finally, we evaluate the method using real and synthetic datasets, and demonstrate significantly improved utility compared to baseline non-optimized summary reports.


ARA summary reports

We use the following example to illustrate our notation. Imagine a fictional gift shop called Du & Penc that uses digital advertising to reach its customers. The table below captures their holiday sales, where each record contains impression features with (i) an impression ID, (ii) the campaign, and (iii) the city in which the ad was shown, as well as conversion features with (i) the number of items purchased and (ii) the total dollar value of those items.

Impression and conversion feature logs for Du & Penc.


Mathematical model

ARA summary reports can be modeled by four algorithms: (1) Contribution Vector, (2) Contribution Bounding, (3) Summary Reports, and (4) Reconstruct Values. Contribution Bounding and Summary Reports are performed by the ARA, while Contribution Vector and Reconstruct Values are performed by an AdTech provider — tools and systems that enable businesses to buy and sell digital advertising. The objective of this work is to assist AdTechs in optimizing summary report algorithms.

The Contribution Vector algorithm converts measurements into an ARA format that is discretized and scaled. Scaling needs to account for the overall contribution limit per impression. Here we propose a method that clips and performs randomized rounding. The outcome of the algorithm is a histogram of aggregatable keys and values.

Next, the Contribution Bounding algorithm runs on client devices and enforces the contribution bound on attributed reports where any further contributions exceeding the limit are dropped. The output is a histogram of attributed conversions.

The Summary Reports algorithm runs on the server side inside a trusted execution environment and returns noisy aggregate results that satisfy DP. Noise is sampled from the discrete Laplace distribution, and to enforce privacy budgeting, a report may be queried only once.

Finally, the Reconstruct Values algorithm converts measurements back to the original scale. Reconstruct Values and Contribution Vector Algorithms are designed by the AdTech, and both impact the utility received from the summary report.

Illustrative usage of ARA summary reports, which include Contribution Vector (Algorithm A), Contribution Bounding (Algorithm C), Summary Reports (Algorithm S), and Reconstruct Values (Algorithm R). Algorithms C and S are fixed in the API. The AdTech designs A and R.


Error metrics

There are several factors to consider when selecting an error metric for evaluating the quality of an approximation. To choose a particular metric, we considered the desirable properties of an error metric that further can be used as an objective function. Considering desired properties, we have chosen 𝜏-truncated root mean square relative error (RMSRE𝜏) as our error metric for its properties. See the paper for a detailed discussion and comparison to other possible metrics.


Optimization

To optimize utility as measured by RMSRE𝜏, we choose a capping parameter, C, and privacy budget, 𝛼, for each slice. The combination of both determines how an actual measurement (such as two conversions with a total value of $3) is encoded on the AdTech side and then passed to the ARA for Contribution Bounding algorithm processing. RMSRE𝜏 can be computed exactly, since it can be expressed in terms of the bias from clipping and the variance of the noise distribution. Following those steps we find out that RMSRE𝜏 for a fixed privacy budget, 𝛼, or a capping parameter, C, is convex (so the error-minimizing value for the other parameter can be obtained efficiently), while for joint variables (C, 𝛼) it becomes non-convex (so we may not always be able to select the best possible parameters). In any case, any off-the-shelf optimizer can be used to select privacy budgets and capping parameters. In our experiments, we use the SLSQP minimizer from the scipy.optimize library.


Synthetic data

Different ARA configurations can be evaluated empirically by testing them on a conversion dataset. However, access to such data can be restricted or slow due to privacy concerns, or simply unavailable. One way to address these limitations is to use synthetic data that replicates the characteristics of real data.

We present a method for generating synthetic data responsibly through statistical modeling of real-world conversion datasets. We first perform an empirical analysis of real conversion datasets to uncover relevant characteristics for ARA. We then design a pipeline that uses this distribution knowledge to create a realistic synthetic dataset that can be customized via input parameters.

The pipeline first generates impressions drawn from a power-law distribution (step 1), then for each impression it generates conversions drawn from a Poisson distribution (step 2) and finally, for each conversion, it generates conversion values drawn from a log-normal distribution (step 3). With dataset-dependent parameters, we find that these distributions closely match ad-dataset characteristics. Thus, one can learn parameters from historical or public datasets and generate synthetic datasets for experimentation.

Overall dataset generation steps with features for illustration.


Experimental evaluation

We evaluate our algorithms on three real-world datasets (Criteo, AdTech Real Estate, and AdTech Travel) and three synthetic datasets. Criteo consists of 15M clicks, Real Estate consists of 100K conversions, and Travel consists of 30K conversions. Each dataset is partitioned into a training set and a test set. The training set is used to choose contribution budgets, clipping threshold parameters, and the conversion count limit (the real-world datasets have only one conversion per click), and the error is evaluated on the test set. Each dataset is partitioned into slices using impression features. For real-world datasets, we consider three queries for each slice; for synthetic datasets, we consider two queries for each slice.

For each query we choose the RMSRE𝝉 𝜏 value to be five times the median value of the query on the training dataset. This ensures invariance of the error metric to data rescaling, and allows us to combine the errors from features of different scales by using 𝝉 per each feature.

Scatter plots of real-world datasets illustrating the probability of observing a conversion value. The fitted curves represent best log-normal distribution models that effectively capture the underlying patterns in the data.


Results

We compare our optimization-based algorithm to a simple baseline approach. For each query, the baseline uses an equal contribution budget and a fixed quantile of the training data to choose the clipping threshold. Our algorithms produce substantially lower error than baselines on both real-world and synthetic datasets. Our optimization-based approach adapts to the privacy budget and data.

RMSREτ for privacy budgets {1, 2, 4, 8, 16, 32, 64} for our algorithms and baselines on three real-world and three synthetic datasets. Our optimization-based approach consistently achieves lower error than baselines that use a fixed quantile for the clipping threshold and split the contribution budget equally among the queries.


Conclusion

We study the optimization of summary reports in the ARA, which is currently deployed on hundreds of millions of Chrome browsers. We present a rigorous formulation of the contribution budgeting optimization problem for ARA with the goal of equipping researchers with a robust abstraction that facilitates practical improvements.

Our recipe, which leverages historical data to bound and scale the contributions of future data under differential privacy, is quite general and applicable to settings beyond advertising. One approach based on this work is to use past data to learn the parameters of the data distribution, and then to apply synthetic data derived from this distribution for privacy budgeting for queries on future data. Please see the paper and accompanying code for detailed algorithms and proofs.


Acknowledgements

This work was done in collaboration with Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Avinash Varadarajan. We thank Akash Nadan for his help.

Source: Google AI Blog


Video mode now only show pages where video is the main content

Earlier this year, we made a change to only show video thumbnails next to results on the main Google Search results page when the video is the main content of a page. Today, we're extending this change to search results in Video mode to better connect users with the video content they're looking for (rather than having to comb through a page to find that video). This change will start rolling out today, and it could take up to a week to complete.

Google Workspace Updates Weekly Recap – December 1, 2023

3 New updates

Unless otherwise indicated, the features below are available to all Google Workspace customers, and are fully launched or in the process of rolling out. Rollouts should take no more than 15 business days to complete if launching to both Rapid and Scheduled Release at the same time. If not, each stage of rollout should take no more than 15 business days to complete.


New ways to use the Google Sheets app on iOS devices 
You can now copy charts from the Google Sheets app on all iOS devices and paste them externally as images or within the same spreadsheet as a duplicate chart. In addition, you can modify text formatting using the contextual toolbar in Sheets when a keyboard is attached to iOS tablets. | Rolling out to Rapid Release and Scheduled Release domains now. | Available to all Google Workspace customers and users with personal Google Accounts. | Learn more about adding & editing a chart or graph and editing & formatting a spreadsheet
New ways to use the Google Sheets app on iOS devices



Adding ‘Admin managed apps’ category to Google Workspace Marketplace
We’re excited to announce a new featured app category in the Marketplace: Admin managed. These Enterprise apps can be installed only by a Google Workspace administrator for their organization. | Available now to all Google Workspace customers. | Learn more about Featured app categories


Bulk select in Gmail on Android and iOS devices 
We’re introducing a feature that enables you to bulk select a batch of messages in the email threadlist with one tap using the Gmail app on Android and iOS devices. After clicking the select all icon, a batch of messages will be selected, enabling you to easily perform email actions such as deleting multiple messages or marking them as “read”. | This feature is available now on Android devices and is rolling out now to Rapid Release and Scheduled Release domains on iOS devices. | Available to all Google Workspace customers and users with personal Google Accounts. 
Bulk select in Gmail on Android and iOS devices



Previous announcements

The announcements below were published on the Workspace Updates blog earlier this week. Please refer to the original blog posts for complete details.



Create shareable video presentations in Google Slides 
We’re introducing slides recordings, a new Google Slides feature that lets you easily record yourself presenting, and then share the presentation with others to view when it works for them. | Available to Google Workspace Business Standard, Business Plus, Enterprise Starter, Enterprise Essentials, Enterprise Essentials Plus, Enterprise Standard, Enterprise Plus and Education Plus only. | Learn more about slides recordings. 

The next evolution of automated data entry in Google Sheets 
Enhanced Smart Fill in Google Sheets is available for customers with the Duet AI for Google Workspace Enterprise add-on. | Learn more about enhanced smart fill

Expanding message bubbles in Google Chat to iOS devices 
In September, we introduced message bubbles in Google Chat on web and Android, enabling users to more easily differentiate incoming versus outgoing messages in the Chat message stream. This week, we’re excited to announce the expansion of message bubbles to iOS devices. | Learn more about message bubbles

Updates to the Google Drive scanner on Android & iOS devices 
We’re introducing additional enhancements to the Drive scanner on Android devices, which now powers the Google Pixel camera and includes improvements to the scanner experience when capturing content. We’re also expanding the Google Drive scanner and title suggestion feature to iOS devices. | Learn more about Drive scanner. 

Introducing a new homepage view in Google Drive 
We’ve added a new streamlined homepage for Drive called Home that makes it easier and faster for you to find files that matter most. | Learn more about Drive home

Introducing a new mobile experience for Google Chat 
We recently announced a streamlined user experience in Google Chat to help you find what you need much faster, including new features like home and mentions. Starting today, we’re excited to introduce a new bottom navigation bar within the Chat app on Android & iOS devices to help you easily access these features on mobile. | Learn more about the Chat mobile experience

Google Vault now supports Google Calendar 
Google Vault now supports Calendar, which means customers can take new actions around Calendar data. | Available to Google Workspace Business Plus, Enterprise Essentials, Enterprise Essentials Plus, Enterprise Standard, Enterprise Plus, Education Standard, Education Plus customers or customers with the Vault add-on license only. | Learn more about Vault supporting Calendar

More insights to help admins troubleshoot Google Meet hardware issues 
In 2022, we introduced several improvements for managing Google Meet hardware devices. These improvements included surfacing additional information about device issues, such as a description of the issue, when the issue was detected, and more. Now, we’re taking these improvements one step further by providing admins with even more data points. | Learn more about Google Meet hardware issues

Monitor insider risk of Google Workspace data with Chronicle 
Admins can now more seamlessly integrate their Google Workspace data with Chronicle (Google’s cloud-native Security Operations platform), to quickly detect, investigate and take action on risky activity and threats. | Available to Google Workspace Enterprise Standard and Enterprise Plus customers only. | Learn more about Chronicle

Google Classroom now supports roster import from SIS partners
Educators can now easily import students from their student information system (SIS) to Google Classroom using OneRoster. This integration saves educators time and helps make class setup much quicker. | Available to Education Plus and the Teaching and Learning Upgrade only. | Learn more about roster import. 

Completed rollouts

The features below completed their rollouts to Rapid Release domains, Scheduled Release domains, or both. Please refer to the original blog posts for additional details.


Rapid Release Domains: 
Scheduled Release Domains: 
Rapid and Scheduled Release Domains: 


For a recap of announcements in the past six months, check out What’s new in Google Workspace (recent releases).