Tag Archives: Computer Vision

Announcing AVA: A Finely Labeled Video Dataset for Human Action Understanding



Teaching machines to understand human actions in videos is a fundamental research problem in Computer Vision, essential to applications such as personal video search and discovery, sports analysis, and gesture interfaces. Despite exciting breakthroughs made over the past years in classifying and finding objects in images, recognizing human actions still remains a big challenge. This is due to the fact that actions are, by nature, less well-defined than objects in videos, making it difficult to construct a finely labeled action video dataset. And while many benchmarking datasets, e.g., UCF101, ActivityNet and DeepMind’s Kinetics, adopt the labeling scheme of image classification and assign one label to each video or video clip in the dataset, no dataset exists for complex scenes containing multiple people who could be performing different actions.

In order to facilitate further research into human action recognition, we have released AVA, coined from “atomic visual actions”, a new dataset that provides multiple action labels for each person in extended video sequences. AVA consists of URLs for publicly available videos from YouTube, annotated with a set of 80 atomic actions (e.g. “walk”, “kick (an object)”, “shake hands”) that are spatial-temporally localized, resulting in 57.6k video segments, 96k labeled humans performing actions, and a total of 210k action labels. You can browse the website to explore the dataset and download annotations, and read our arXiv paper that describes the design and development of the dataset.

Compared with other action datasets, AVA possesses the following key characteristics:
  • Person-centric annotation. Each action label is associated with a person rather than a video or clip. Hence, we are able to assign different labels to multiple people performing different actions in the same scene, which is quite common.
  • Atomic visual actions. We limit our action labels to fine temporal scales (3 seconds), where actions are physical in nature and have clear visual signatures.
  • Realistic video material. We use movies as the source of AVA, drawing from a variety of genres and countries of origin. As a result, a wide range of human behaviors appear in the data.
Examples of 3-second video segments (from Video Source) with their bounding box annotations in the middle frame of each segment. (For clarity, only one bounding box is shown for each example.)

To create AVA, we first collected a diverse set of long form content from YouTube, focusing on the “film” and “television” categories, featuring professional actors of many different nationalities. We analyzed a 15 minute clip from each video, and uniformly partitioned it into 300 non-overlapping 3-second segments. The sampling strategy preserved sequences of actions in a coherent temporal context.

Next, we manually labeled all bounding boxes of persons in the middle frame of each 3-second segment. For each person in the bounding box, annotators selected a variable number of labels from a pre-defined atomic action vocabulary (with 80 classes) that describe the person’s actions within the segment. These actions were divided into three groups: pose/movement actions, person-object interactions, and person-person interactions. Because we exhaustively labeled all people performing all actions, the frequencies of AVA’s labels followed a long-tail distribution, as summarized below.
Distribution of AVA’s atomic action labels. Labels displayed in the x-axis are only a partial set of our vocabulary.

The unique design of AVA allows us to derive some interesting statistics that are not available in other existing datasets. For example, given the large number of persons with at least two labels, we can measure the co-occurrence patterns of action labels. The figure below shows the top co-occurring action pairs in AVA with their co-occurrence scores. We confirm expected patterns such as people frequently play instruments while singing, lift a person while playing with kids, and hug while kissing.
Top co-occurring action pairs in AVA.

To evaluate the effectiveness of human action recognition systems on the AVA dataset, we implemented an existing baseline deep learning model that obtains highly competitive performance on the much smaller JHMDB dataset. Due to challenging variations in zoom, background clutter, cinematography, and appearance variation, this model achieves a relatively modest performance when correctly identifying actions on AVA (18.4% mAP). This suggests that AVA will be a useful testbed for developing and evaluating new action recognition architectures and algorithms for years to come.

We hope that the release of AVA will help improve the development of human action recognition systems, and provide opportunities to model complex activities based on labels with fine spatio-temporal granularity at the level of individual person’s actions. We will continue to expand and improve AVA, and are eager to hear feedback from the community to help us guide future directions. Please join the AVA users mailing list to receive dataset updates as well as to send us emails for feedback.

Acknowledgements
The core team behind AVA includes Chunhui Gu, Chen Sun, David Ross, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik. We thank many Google colleagues and annotators for their dedicated support on this project.

Making Visible Watermarks More Effective



Whether you are a photographer, a marketing manager, or a regular Internet user, chances are you have encountered visible watermarks many times. Visible watermarks are those logos and patterns that are often overlaid on digital images provided by stock photography websites, marking the image owners while allowing viewers to perceive the underlying content so that they could license the images that fit their needs. It is the most common mechanism for protecting the copyrights of hundreds of millions of photographs and stock images that are offered online daily.

It’s standard practice to use watermarks on the assumption that they prevent consumers from accessing the clean images, ensuring there will be no unauthorized or unlicensed use. However, in “On The Effectiveness Of Visible Watermarks” recently presented at the 2017 Computer Vision and Pattern Recognition Conference (CVPR 2017), we show that a computer algorithm can get past this protection and remove watermarks automatically, giving users unobstructed access to the clean images the watermarks are intended to protect.
Left: example watermarked images from popular stock photography websites. Right: watermark-free version of the images on the left, produced automatically by a computer algorithm. More results are available below and on our project page. Image sources: Adobe Stock, 123RF.
As often done with vulnerabilities discovered in operating systems, applications or protocols, we want to disclose this vulnerability and propose solutions in order to help the photography and stock image communities adapt and better protect its copyrighted content and creations. From our experiments much of the world’s stock imagery is currently susceptible to this circumvention. As such, in our paper we also propose ways to make visible watermarks more robust to such manipulations.
The Vulnerability of Visible Watermarks
Visible watermarks are often designed to contain complex structures such as thin lines and shadows in order to make them harder to remove. Indeed, given a single image, for a computer to detect automatically which visual structures belong to the watermark and which structures belong to the underlying image is extremely difficult. Manually, the task of removing a watermark from an image is tedious, and even with state-of-the-art editing tools it may take a Photoshop expert several minutes to remove a watermark from one image.

However, a fact that has been overlooked so far is that watermarks are typically added in a consistent manner to many images. We show that this consistency can be used to invert the watermarking process — that is, estimate the watermark image and its opacity, and recover the original, watermark-free image underneath. This can be all be done automatically, without any user intervention, and by only observing watermarked image collections publicly available online.
The consistency of a watermark over many images allows to automatically remove it in mass scale. Left: input collection marked by the same watermark, middle: computed watermark and its opacity, right: recovered, watermark-free images. Image sources: COCO dataset, Copyright logo.
The first step of this process is identifying which image structures are repeating in the collection. If a similar watermark is embedded in many images, the watermark becomes the signal in the collection and the images become the noise, and simple image operations can be used to pull out a rough estimation of the watermark pattern.
Watermark extraction with increasing number of images. Left: watermarked input images, Middle: median intensities over the input images (up to the input image shown), Right: the corresponding estimated (matted) watermark. All images licensed from 123RF.
This provides a rough (noisy) estimate of the matted watermark (the watermark image times its spatially varying opacity, i.e., alpha matte). To actually recover the image underneath the watermark, we need to know the watermark’s decomposition into its image and alpha matte components. For this, a multi-image optimization problem can be formed, which we call “multi-image matting” (an extension of the traditional, single image matting problem), where the watermark (“foreground”) is separated into its image and opacity components while reconstructing a subset of clean (“background”) images. This optimization is able to produce very accurate estimations of the watermark components already from hundreds of images, and can deal with most watermarks used in practice, including ones containing thin structures, shadows or color gradients (as long as the watermarks are semi-transparent). Once the watermark pattern is recovered, it can be efficiently removed from any image marked by it.

Here are some more results, showing the estimated watermarks and example watermark-free results generated for several popular stock image services. We show many more results in our supplementary material on the project page.
Left column: Watermark estimated automatically from watermarked images online (rendered on a gray background). Middle colum: Input watermarked image. Right column: Automatically removed watermark. Image sources: Adobe Stock, Can Stock Photo, 123RF,  Fotolia.
Making Watermarks More Effective
The vulnerability of current watermarking techniques lies in the consistency in watermarks across image collections. Therefore, to counter it, we need to introduce inconsistencies when embedding the watermark in each image. In our paper we looked at several types of inconsistencies and how they affect the techniques described above. We found for example that simply changing the watermark’s position randomly per image does not prevent removing the watermark, nor do small random changes in the watermark’s opacity. But we found that introducing random geometric perturbations to the watermark — warping it when embedding it in each image — improves its robustness. Interestingly, very subtle warping is already enough to generate watermarks that this technique cannot fully defeat.
Flipping between the original watermark and a slightly, randomly warped watermark that can improve its robustness
This warping produces a watermarked image that is very similar to the original (top right in the following figure), yet now if an attempt is made to remove it, it leaves very visible artifacts (bottom right):
In a nutshell, the reason this works is because that removing the randomly-warped watermark from any single image requires to additionally estimate the warp field that was applied to the watermark for that image — a task that is inherently more difficult. Therefore, even if the watermark pattern can be estimated in the presence of these random perturbations (which by itself is nontrivial), accurately removing it without any visible artifact is far more challenging.

Here are some more results on the images from above when using subtle, randomly warped versions of the watermarks. Notice again how visible artifacts remain when trying to remove the watermark in this case, compared to the accurate reconstructions that are achievable with current, consistent watermarks. More results and a detailed analysis can be found in our paper and project page.
Left column: Watermarked image, using subtle, random warping of the watermark. Right Column: Watermark removal result.
This subtle random warping is only one type of randomization that can introduced to make watermarks more effective. A nice feature of that solution is that it is simple to implement and already improves the robustness of the watermark to image-collection attacks while at the same time being mostly imperceptible. If more visible changes to the watermark across the images are acceptable — for example, introducing larger shifts in the watermark or incorporating other random elements in it — they may lead to an even better protection.

While we cannot guarantee that there will not be a way to break such randomized watermarking schemes in the future, we believe (and our experiments show) that randomization will make watermarked collection attacks fundamentally more difficult. We hope that these findings will be helpful for the photography and stock image communities.

Acknowledgements
The research described in this post was performed by Tali Dekel, Michael Rubinstein, Ce Liu and Bill Freeman. We thank Aaron Maschinot for narrating our video.

Google at CVPR 2017



From July 21-26, Honolulu, Hawaii hosts the 2017 Conference on Computer Vision and Pattern Recognition (CVPR 2017), the premier annual computer vision event comprising the main conference and several co-located workshops and tutorials. As a leader in computer vision research and a Platinum Sponsor, Google will have a strong presence at CVPR 2017 — over 250 Googlers will be in attendance to present papers and invited talks at the conference, and to organize and participate in multiple workshops.

If you are attending CVPR this year, please stop by our booth and chat with our researchers who are actively pursuing the next generation of intelligent systems that utilize the latest machine learning techniques applied to various areas of machine perception. Our researchers will also be available to talk about and demo several recent efforts, including the technology behind Headset Removal for Virtual and Mixed Reality, Image Compression with Neural Networks, Jump, TensorFlow Object Detection API and much more.

You can learn more about our research being presented at CVPR 2017 in the list below (Googlers highlighted in blue).

Organizing Committee
Corporate Relations Chair - Mei Han
Area Chairs include - Alexander Toshev, Ce Liu, Vittorio Ferrari, David Lowe

Papers
Training object class detectors with click supervision
Dim Papadopoulos, Jasper Uijlings, Frank Keller, Vittorio Ferrari

Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks
Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, Dilip Krishnan

BranchOut: Regularization for Online Ensemble Tracking With Convolutional Neural Networks Bohyung Han, Jack Sim, Hartwig Adam

Enhancing Video Summarization via Vision-Language Embedding
Bryan A. Plummer, Matthew Brown, Svetlana Lazebnik

Learning by Association — A Versatile Semi-Supervised Training Method for Neural Networks Philip Haeusser, Alexander Mordvintsev, Daniel Cremers

Context-Aware Captions From Context-Agnostic Supervision
Ramakrishna Vedantam, Samy Bengio, Kevin Murphy, Devi Parikh, Gal Chechik

Spatially Adaptive Computation Time for Residual Networks
Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan HuangDmitry Vetrov, Ruslan Salakhutdinov

Xception: Deep Learning With Depthwise Separable Convolutions
François Chollet

Deep Metric Learning via Facility Location
Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, Kevin Murphy

Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors
Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Kevin Murphy

Synthesizing Normalized Faces From Facial Identity Features
Forrester Cole, David Belanger, Dilip Krishnan, Aaron Sarna, Inbar Mosseri, William T. Freeman

Towards Accurate Multi-Person Pose Estimation in the Wild
George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tompson, Chris Bregler, Kevin Murphy

GuessWhat?! Visual Object Discovery Through Multi-Modal Dialogue
Harm de Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, Aaron Courville

Learning discriminative and transformation covariant local feature detectors
Xu Zhang, Felix X. Yu, Svebor Karaman, Shih-Fu Chang

Full Resolution Image Compression With Recurrent Neural Networks
George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, Michele Covell

Learning From Noisy Large-Scale Datasets With Minimal Supervision
Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, Serge Belongie

Unsupervised Learning of Depth and Ego-Motion From Video
Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

Cognitive Mapping and Planning for Visual Navigation
Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik

Fast Fourier Color Constancy
Jonathan T. Barron, Yun-Ta Tsai

On the Effectiveness of Visible Watermarks
Tali Dekel, Michael Rubinstein, Ce Liu, William T. Freeman

YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video
Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, Vincent Vanhoucke

Workshops
Deep Learning for Robotic Vision
Organizers include: Anelia Angelova, Kevin Murphy
Program Committee includes: George Papandreou, Nathan Silberman, Pierre Sermanet

The Fourth Workshop on Fine-Grained Visual Categorization
Organizers include: Yang Song
Advisory Panel includes: Hartwig Adam
Program Committee includes: Anelia Angelova, Yuning Chai, Nathan Frey, Jonathan Krause, Catherine Wah, Weijun Wang

Language and Vision Workshop
Organizers include: R. Sukthankar

The First Workshop on Negative Results in Computer Vision
Organizers include: R. Sukthankar, W. Freeman, J. Malik

Visual Understanding by Learning from Web Data
General Chairs include: Jesse Berent, Abhinav Gupta, Rahul Sukthankar
Program Chairs include: Wei Li

YouTube-8M Large-Scale Video Understanding Challenge
General Chairs: Paul Natsev, Rahul Sukthankar
Program Chairs: Joonseok Lee, George Toderici
Challenge Organizers: Sami Abu-El-Haija, Anja Hauth, Nisarg Kothari, Hanhan Li, Sobhan Naderi Parizi, Balakrishnan Varadarajan, Sudheendra Vijayanarasimhan, Jian Wang

An Update to Open Images – Now with Bounding-Boxes



Last year we introduced Open Images, a collaborative release of ~9 million images annotated with labels spanning over 6000 object categories, designed to be a useful dataset for machine learning research. The initial release featured image-level labels automatically produced by a computer vision model similar to Google Cloud Vision API, for all 9M images in the training set, and a validation set of 167K images with 1.2M human-verified image-level labels.

Today, we introduce an update to Open Images, which contains the addition of a total of ~2M bounding-boxes to the existing dataset, along with several million additional image-level labels. Details include:
  • 1.2M bounding-boxes around objects for 600 categories on the training set. These have been produced semi-automatically by an enhanced version of the technique outlined in [1], and are all human-verified.
  • Complete bounding-box annotation for all object instances of the 600 categories on the validation set, all manually drawn (830K boxes). The bounding-box annotations in the training and validations sets will enable research on object detection on this dataset. The 600 categories offer a broader range than those in the ILSVRC and COCO detection challenges, and include new objects such as fedora hat and snowman.
  • 4.3M human-verified image-level labels on the training set (over all categories). This will enable large-scale experiments on object classification, based on a clean training set with reliable labels.
Annotated images from the Open Images dataset. Left: FAMILY MAKING A SNOWMAN by mwvchamber. Right: STANZA STUDENTI.S.S. ANNUNZIATA by ersupalermo. Both images used under CC BY 2.0 license. See more examples here.
We hope that this update to Open Images will stimulate the broader research community to experiment with object classification and detection models, and facilitate the development and evaluation of new techniques.

References
[1] We don't need no bounding-boxes: Training object class detectors using only human verification, Papadopoulos, Uijlings, Keller, and Ferrari, CVPR 2016

Motion Stills — Now on Android



Last year, we launched Motion Stills, an iOS app that stabilizes your Live Photos and lets you view and share them as looping GIFs and videos. Since then, Motion Stills has been well received, being listed as one of the top apps of 2016 by The Verge and Mashable. However, from its initial release, the community has been asking us to also make Motion Stills available for Android. We listened to your feedback and today, we're excited to announce that we’re bringing this technology, and more, to devices running Android 5.1 and later!
Motion Stills on Android: Instant stabilization on your device.
With Motion Stills on Android we built a new recording experience where everything you capture is instantly transformed into delightful short clips that are easy to watch and share. You can capture a short Motion Still with a single tap like a photo, or condense a longer recording into a new feature we call Fast Forward. In addition to stabilizing your recordings, Motion Stills on Android comes with an improved trimming algorithm that guards against pocket shots and accidental camera shakes. All of this is done during capture on your Android device, no internet connection required!

New streaming pipeline
For this release, we redesigned our existing iOS video processing pipeline to use a streaming approach that processes each frame of a video as it is being recorded. By computing intermediate motion metadata, we are able to immediately stabilize the recording while still performing loop optimization over the full sequence. All this leads to instant results after recording — no waiting required to share your new GIF.
Capture using our streaming pipeline gives you instant results.
In order to display your Motion Stills stream immediately, our algorithm computes and stores the necessary stabilizing transformation as a low resolution texture map. We leverage this texture to apply the stabilization transform using the GPU in real-time during playback, instead of writing a new, stabilized video that would tax your mobile hardware and battery.

Fast Forward
Fast Forward allows you to speed up and condense a longer recording into a short, easy to share clip. The same pipeline described above allows Fast Forward to process up to a full minute of video, right on your phone. You can even change the speed of playback (from 1x to 8x) after recording. To make this possible, we encode videos with a denser I-frame spacing to enable efficient seeking and playback. We also employ additional optimizations in the Fast Forward mode. For instance, we apply adaptive temporal downsampling in the linear solver and long-range stabilization for smooth results over the whole sequence.
Fast Forward condenses your recordings into easy to share clips.
Try out Motion Stills
Motion Stills is an app for us to experiment and iterate quickly with short-form video technology, gathering valuable feedback along the way. The tools our users find most fun and useful may be integrated later on into existing products like Google Photos. Download Motion Stills for Android from the Google Play store—available for mobile phones running Android 5.1 and later—and share your favorite clips on social media with hashtag #motionstills.

Acknowledgements
Motion Stills would not have been possible without the help of many Googlers. We want to especially acknowledge the work of Matthias Grundmann in advancing our stabilization technology, as well as our UX and interaction designers Jacob Zukerman, Ashley Ma and Mark Bowers.

Revisiting the Unreasonable Effectiveness of Data



There has been remarkable success in the field of computer vision over the past decade, much of which can be directly attributed to the application of deep learning models to this machine perception task. Furthermore, since 2012 there have been significant advances in representation capabilities of these systems due to (a) deeper models with high complexity, (b) increased computational power and (c) availability of large-scale labeled data. And while every year we get further increases in computational power and the model complexity (from 7-layer AlexNet to 101-layer ResNet), available datasets have not scaled accordingly. A 101-layer ResNet with significantly more capacity than AlexNet is still trained with the same 1M images from ImageNet circa 2011. As researchers, we have always wondered: if we scale up the amount of training data 10x, will the accuracy double? How about 100x or maybe even 300x? Will the accuracy plateau or will we continue to see increasing gains with more and more data?
While GPU computation power and model sizes have continued to increase over the last five years, the size of the largest training dataset has surprisingly remained constant.
In our paper, “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”, we take the first steps towards clearing the clouds of mystery surrounding the relationship between `enormous data' and deep learning. Our goal was to explore: (a) if visual representations can be still improved by feeding more and more images with noisy labels to currently existing algorithms; (b) the nature of the relationship between data and performance on standard vision tasks such as classification, object detection and image segmentation; (c) state-of-the-art models for all the tasks in computer vision using large-scale learning.

Of course, the elephant in the room is where can we obtain a dataset that is 300x larger than ImageNet? At Google, we have been continuously working on building such datasets automatically to improve computer vision algorithms. Specifically, we have built an internal dataset of 300M images that are labeled with 18291 categories, which we call JFT-300M. The images are labeled using an algorithm that uses complex mixture of raw web signals, connections between web-pages and user feedback. This results in over one billion labels for the 300M images (a single image can have multiple labels). Of the billion image labels, approximately 375M are selected via an algorithm that aims to maximize label precision of selected images. However, there is still considerable noise in the labels: approximately 20% of the labels for selected images are noisy. Since there is no exhaustive annotation, we have no way to estimate the recall of the labels.

Our experimental results validate some of the hypotheses but also generate some unexpected surprises:
  • Better Representation Learning Helps. Our first observation is that large-scale data helps in representation learning which in-turn improves the performance on each vision task we study. Our findings suggest that a collective effort to build a large-scale dataset for pretraining is important. It also suggests a bright future for unsupervised and semi-supervised representation learning approaches. It seems the scale of data continues to overpower noise in the label space.
  • Performance increases linearly with orders of magnitude of training data.  Perhaps the most surprising finding is the relationship between performance on vision tasks and the amount of training data (log-scale) used for representation learning. We find that this relationship is still linear! Even at 300M training images, we do not observe any plateauing effect for the tasks studied.
  • Object detection performance when pre-trained on different subsets of JFT-300M from scratch. x-axis is the dataset size in log-scale, y-axis is the detection performance in mAP@[.5,.95] on COCO-minival subset.
  • Capacity is Crucial. We also observe that to fully exploit 300M images, one needs higher capacity (deeper) models. For example, in case of ResNet-50 the gain on COCO object detection benchmark is much smaller (1.87%) compared to (3%) when using ResNet-152.
  • New state of the art results. Our paper presents new state-of-the-art results on several benchmarks using the models learned from JFT-300M. For example, a single model (without any bells and whistles) can now achieve 37.4 AP as compared to 34.3 AP on the COCO detection benchmark.
It is important to highlight that the training regime, learning schedules and parameters we used are based on our understanding of training ConvNets with 1M images from ImageNet. Since we do not search for the optimal set of hyper-parameters in this work (which would have required considerable computational effort), it is highly likely that these results are not the best ones you can obtain when using this scale of data. Therefore, we consider the quantitative performance reported to be an underestimate of the actual impact of data.

This work does not focus on task-specific data, such as exploring if more bounding boxes affects model performance. We believe that, although challenging, obtaining large scale task-specific data should be the focus of future study. Furthermore, building a dataset of 300M images should not be a final goal - as a community, we should explore if models continue to improve in the regime of even larger (1 billion+ image) datasets.

Core Contributors
Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta

Acknowledgments
This work would not have been possible without the significant efforts of the Image Understanding and Expander teams at Google who built the massive JFT dataset. We would specifically like to thank Tom Duerig, Neil Alldrin, Howard Zhou, Lu Chen, David Cai, Gal Chechik, Zheyun Feng, Xiangxin Zhu and Rahul Sukthankar for their help. Also big thanks to the VALE team for APIs and specifically, Jonathan Huang, George Papandreou, Liang-Chieh Chen and Kevin Murphy for helpful discussions.

Supercharge your Computer Vision models with the TensorFlow Object Detection API



(Cross-posted on the Google Open Source Blog)

At Google, we develop flexible state-of-the-art machine learning (ML) systems for computer vision that not only can be used to improve our products and services, but also spur progress in the research community. Creating accurate ML models capable of localizing and identifying multiple objects in a single image remains a core challenge in the field, and we invest a significant amount of time training and experimenting with these systems.
Detected objects in a sample image (from the COCO dataset) made by one of our models. Image credit: Michael Miley, original image.
Last October, our in-house object detection system achieved new state-of-the-art results, and placed first in the COCO detection challenge. Since then, this system has generated results for a number of research publications1,2,3,4,5,6,7 and has been put to work in Google products such as NestCam, the similar items and style ideas feature in Image Search and street number and name detection in Street View.

Today we are happy to make this system available to the broader research community via the TensorFlow Object Detection API. This codebase is an open-source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models. Our goals in designing this system was to support state-of-the-art models while allowing for rapid exploration and research. Our first release contains the following:
The SSD models that use MobileNet are lightweight, so that they can be comfortably run in real time on mobile devices. Our winning COCO submission in 2016 used an ensemble of the Faster RCNN models, which are are more computationally intensive but significantly more accurate. For more details on the performance of these models, see our CVPR 2017 paper.

Are you ready to get started?
We’ve certainly found this code to be useful for our computer vision needs, and we hope that you will as well. Contributions to the codebase are welcome and please stay tuned for our own further updates to the framework. To get started, download the code here and try detecting objects in some of your own images using the Jupyter notebook, or training your own pet detector on Cloud ML engine!

Acknowledgements
The release of the Tensorflow Object Detection API and the pre-trained model zoo has been the result of widespread collaboration among Google researchers with feedback and testing from product groups. In particular we want to highlight the contributions of the following individuals:

Core Contributors: Derek Chow, Chen Sun, Menglong Zhu, Matthew Tang, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Jasper Uijlings, Viacheslav Kovalevskyi, Kevin Murphy

Also special thanks to: Andrew Howard, Rahul Sukthankar, Vittorio Ferrari, Tom Duerig, Chuck Rosenberg, Hartwig Adam, Jing Jing Long, Victor Gomes, George Papandreou, Tyler Zhu

References
  1. Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al., CVPR 2017 (paper describing this framework)
  2. Towards Accurate Multi-person Pose Estimation in the Wild, Papandreou et al., CVPR 2017
  3. YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video, Real et al., CVPR 2017 (see also our blog post)
  4. Beyond Skip Connections: Top-Down Modulation for Object Detection, Shrivastava et al., arXiv preprint arXiv:1612.06851, 2016
  5. Spatially Adaptive Computation Time for Residual Networks, Figurnov et al., CVPR 2017
  6. AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, Gu et al., arXiv preprint arXiv:1705.08421, 2017
  7. MobileNets: Efficient convolutional neural networks for mobile vision applications, Howard et al., arXiv preprint arXiv:1704.04861, 2017

Supercharge your Computer Vision models with the TensorFlow Object Detection API

Crossposted on the Google Research Blog

At Google, we develop flexible state-of-the-art machine learning (ML) systems for computer vision that not only can be used to improve our products and services, but also spur progress in the research community. Creating accurate ML models capable of localizing and identifying multiple objects in a single image remains a core challenge in the field, and we invest a significant amount of time training and experimenting with these systems.
Detected objects in a sample image (from the COCO dataset) made by one of our models.
Image credit: Michael Miley, original image
Last October, our in-house object detection system achieved new state-of-the-art results, and placed first in the COCO detection challenge. Since then, this system has generated results for a number of research publications1,2,3,4,5,6,7 and has been put to work in Google products such as NestCam, the similar items and style ideas feature in Image Search and street number and name detection in Street View.

Today we are happy to make this system available to the broader research community via the TensorFlow Object Detection API. This codebase is an open source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models.  Our goals in designing this system was to support state-of-the-art models while allowing for rapid exploration and research.  Our first release contains the following:
The SSD models that use MobileNet are lightweight, so that they can be comfortably run in real time on mobile devices. Our winning COCO submission in 2016 used an ensemble of the Faster RCNN models, which are are more computationally intensive but significantly more accurate.  For more details on the performance of these models, see our CVPR 2017 paper.

Are you ready to get started?
We’ve certainly found this code to be useful for our computer vision needs, and we hope that you will as well.  Contributions to the codebase are welcome and please stay tuned for our own further updates to the framework. To get started, download the code here and try detecting objects in some of your own images using the Jupyter notebook, or training your own pet detector on Cloud ML engine!

By Jonathan Huang, Research Scientist and Vivek Rathod, Software Engineer

Acknowledgements
The release of the Tensorflow Object Detection API and the pre-trained model zoo has been the result of widespread collaboration among Google researchers with feedback and testing from product groups. In particular we want to highlight the contributions of the following individuals:

Core Contributors: Derek Chow, Chen Sun, Menglong Zhu, Matthew Tang, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Jasper Uijlings, Viacheslav Kovalevskyi, Kevin Murphy

Also special thanks to: Andrew Howard, Rahul Sukthankar, Vittorio Ferrari, Tom Duerig, Chuck Rosenberg, Hartwig Adam, Jing Jing Long, Victor Gomes, George Papandreou, Tyler Zhu

References
  1. Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al., CVPR 2017 (paper describing this framework)
  2. Towards Accurate Multi-person Pose Estimation in the Wild, Papandreou et al., CVPR 2017
  3. YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video, Real et al., CVPR 2017 (see also our blog post)
  4. Beyond Skip Connections: Top-Down Modulation for Object Detection, Shrivastava et al., arXiv preprint arXiv:1612.06851, 2016
  5. Spatially Adaptive Computation Time for Residual Networks, Figurnov et al., CVPR 2017
  6. AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, Gu et al., arXiv preprint arXiv:1705.08421, 2017
  7. MobileNets: Efficient convolutional neural networks for mobile vision applications, Howard et al., arXiv preprint arXiv:1704.04861, 2017

MobileNets: Open Source Models for Efficient On-Device Vision

Crossposted on the Google Research Blog

Deep learning has fueled tremendous progress in the field of computer vision in recent years, with neural networks repeatedly pushing the frontier of visual recognition technology. While many of those technologies such as object, landmark, logo and text recognition are provided for internet-connected devices through the Cloud Vision API, we believe that the ever-increasing computational power of mobile devices can enable the delivery of these technologies into the hands of our users, anytime, anywhere, regardless of internet connection. However, visual recognition for on device and embedded applications poses many challenges — models must run quickly with high accuracy in a resource-constrained environment making use of limited computation, power and space.

Today we are pleased to announce the release of MobileNets, a family of mobile-first computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application. MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used.
Example use cases include detection, fine-grain classification, attributes and geo-localization.
This release contains the model definition for MobileNets in TensorFlow using TF-Slim, as well as 16 pre-trained ImageNet classification checkpoints for use in mobile projects of all sizes. The models can be run efficiently on mobile devices with TensorFlow Mobile.
Model Checkpoint
Million MACs
Million Parameters
Top-1 Accuracy
Top-5 Accuracy
569
4.24
70.7
89.5
418
4.24
69.3
88.9
291
4.24
67.2
87.5
186
4.24
64.1
85.3
317
2.59
68.4
88.2
233
2.59
67.4
87.3
162
2.59
65.2
86.1
104
2.59
61.8
83.6
150
1.34
64.0
85.4
110
1.34
62.1
84.0
77
1.34
59.9
82.5
49
1.34
56.2
79.6
41
0.47
50.6
75.0
34
0.47
49.0
73.6
21
0.47
46.0
70.7
14
0.47
41.3
66.2
Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk is proportional to the number of parameters. The latency and power usage of the network scales with the number of Multiply-Accumulates (MACs) which measures the number of fused Multiplication and Addition operations. Top-1 and Top-5 accuracies are measured on the ILSVRC dataset.
We are excited to share MobileNets with the open source community. Information for getting started can be found at the TensorFlow-Slim Image Classification Library. To learn how to run models on-device please go to TensorFlow Mobile. You can read more about the technical details of MobileNets in our paper, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

By Andrew G. Howard, Senior Software Engineer and Menglong Zhu, Software Engineer

Acknowledgements
MobileNets were made possible with the hard work of many engineers and researchers throughout Google. Specifically we would like to thank:

Core Contributors: Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

Special thanks to: Benoit Jacob, Skirmantas Kligys, George Papandreou, Liang-Chieh Chen, Derek Chow, Sergio Guadarrama, Jonathan Huang, Andre Hentz, Pete Warden

MobileNets: Open-Source Models for Efficient On-Device Vision



Deep learning has fueled tremendous progress in the field of computer vision in recent years, with neural networks repeatedly pushing the frontier of visual recognition technology. While many of those technologies such as object, landmark, logo and text recognition are provided for internet-connected devices through the Cloud Vision API, we believe that the ever-increasing computational power of mobile devices can enable the delivery of these technologies into the hands of our users, anytime, anywhere, regardless of internet connection. However, visual recognition for on device and embedded applications poses many challenges — models must run quickly with high accuracy in a resource-constrained environment making use of limited computation, power and space.

Today we are pleased to announce the release of MobileNets, a family of mobile-first computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application. MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used.
Example use cases include detection, fine-grain classification, attributes and geo-localization.
This release contains the model definition for MobileNets in TensorFlow using TF-Slim, as well as 16 pre-trained ImageNet classification checkpoints for use in mobile projects of all sizes. The models can be run efficiently on mobile devices with TensorFlow Mobile.

Model Checkpoint
Million MACs
Million Parameters
Top-1 Accuracy
Top-5 Accuracy
569
4.24
70.7
89.5
418
4.24
69.3
88.9
291
4.24
67.2
87.5
186
4.24
64.1
85.3
317
2.59
68.4
88.2
233
2.59
67.4
87.3
162
2.59
65.2
86.1
104
2.59
61.8
83.6
150
1.34
64.0
85.4
110
1.34
62.1
84.0
77
1.34
59.9
82.5
49
1.34
56.2
79.6
41
0.47
50.6
75.0
34
0.47
49.0
73.6
21
0.47
46.0
70.7
14
0.47
41.3
66.2
Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk is proportional to the number of parameters. The latency and power usage of the network scales with the number of Multiply-Accumulates (MACs) which measures the number of fused Multiplication and Addition operations. Top-1 and Top-5 accuracies are measured on the ILSVRC dataset.
We are excited to share MobileNets with the open-source community. Information for getting started can be found at the TensorFlow-Slim Image Classification Library. To learn how to run models on-device please go to TensorFlow Mobile. You can read more about the technical details of MobileNets in our paper, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

Acknowledgements
MobileNets were made possible with the hard work of many engineers and researchers throughout Google. Specifically we would like to thank:

Core Contributors: Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

Special thanks to: Benoit Jacob, Skirmantas Kligys, George Papandreou, Liang-Chieh Chen, Derek Chow, Sergio Guadarrama, Jonathan Huang, Andre Hentz, Pete Warden