Tag Archives: CVPR

Sparse video tubes for joint video and image vision transformers

Video understanding is a challenging problem that requires reasoning about both spatial information (e.g., for objects in a scene, including their locations and relations) and temporal information for activities or events shown in a video. There are many video understanding applications and tasks, such as understanding the semantic content of web videos and robot perception. However, current works, such as ViViT and TimeSFormer, densely process the video and require significant compute, especially as model size plus video length and resolution increase.

In “Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video Learning”, to be presented at CVPR 2023, we introduce a simple technique that turns a Vision Transformer (ViT) model image encoder into an efficient video backbone using sparse video tubes (learnable visual representations of samples from the video) to reduce the model’s compute needs. This approach can seamlessly process both images and videos, which allows it to leverage both image and video data sources during training. This training further enables our sparse tubes ViT model to coalesce image and video backbones together to serve a dual role as either an image or video backbone (or both), depending on the input. We demonstrate that this model is scalable, can be adapted to large pre-trained ViTs without requiring full fine-tuning, and achieves state-of-the-art results across many video classification benchmarks.

Using sparse video tubes to sample a video, combined with a standard ViT encoder, leads to an efficient visual representation that can be seamlessly shared with image inputs.

Building a joint image-video backbone

Our sparse tube ViT uses a standard ViT backbone, consisting of a stack of Transformer layers, that processes video information. Previous methods, such as ViViT, densely tokenize the video and then apply factorized attention, i.e., the attention weights for each token are computed separately for the temporal and spatial dimensions. In the standard ViT architecture, self-attention is computed over the whole token sequence. When using videos as input, token sequences become quite long, which can make this computation slow. Instead, in the method we propose, the video is sparsely sampled using video tubes, which are 3D learnable visual representations of various shapes and sizes (described in more detail below) from the video. These tubes are used to sparsely sample the video using a large temporal stride, i.e., when a tube kernel is only applied to a few locations in the video, rather than every pixel.

By sparsely sampling the video tubes, we can use the same global self-attention module, rather than factorized attention like ViViT. We experimentally show that the addition of factorized attention layers can harm the performance due to the uninitialized weights. This single stack of transformer layers in the ViT backbone also enables better sharing of the weights and improves performance. Sparse video tube sampling is done by using a large spatial and temporal stride that selects tokens on a fixed grid. The large stride reduces the number of tokens in the full network, while still capturing both spatial and temporal information and enabling the efficient processing of all tokens.

Sparse video tubes

Video tubes are 3D grid-based cuboids that can have different shapes or categories and capture different information with strides and starting locations that can overlap. In the model, we use three distinct tube shapes that capture: (1) only spatial information (resulting in a set of 2D image patches), (2) long temporal information (over a small spatial area), and (3) both spatial and temporal information equally. Tubes that capture only spatial information can be applied to both image and video inputs. Tubes that capture long temporal information or both temporal and spatial information equally are only applied to video inputs. Depending on the input video size, the three tube shapes are applied to the model multiple times to generate tokens.

A fixed position embedding, which captures the global location of each tube (including any strides, offsets, etc.) relative to all the other tubes, is applied to the video tubes. Different from the previous learned position embeddings, this fixed one better enables sparse, overlapping sampling. Capturing the global location of the tube helps the model know where each came from, which is especially helpful when tubes overlap or are sampled from distant video locations. Next, the tube features are concatenated together to form a set of N tokens. These tokens are processed by a standard ViT encoder. Finally, we apply an attention pooling to compress all the tokens into a single representation and input to a fully connected (FC) layer to make the classification (e.g., playing soccer, swimming, etc.).

Our video ViT model works by sampling sparse video tubes from the video (shown at the bottom) to enable either or both image or video inputs to be seamlessly processed. These tubes have different shapes and capture different video features. Tube 1 (yellow) only captures spatial information, resulting in a set of 2D patches that can be applied to image inputs. Tube 2 (red) captures temporal information and some spatial information and tube 3 (green) equally captures both temporal and spatial information (i.e., the spatial size of the tube x and y are the same as the number of frames t). Tubes 2 and 3 can only be applied to video inputs. The position embedding is added to all the tube features.

Scaling video ViTs

The process of building video backbones is computationally intensive, but our sparse tube ViT model enables computationally efficient scaling of video models, leveraging previously trained image backbones. Since image backbones can be adapted to a video backbone, large image backbones can be turned into large video backbones. More specifically, one can transfer the learned video feature representations from a small tube ViT to a large pre-trained image ViT and train the resulting model with video data for only a few steps, as opposed to a full training from scratch.

Our approach enables scaling a sparse tube ViT in a more efficient way. Specifically, the video features from a small video ViT (top network) can be transferred to a large, pre-trained image ViT (bottom network), and further fine-tuned. This requires fewer training steps to achieve strong performance with the large model. This is beneficial as large video models might be prohibitively expensive to train from scratch.


We evaluate our sparse tube ViT approach using Kinetics-400 (shown below), Kinetics-600 and Kinetics-700 datasets and compare its performance to a long list of prior methods. We find that our approach outperforms all prior methods. Importantly, it outperforms all state-of-the-art methods trained jointly on image+video datasets.

Performance compared to several prior works on the popular Kinetics-400 video dataset. Our sparse tube ViT outperforms state-of-the-art methods.

Furthermore, we test our sparse tube ViT model on the Something-Something V2 dataset, which is commonly used to evaluate more dynamic activities, and also report that it outperforms all prior state-of-the-art approaches.

Performance on the Something-Something V2 video dataset.

Visualizing some learned kernels

It is interesting to understand what kind of rudimentary features are being learned by the proposed model. We visualize them below, showing both the 2D patches, which are shared for both images and videos, and video tubes. These visualizations show the 2D or 3D information being captured by the projection layer. For example, in the 2D patches, various common features, like edges and colors, are detected, while the 3D tubes capture basic shapes and how they may change over time.

Visualizations of patches and tubes learned the sparse tube ViT model. Top row are the 2D patches and the remaining two rows are snapshots from the learned video tubes. The tubes show each patch for the 8 or 4 frames to which they are applied.


We have presented a new sparse tube ViT, which can turn a ViT encoder into an efficient video model, and can seamlessly work with both image and video inputs. We also showed that large video encoders can be bootstrapped from small video encoders and image-only ViTs. Our approach outperforms prior methods across several popular video understanding benchmarks. We believe that this simple representation can facilitate much more efficient learning with input videos, seamlessly incorporate either image or video inputs and effectively eliminate the bifurcation of image and video models for future multimodal understanding.


This work is conducted by AJ Piergiovanni, Weicheng Kuo and Anelia Angelova, who are now at Google DeepMind. We thank Abhijit Ogale, Luowei Zhou, Claire Cui and our colleagues in Google Research for their helpful discussions, comments, and support.

Source: Google AI Blog

Vid2Seq: a pretrained visual language model for describing multi-event videos

Videos have become an increasingly important part of our daily lives, spanning fields such as entertainment, education, and communication. Understanding the content of videos, however, is a challenging task as videos often contain multiple events occurring at different time scales. For example, a video of a musher hitching up dogs to a dog sled before they all race away involves a long event (the dogs pulling the sled) and a short event (the dogs being hitched to the sled). One way to spur research in video understanding is via the task of dense video captioning, which consists of temporally localizing and describing all events in a minutes-long video. This differs from single image captioning and standard video captioning, which consists of describing short videos with a single sentence.

Dense video captioning systems have wide applications, such as making videos accessible to people with visual or auditory impairments, automatically generating chapters for videos, or improving the search of video moments in large databases. Current dense video captioning approaches, however, have several limitations — for example, they often contain highly specialized task-specific components, which make it challenging to integrate them into powerful foundation models. Furthermore, they are often trained exclusively on manually annotated datasets, which are very difficult to obtain and hence are not a scalable solution.

In this post, we introduce “Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning”, to appear at CVPR 2023. The Vid2Seq architecture augments a language model with special time tokens, allowing it to seamlessly predict event boundaries and textual descriptions in the same output sequence. In order to pre-train this unified model, we leverage unlabeled narrated videos by reformulating sentence boundaries of transcribed speech as pseudo-event boundaries, and using the transcribed speech sentences as pseudo-event captions. The resulting Vid2Seq model pre-trained on millions of narrated videos improves the state of the art on a variety of dense video captioning benchmarks including YouCook2, ViTT and ActivityNet Captions. Vid2Seq also generalizes well to the few-shot dense video captioning setting, the video paragraph captioning task, and the standard video captioning task. Finally, we have also released the code for Vid2Seq here.

Vid2Seq is a visual language model that predicts dense event captions together with their temporal grounding in a video by generating a single sequence of tokens.

A visual language model for dense video captioning

Multimodal transformer architectures have improved the state of the art on a wide range of video tasks, such as action recognition. However it is not straightforward to adapt such an architecture to the complex task of jointly localizing and captioning events in minutes-long videos.

For a general overview of how we achieve this, we augment a visual language model with special time tokens (like text tokens) that represent discretized timestamps in the video, similar to Pix2Seq in the spatial domain. Given visual inputs, the resulting Vid2Seq model can both take as input and generate sequences of text and time tokens. First, this enables the Vid2Seq model to understand the temporal information of the transcribed speech input, which is cast as a single sequence of tokens. Second, this allows Vid2Seq to jointly predict dense event captions and temporally ground them in the video while generating a single sequence of tokens.

The Vid2Seq architecture includes a visual encoder and a text encoder, which encode the video frames and the transcribed speech input, respectively. The resulting encodings are then forwarded to a text decoder, which autoregressively predicts the output sequence of dense event captions together with their temporal localization in the video. The architecture is initialized with a powerful visual backbone and a strong language model.

Vid2Seq model overview: We formulate dense event captioning as a sequence-to-sequence problem, using special time tokens to allow the model to seamlessly understand and generate sequences of tokens containing both textual semantic information and temporal localization information grounding each text sentence in the video.

Large-scale pre-training on untrimmed narrated videos

Due to the dense nature of the task, the manual collection of annotations for dense video captioning is particularly expensive. Hence we pre-train the Vid2Seq model using unlabeled narrated videos, which are easily available at scale. In particular, we use the YT-Temporal-1B dataset, which includes 18 million narrated videos covering a wide range of domains.

We use transcribed speech sentences and their corresponding timestamps as supervision, which are cast as a single sequence of tokens. We pre-train Vid2Seq with a generative objective that teaches the decoder to predict the transcribed speech sequence given visual inputs only, and a denoising objective that encourages multimodal learning by requiring the model to predict masked tokens given a noisy transcribed speech sequence and visual inputs. In particular, noise is added to the speech sequence by randomly masking out spans of tokens.

Vid2Seq is pre-trained on unlabeled narrated videos with a generative objective (top) and a denoising objective (bottom).

Results on downstream dense video captioning benchmarks

The resulting pre-trained Vid2Seq model can be fine-tuned on downstream tasks with a simple maximum likelihood objective using teacher forcing (i.e., predicting the next token given previous ground-truth tokens). After fine-tuning, Vid2Seq notably improves the state of the art on three standard downstream dense video captioning benchmarks (ActivityNet Captions, YouCook2 and ViTT) and two video clip captioning benchmarks (MSR-VTT, MSVD). In our paper we provide additional ablation studies, qualitative results, as well as results in the few-shot settings and in the video paragraph captioning task.

Comparison to state-of-the-art methods for dense video captioning (left) and for video clip captioning (right), on the CIDEr metric (higher is better).


We introduce Vid2Seq, a novel visual language model for dense video captioning that simply predicts all event boundaries and captions as a single sequence of tokens. Vid2Seq can be effectively pretrained on unlabeled narrated videos at scale, and achieves state-of-the-art results on various downstream dense video captioning benchmarks. Learn more from the paper and grab the code here.


This research was conducted by Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev, Josef Sivic and Cordelia Schmid.

Source: Google AI Blog

View Synthesis with Transformers

A long-standing problem in the intersection of computer vision and computer graphics, view synthesis is the task of creating new views of a scene from multiple pictures of that scene. This has received increased attention [1, 2, 3] since the introduction of neural radiance fields (NeRF). The problem is challenging because to accurately synthesize new views of a scene, a model needs to capture many types of information — its detailed 3D structure, materials, and illumination — from a small set of reference images.

In this post, we present recently published deep learning models for view synthesis. In “Light Field Neural Rendering” (LFNR), presented at CVPR 2022, we address the challenge of accurately reproducing view-dependent effects by using transformers that learn to combine reference pixel colors. Then in “Generalizable Patch-Based Neural Rendering” (GPNR), to be presented at ECCV 2022, we address the challenge of generalizing to unseen scenes by using a sequence of transformers with canonicalized positional encoding that can be trained on a set of scenes to synthesize views of new scenes. These models have some unique features. They perform image-based rendering, combining colors and features from the reference images to render novel views. They are purely transformer-based, operating on sets of image patches, and they leverage a 4D light field representation for positional encoding, which helps to model view-dependent effects.

We train deep learning models that are able to produce new views of a scene given a few images of it. These models are particularly effective when handling view-dependent effects like the refractions and translucency on the test tubes. This animation is compressed; see the original-quality renderings here. Source: Lab scene from the NeX/Shiny dataset.

The input to the models consists of a set of reference images and their camera parameters (focal length, position, and orientation in space), along with the coordinates of the target ray whose color we want to determine. To produce a new image, we start from the camera parameters of the input images, obtain the coordinates of the target rays (each corresponding to a pixel), and query the model for each.

Instead of processing each reference image completely, we look only at the regions that are likely to influence the target pixel. These regions are determined via epipolar geometry, which maps each target pixel to a line on each reference frame. For robustness, we take small regions around a number of points on the epipolar line, resulting in the set of patches that will actually be processed by the model. The transformers then act on this set of patches to obtain the color of the target pixel.

Transformers are especially useful in this setting since their self-attention mechanism naturally takes sets as inputs, and the attention weights themselves can be used to combine reference view colors and features to predict the output pixel colors. These transformers follow the architecture introduced in ViT.

To predict the color of one pixel, the models take a set of patches extracted around the epipolar line of each reference view. Image source: LLFF dataset.

Light Field Neural Rendering
In Light Field Neural Rendering (LFNR), we use a sequence of two transformers to map the set of patches to the target pixel color. The first transformer aggregates information along each epipolar line, and the second along each reference image. We can interpret the first transformer as finding potential correspondences of the target pixel on each reference frame, and the second as reasoning about occlusion and view-dependent effects, which are common challenges of image-based rendering.

LFNR uses a sequence of two transformers to map a set of patches extracted along epipolar lines to the target pixel color.

LFNR improved the state-of-the-art on the most popular view synthesis benchmarks (Blender and Real Forward-Facing scenes from NeRF and Shiny from NeX) with margins as large as 5dB peak signal-to-noise ratio (PSNR). This corresponds to a reduction of the pixel-wise error by a factor of 1.8x. We show qualitative results on challenging scenes from the Shiny dataset below:

LFNR reproduces challenging view-dependent effects like the rainbow and reflections on the CD, reflections, refractions and translucency on the bottles. This animation is compressed; see the original quality renderings here. Source: CD scene from the NeX/Shiny dataset.
Prior methods such as NeX and NeRF fail to reproduce view-dependent effects like the translucency and refractions in the test tubes on the Lab scene from the NeX/Shiny dataset. See also our video of this scene at the top of the post and the original quality outputs here.

Generalizing to New Scenes
One limitation of LFNR is that the first transformer collapses the information along each epipolar line independently for each reference image. This means that it decides which information to preserve based only on the output ray coordinates and patches from each reference image, which works well when training on a single scene (as most neural rendering methods do), but it does not generalize across scenes. Generalizable methods are important because they can be applied to new scenes without needing to retrain.

We overcome this limitation of LFNR in Generalizable Patch-Based Neural Rendering (GPNR). We add a transformer that runs before the other two and exchanges information between points at the same depth over all reference images. For example, this first transformer looks at the columns of the patches from the park bench shown above and can use cues like the flower that appears at corresponding depths in two views, which indicates a potential match. Another key idea of this work is to canonicalize the positional encoding based on the target ray, because to generalize across scenes, it is necessary to represent quantities in relative and not absolute frames of reference. The animation below shows an overview of the model.

GPNR consists of a sequence of three transformers that map a set of patches extracted along epipolar lines to a pixel color. Image patches are mapped via the linear projection layer to initial features (shown as blue and green boxes). Then those features are successively refined and aggregated by the model, resulting in the final feature/color represented by the gray rectangle. Park bench image source: LLFF dataset.

To evaluate the generalization performance, we train GPNR on a set of scenes and test it on new scenes. GPNR improved the state-of-the-art on several benchmarks (following IBRNet and MVSNeRF protocols) by 0.5–1.0 dB on average. On the IBRNet benchmark, GPNR outperforms the baselines while using only 11% of the training scenes. The results below show new views of unseen scenes rendered with no fine-tuning.

GPNR-generated views of held-out scenes, without any fine tuning. This animation is compressed; see the original quality renderings here. Source: IBRNet collected dataset.
Details of GPNR-generated views on held-out scenes from NeX/Shiny (left) and LLFF (right), without any fine tuning. GPNR reproduces more accurately the details on the leaf and the refractions through the lens when compared against IBRNet.

Future Work
One limitation of most neural rendering methods, including ours, is that they require camera poses for each input image. Poses are not easy to obtain and typically come from offline optimization methods that can be slow, limiting possible applications, such as those on mobile devices. Research on jointly learning view synthesis and input poses is a promising future direction. Another limitation of our models is that they are computationally expensive to train. There is an active line of research on faster transformers which might help improve our models’ efficiency. For the papers, more results, and open-source code, you can check out the projects pages for "Light Field Neural Rendering" and "Generalizable Patch-Based Neural Rendering".

Potential Misuse
In our research, we aim to accurately reproduce an existing scene using images from that scene, so there is little room to generate fake or non-existing scenes. Our models assume static scenes, so synthesizing moving objects, such as people, will not work.

All the hard work was done by our amazing intern – Mohammed Suhail – a PhD student at UBC, in collaboration with Carlos Esteves and Ameesh Makadia from Google Research, and Leonid Sigal from UBC. We are thankful to Corinna Cortes for supporting and encouraging this project.

Our work is inspired by NeRF, which sparked the recent interest in view synthesis, and IBRNet, which first considered generalization to new scenes. Our light ray positional encoding is inspired by the seminal paper Light Field Rendering and our use of transformers follow ViT.

Video results are from scenes from LLFF, Shiny, and IBRNet collected datasets.

Source: Google AI Blog

LOLNeRF: Learn from One Look

An important aspect of human vision is our ability to comprehend 3D shape from the 2D images we observe. Achieving this kind of understanding with computer vision systems has been a fundamental challenge in the field. Many successful approaches rely on multi-view data, where two or more images of the same scene are available from different perspectives, which makes it much easier to infer the 3D shape of objects in the images.

There are, however, many situations where it would be useful to know 3D structure from a single image, but this problem is generally difficult or impossible to solve. For example, it isn’t necessarily possible to tell the difference between an image of an actual beach and an image of a flat poster of the same beach. However it is possible to estimate 3D structure based on what kind of 3D objects occur commonly and what similar structures look like from different perspectives.

In “LOLNeRF: Learn from One Look”, presented at CVPR 2022, we propose a framework that learns to model 3D structure and appearance from collections of single-view images. LOLNeRF learns the typical 3D structure of a class of objects, such as cars, human faces or cats, but only from single views of any one object, never the same object twice. We build our approach by combining Generative Latent Optimization (GLO) and neural radiance fields (NeRF) to achieve state-of-the-art results for novel view synthesis and competitive results for depth estimation.

We learn a 3D object model by reconstructing a large collection of single-view images using a neural network conditioned on latent vectors, z (left). This allows for a 3D model to be lifted from the image, and rendered from novel viewpoints. Holding the camera fixed, we can interpolate or sample novel identities (right).

Combining GLO and NeRF
GLO is a general method that learns to reconstruct a dataset (such as a set of 2D images) by co-learning a neural network (decoder) and table of codes (latents) that is also an input to the decoder. Each of these latent codes re-creates a single element (such as an image) from the dataset. Because the latent codes have fewer dimensions than the data elements themselves, the network is forced to generalize, learning common structure in the data (such as the general shape of dog snouts).

NeRF is a technique that is very good at reconstructing a static 3D object from 2D images. It represents an object with a neural network that outputs color and density for each point in 3D space. Color and density values are accumulated along rays, one ray for each pixel in a 2D image. These are then combined using standard computer graphics volume rendering to compute a final pixel color. Importantly, all these operations are differentiable, allowing for end-to-end supervision. By enforcing that each rendered pixel (of the 3D representation) matches the color of ground truth (2D) pixels, the neural network creates a 3D representation that can be rendered from any viewpoint.

We combine NeRF with GLO by assigning each object a latent code and concatenating it with standard NeRF inputs, giving it the ability to reconstruct multiple objects. Following GLO, we co-optimize these latent codes along with network weights during training to reconstruct the input images. Unlike standard NeRF, which requires multiple views of the same object, we supervise our method with only single views of any one object (but multiple examples of that type of object). Because NeRF is inherently 3D, we can then render the object from arbitrary viewpoints. Combining NeRF with GLO gives it the ability to learn common 3D structure across instances from only single views while still retaining the ability to recreate specific instances of the dataset.

Camera Estimation
In order for NeRF to work, it needs to know the exact camera location, relative to the object, for each image. Unless this was measured when the image was taken, it is generally unknown. Instead, we use the MediaPipe Face Mesh to extract five landmark locations from the images. Each of these 2D predictions correspond to a semantically consistent point on the object (e.g., the tip of the nose or corners of the eyes). We can then derive a set of canonical 3D locations for the semantic points, along with estimates of the camera poses for each image, such that the projection of the canonical points into the images is as consistent as possible with the 2D landmarks.

We train a per-image table of latent codes alongside a NeRF model. Output is subject to per-ray RGB, mask and hardness losses. Cameras are derived from a fit of predicted landmarks to canonical 3D keypoints.
Example MediaPipe landmarks and segmentation masks (images from CelebA).

Hard Surface and Mask Losses
Standard NeRF is effective for accurately reproducing the images, but in our single-view case, it tends to produce images that look blurry when viewed off-axis. To address this, we introduce a novel hard surface loss, which encourages the density to adopt sharp transitions from exterior to interior regions, reducing blurring. This essentially tells the network to create “solid” surfaces, and not semi-transparent ones like clouds.

We also obtained better results by splitting the network into separate foreground and background networks. We supervised this separation with a mask from the MediaPipe Selfie Segmenter and a loss to encourage network specialization. This allows the foreground network to specialize only on the object of interest, and not get “distracted” by the background, increasing its quality.

We surprisingly found that fitting only five key points gave accurate enough camera estimates to train a model for cats, dogs, or human faces. This means that given only a single view of your beloved cats Schnitzel, Widget and friends, you can create a new image from any other angle.

Top: example cat images from AFHQ. Bottom: A synthesis of novel 3D views created by LOLNeRF.

We’ve developed a technique that is effective at discovering 3D structure from single 2D images. We see great potential in LOLNeRF for a variety of applications and are currently investigating potential use-cases.

Interpolation of feline identities from linear interpolation of learned latent codes for different examples in AFHQ.

Code Release
We acknowledge the potential for misuse and importance of acting responsibly. To that end, we will only release the code for reproducibility purposes, but will not release any trained generative models.

We would like to thank Andrea Tagliasacchi, Kwang Moo Yi, Viral Carpenter, David Fleet, Danica Matthews, Florian Schroff, Hartwig Adam and Dmitry Lagun for continuous help in building this technology.

Source: Google AI Blog

Revisiting Mask Transformer from a Clustering Perspective

Panoptic segmentation is a computer vision problem that serves as a core task for many real-world applications. Due to its complexity, previous work often divides panoptic segmentation into semantic segmentation (assigning semantic labels, such as “person” and “sky”, to every pixel in an image) and instance segmentation (identifying and segmenting only countable objects, such as “pedestrians” and “cars”, in an image), and further divides it into several sub-tasks. Each sub-task is processed individually, and extra modules are applied to merge the results from each sub-task stage. This process is not only complex, but it also introduces many hand-designed priors when processing sub-tasks and when combining the results from different sub-task stages.

Recently, inspired by Transformer and DETR, an end-to-end solution for panoptic segmentation with mask transformers (an extension of the Transformer architecture that is used to generate segmentation masks) was proposed in MaX-DeepLab. This solution adopts a pixel path (consisting of either convolutional neural networks or vision transformers) to extract pixel features, a memory path (consisting of transformer decoder modules) to extract memory features, and a dual-path transformer for interaction between pixel features and memory features. However, the dual-path transformer, which utilizes cross-attention, was originally designed for language tasks, where the input sequence consists of dozens or hundreds of words. Nonetheless, when it comes to vision tasks, specifically segmentation problems, the input sequence consists of tens of thousands of pixels, which not only indicates a much larger magnitude of input scale, but also represents a lower-level embedding compared to language words.

In “CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation”, presented at CVPR 2022, and “kMaX-DeepLab: k-means Mask Transformer”, to be presented at ECCV 2022, we propose to reinterpret and redesign cross-attention from a clustering perspective (i.e., grouping pixels with the same semantic labels together), which better adapts to vision tasks. CMT-DeepLab is built upon the previous state-of-the-art method, MaX-DeepLab, and employs a pixel clustering approach to perform cross-attention, leading to a more dense and plausible attention map. kMaX-DeepLab further redesigns cross-attention to be more like a k-means clustering algorithm, with a simple change on the activation function. We demonstrate that CMT-DeepLab achieves significant performance improvements, while kMaX-DeepLab not only simplifies the modification but also further pushes the state-of-the-art by a large margin, without test-time augmentation. We are also excited to announce the open-source release of kMaX-DeepLab, our best performing segmentation model, in the DeepLab2 library.

Instead of directly applying cross-attention to vision tasks without modifications, we propose to reinterpret it from a clustering perspective. Specifically, we note that the mask Transformer object query can be considered cluster centers (which aim to group pixels with the same semantic labels), and the process of cross-attention is similar to the k-means clustering algorithm, which adopts an iterative process of (1) assigning pixels to cluster centers, where multiple pixels can be assigned to a single cluster center, and some cluster centers may have no assigned pixels, and (2) updating the cluster centers by averaging pixels assigned to the same cluster center, the cluster centers will not be updated if no pixel is assigned to them).

In CMT-DeepLab and kMaX-DeepLab, we reformulate the cross-attention from the clustering perspective, which consists of iterative cluster-assignment and cluster-update steps.

Given the popularity of the k-means clustering algorithm, in CMT-DeepLab we redesign cross-attention so that the spatial-wise softmax operation (i.e., the softmax operation that is applied along the image spatial resolution) that in effect assigns cluster centers to pixels is instead applied along the cluster centers. In kMaX-DeepLab, we further simplify the spatial-wise softmax to cluster-wise argmax (i.e., applying the argmax operation along the cluster centers). We note that the argmax operation is the same as the hard assignment (i.e., a pixel is assigned to only one cluster) used in the k-means clustering algorithm.

Reformulating the cross-attention of the mask transformer from the clustering perspective significantly improves the segmentation performance and simplifies the complex mask transformer pipeline to be more interpretable. First, pixel features are extracted from the input image with an encoder-decoder structure. Then, a set of cluster centers are used to group pixels, which are further updated based on the clustering assignments. Finally, the clustering assignment and update steps are iteratively performed, with the last assignment directly serving as segmentation predictions.

To convert a typical mask Transformer decoder (consisting of cross-attention, multi-head self-attention, and a feed-forward network) into our proposed k-means cross-attention, we simply replace the spatial-wise softmax with cluster-wise argmax.

The meta architecture of our proposed kMaX-DeepLab consists of three components: pixel encoder, enhanced pixel decoder, and kMaX decoder. The pixel encoder is any network backbone, used to extract image features. The enhanced pixel decoder includes transformer encoders to enhance the pixel features, and upsampling layers to generate higher resolution features. The series of kMaX decoders transform cluster centers into (1) mask embedding vectors, which multiply with the pixel features to generate the predicted masks, and (2) class predictions for each mask.

The meta architecture of kMaX-DeepLab.

We evaluate the CMT-DeepLab and kMaX-DeepLab using the panoptic quality (PQ) metric on two of the most challenging panoptic segmentation datasets, COCO and Cityscapes, against MaX-DeepLab and other state-of-the-art methods. CMT-DeepLab achieves significant performance improvement, while kMaX-DeepLab not only simplifies the modification but also further pushes the state-of-the-art by a large margin, with 58.0% PQ on COCO val set, and 68.4% PQ, 44.0% mask Average Precision (mask AP), 83.5% mean Intersection-over-Union (mIoU) on Cityscapes val set, without test-time augmentation or using an external dataset.

Method PQ
MaX-DeepLab 51.1% (-6.9%)
MaskFormer 52.7% (-5.3%)
K-Net 54.6% (-3.4%)
CMT-DeepLab 55.3% (-2.7%)
kMaX-DeepLab 58.0%
Comparison on COCO val set.
Method PQ APmask mIoU
Panoptic-DeepLab 63.0% (-5.4%) 35.3% (-8.7%) 80.5% (-3.0%)
Axial-DeepLab 64.4% (-4.0%) 36.7% (-7.3%) 80.6% (-2.9%)
SWideRNet 66.4% (-2.0%) 40.1% (-3.9%) 82.2% (-1.3%)
kMaX-DeepLab 68.4% 44.0% 83.5%
Comparison on Cityscapes val set.

Designed from a clustering perspective, kMaX-DeepLab not only has a higher performance but also a more plausible visualization of the attention map to understand its working mechanism. In the example below, kMaX-DeepLab iteratively performs clustering assignments and updates, which gradually improves mask quality.

kMaX-DeepLab’s attention map can be directly visualized as a panoptic segmentation, which gives better plausibility for the model working mechanism (image credit: coco_url, and license).

We have demonstrated a way to better design mask transformers for vision tasks. With simple modifications, CMT-DeepLab and kMaX-DeepLab reformulate cross-attention to be more like a clustering algorithm. As a result, the proposed models achieve state-of-the-art performance on the challenging COCO and Cityscapes datasets. We hope that the open-source release of kMaX-DeepLab in the DeepLab2 library will facilitate future research on designing vision-specific transformer architectures.

We are thankful to the valuable discussion and support from Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Florian Schroff, Hartwig Adam, and Alan Yuille.

Source: Google AI Blog

Mapping Urban Trees Across North America with the Auto Arborist Dataset

Over four billion people live in cities around the globe, and while most people interact daily with others — at the grocery store, on public transit, at work — they may take for granted their frequent interactions with the diverse plants and animals that comprise fragile urban ecosystems. Trees in cities, called urban forests, provide critical benefits for public health and wellbeing and will prove integral to urban climate adaptation. They filter air and water, capture stormwater runoff, sequester atmospheric carbon dioxide, and limit erosion and drought. Shade from urban trees reduces energy-expensive cooling costs and mitigates urban heat islands. In the US alone, urban forests cover 127M acres and produce ecosystem services valued at $18 billion. But as the climate changes these ecosystems are increasingly under threat.

Census data is typically not comprehensive, covering a subset of public trees and not including those in parks.

Urban forest monitoring — measuring the size, health, and species distribution of trees in cities over time — allows researchers and policymakers to (1) quantify ecosystem services, including air quality improvement, carbon sequestration, and benefits to public health; (2) track damage from extreme weather events; and (3) target planting to improve robustness to climate change, disease and infestation.

However, many cities lack even basic data about the location and species of their trees. Collecting such data via a tree census is costly (a recent Los Angeles census cost $2 million and took 18 months) and thus is typically conducted only by cities with substantial resources. Further, lack of access to urban greenery is a key aspect of urban social inequality, including socioeconomic and racial inequality. Urban forest monitoring enables the quantification of this inequality and the pursuit of its improvement, a key aspect of the environmental justice movement. But machine learning could dramatically lower tree census costs using a combination of street-level and aerial imagery. Such an automated system could democratize access to urban forest monitoring, especially for under-resourced cities that are already disproportionately affected by climate change. While there have been prior efforts to develop automated urban tree species recognition from aerial or street-level imagery, a major limitation has been a lack of large-scale labeled datasets.

Today we introduce the Auto Arborist Dataset, a multiview urban tree classification dataset that, at ~2.6 million trees and >320 genera, is two orders of magnitude larger than those in prior work. To build the dataset, we pulled from public tree censuses from 23 North American cities (shown above) and merged these records with Street View and overhead RGB imagery. As the first urban forest dataset to cover multiple cities, we analyze in detail how forest models can generalize with respect to geographic distribution shifts, crucial to building systems that scale. We are releasing all 2.6M tree records publicly, along with aerial and ground-level imagery for 1M trees.

The 23 cities in the dataset are spread across North America, and are categorized into West, Central, and East regions to enable analysis of spatial and hierarchical generalization.
The number of tree records and genera in the dataset, per city and per region. The holdout city (which is never seen during training in any capacity) for each region is in bold.

The Auto Arborist Dataset
To curate Auto Arborist, we started from existing tree censuses which are provided by many cities online. For each tree census considered, we verified that the data contained GPS locations and genus/species labels, and was available for public use. We then parsed these data into a common format, fixing common data entry errors (such as flipped latitude/longitude) and mapping ground-truth genus names (and their common misspellings or alternate names) to a unified taxonomy. We have chosen to focus on genus prediction (instead of species-level prediction) as our primary task to avoid taxonomic complexity arising from hybrid and subspecies and the fact that there is more universal consensus on genus names than species names.

Next, using the provided geolocation for each tree, we queried an RGB aerial image centered on the tree and all street-level images taken within 2-10 meters around it. Finally, we filtered these images to (1) maximize our chances that the tree of interest is visible from each image and (2) preserve user privacy. This latter concern involved a number of steps including the removal of images that included people as determined by semantic segmentation and manual blurring, among others.

Selected Street View imagery from the Auto Arborist dataset. Green boxes represent tree detections (using a model trained on Open Images) and blue dots represent projected GPS location of the labeled tree.

One of the most important challenges for urban forest monitoring is to do well in cities that were not part of the training set. Vision models must contend with distribution shifts, where the training distribution differs from the test distribution from a new city. Genus distributions vary geographically (e.g., there are more Douglas fir in western Canada than in California) and can also vary based on city size (LA is much larger than Santa Monica and contains many more genera). Another challenge is the long-tailed, fine-grained nature of tree genera, which can be difficult to disambiguate even for human experts, with many genera being quite rare.

The long-tailed distribution across Auto Arborist categories. Most examples come from a few frequent categories, and many categories have far fewer examples. We characterize each genus as frequent, common, or rare based on the number of training examples. Note that the test data is split spatially from the training data within each city, so not all rare genera are seen in the test set.

Finally, there are a number of ways in which tree images can have noise. For one, there is temporal variation in deciduous trees (for example, when aerial imagery includes leaves, but street-level images are bare). Moreover, public arboreal censuses are not always up-to-date. Thus, sometimes trees have died (and are no longer visible) in the time since the tree census was taken. In addition, aerial data quality can be poor (missing or obscured, e.g., by clouds).

Our curation process sought to minimize these issues by (1) only keeping images with sufficient tree pixels, as determined by a semantic segmentation model, (2) only keeping reasonably recent images, and (3) only keeping images where the tree position was sufficiently close to the street level camera. We considered also optimizing for trees seen in spring and summer, but decided seasonal variation could be a useful cue — we thus also released the date of each image to enable the community to explore the effects of seasonal variability.

Benchmark and Evaluation
To evaluate the dataset, we designed a benchmark to measure domain generalization and performance in the long tail of the distribution. We generated training and test splits at three levels. First, we split within each city (based on latitude or longitude) to see how well a city generalizes to itself. Second, we aggregate city-level training sets into three regions, West, Central, and East, holding out one city from each region. Finally, we merge the training sets across the three regions. For each of these splits, we report both accuracy and class-averaged recall for frequent, common and rare species on the corresponding held-out test sets.

Using these metrics, we establish a performance baseline using standard modern convolutional models (ResNet). Our results demonstrate the benefits of a large-scale, geospatially distributed dataset such as Auto Arborist. First, we see that more training data helps — training on the entire dataset is better than training on a region, which is better than training on a single city.

The performance on each city’s test set when training on itself, on the region, and on the full training set.

Second, training on similar cities helps (and thus, having more coverage of cities helps). For example, if focusing on Seattle, then it is better to train on trees in Vancouver than Pittsburgh.

Cross-set performance, looking at the pairwise combination of train and test sets for each city. Note the block-diagonal structure, which highlights regional structure in the dataset.

Third, more data modalities and views help. The best performing models combine inputs from multiple Street View angles and overhead views. There remains much room for improvement, however, and this is where we believe the larger community of researchers can help.

Get Involved
By releasing the Auto Arborist Dataset, we step closer to the goal of affordable urban forest monitoring, enabling the computer vision community to tackle urban forest monitoring at scale for the first time. In the future, we hope to expand coverage to more North American cities (particularly in the South of the US and Mexico) and even worldwide. Further, we are excited to push the dataset to the more fine-grained species level and investigate more nuanced monitoring, including monitoring tree health and growth over time, and studying the effects of environmental factors on urban forests.

For more details, see our CVPR 2022 paper. This dataset is part of Google's broader efforts to empower cities with data about urban forests, through the Environmental Insights Explorer Tree Canopy Lab and is available on our GitHub repo. If you represent a city that is interested in being included in the dataset please email [email protected].

We would like to thank our co-authors Guanhang Wu, Trevor Edwards, Filip Pavetic, Bo Majewski, Shreyasee Mukherjee, Stanley Chan, John Morgan, Vivek Rathod, and Chris Bauer. We also thank Ruth Alcantara, Tanya Birch, and Dan Morris from Google AI for Nature and Society, John Quintero, Stafford Marquardt, Xiaoqi Yin, Puneet Lall, and Matt Manolides from Google Geo, Karan Gill, Tom Duerig, Abhijit Kundu, David Ross, Vighnesh Birodkar from Google Research (Perception team), and Pietro Perona for their support. This work was supported in part by the Resnick Sustainability Institute and was undertaken while Sara Beery was a Student Researcher at Google.

Source: Google AI Blog

Google at CVPR 2022

This week marks the beginning of the premier annual Computer Vision and Pattern Recognition conference (CVPR 2022), held both in-person in New Orleans, LA and virtually. As a leader in computer vision research and a Platinum Sponsor, Google will have a strong presence across CVPR 2022 with over 80 papers being presented at the main conference and active involvement in a number of conference workshops and tutorials.

If you are attending CVPR this year, please stop by our booth and chat with our researchers who are actively exploring the latest machine learning techniques for application to various areas of machine perception. Our researchers will also be available to talk about and demo several recent efforts, including on-device ML applications with MediaPipe, the Auto Arborist Dataset for urban forest monitoring, and much more.

You can also learn more about our research being presented at CVPR 2022 in the list below (Google affiliations in bold).

Organizing Committee

Tutorials Chairs
Include: Boqing Gong

Website Chairs
Include: AJ Piergiovanni

Area Chairs
Include: Alireza Fathi, Cordelia Schmid, Deqing Sun, Jonathan Barron, Michael Ryoo, Supasorn Suwajanakorn, Susanna Ricco

Diversity, Equity, and Inclusion Chairs
Include: Noah Snavely

Panel Discussion: Embodied Computer Vision
Panelists include: Michael Ryoo


Learning to Prompt for Continual Learning (see blog post)
Zifeng Wang*, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas Pfister

GCR: Gradient Coreset Based Replay Buffer Selection for Continual Learning
Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, Pradeep Shenoy

Zero-Shot Text-Guided Object Generation with Dream Fields
Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, Ben Poole

Towards End-to-End Unified Scene Text Detection and Layout Analysis
Shangbang Long, Siyang Qin, Dmitry Panteleev, Alessandro Bissacco, Yasuhisa Fujii, Michalis Raptis

FLOAT: Factorized Learning of Object Attributes for Improved Multi-object Multi-part Scene Parsing
Rishubh Singh, Pranav Gupta, Pradeep Shenoy, Ravikiran Sarvadevabhatla

LOLNerf: Learn from One Look
Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry Lagun, Andrea Tagliasacchi

Photorealistic Monocular 3D Reconstruction of Humans Wearing Clothing
Thiemo Alldieck, Mihai Zanfir, Cristian Sminchisescu

Learning Local Displacements for Point Cloud Completion
Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari

Density-Preserving Deep Point Cloud Compression
Yun He, Xinlin Ren, Danhang Tang, Yinda Zhang, Xiangyang Xue, Yanwei Fu

CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
Qihang Yu*, Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

Deformable Sprites for Unsupervised Video Decomposition
Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa, Noah Snavely

Learning with Neighbor Consistency for Noisy Labels
Ahmet Iscen, Jack Valmadre, Anurag Arnab, Cordelia Schmid

Multiview Transformers for Video Recognition
Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, Cordelia Schmid

Kubric: A Scalable Dataset Generator
Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J. Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan*, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, Andrea Tagliasacchi

3D Moments from Near-Duplicate Photos
Qianqian Wang, Zhengqi Li, David Salesin, Noah Snavely, Brian Curless, Janne Kontkanen

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, Peter Hedman

RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs
Michael Niemeyer*, Jonathan T. Barron, Ben Mildenhall, Mehdi S. M. Sajjadi, Andreas Geiger, Noha Radwan*

Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields
Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, Pratul P. Srinivasan

IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from Photometric Images
Kai Zhang, Fujun Luan, Zhengqi Li, Noah Snavely

MAXIM: Multi-Axis MLP for Image Processing
Zhengzhong Tu*, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, Yinxiao Li

Restormer: Efficient Transformer for High-Resolution Image Restoration
Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang

Burst Image Restoration and Enhancement
Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang

Neural RGB-D Surface Reconstruction
Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, Justus Thies

Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations
Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan*, Suhani Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy*, Jakob Uszkoreit*, Thomas Funkhouser, Andrea Tagliasacchi*

ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation
Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach, Nassir Navab, Benjamin Busam, Didier Stricker, Federico Tombari

MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision
Ben Usman, Andrea Tagliasacchi, Kate Saenko, Avneesh Sud

GPV-Pose: Category-Level Object Pose Estimation via Geometry-Guided Point-wise Voting
Yan Di, Ruida Zhang, Zhiqiang Lou, Fabian Manhardt, Xiangyang Ji, Nassir Navab, Federico Tombari

Rethinking Deep Face Restoration
Yang Zhao*, Yu-Chuan Su, Chun-Te Chu, Yandong Li, Marius Renn, Yukun Zhu, Changyou Chen, Xuhui Jia

Transferability Metrics for Selecting Source Model Ensembles
Andrea Agostinelli, Jasper Uijlings, Thomas Mensink, Vittorio Ferrari

Robust Fine-Tuning of Zero-Shot Models
Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, Ludwig Schmidt

Block-NeRF: Scalable Large Scene Neural View Synthesis
Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T. Barron, Henrik Kretzschmar

Light Field Neural Rendering
Mohammad Suhail*, Carlos Esteves, Leonid Sigal, Ameesh Makadia

Transferability Estimation Using Bhattacharyya Class Separability
Michal Pándy, Andrea Agostinelli, Jasper Uijlings, Vittorio Ferrari, Thomas Mensink

Matching Feature Sets for Few-Shot Image Classification
Arman Afrasiyabi, Hugo Larochelle, Jean-François Lalonde, Christian Gagné

Which Model to Transfer? Finding the Needle in the Growing Haystack
Cedric Renggli, André Susano Pinto, Luka Rimanic, Joan Puigcerver, Carlos Riquelme, Ce Zhang, Mario Lučić

Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Zhuohang Li, Jiaxin Zhang, Luyang Liu, Jian Liu

Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal, Daniel D'souza, Sara Hooker

More Than Words: In-the-Wild Visually-Driven Prosody for Text-to-Speech (see blog post)
Michael Hassid, Michelle Tadmor Ramanovich, Brendan Shillingford, Miaosen Wang, Ye Jia, Tal Remez

Robust Outlier Detection by De-Biasing VAE Likelihoods
Kushal Chauhan, Barath Mohan U, Pradeep Shenoy, Manish Gupta, Devarajan Sridharan

Deep 3D-to-2D Watermarking: Embedding Messages in 3D Meshes and Extracting Them from 2D Renderings
Innfarn Yoo, Huiwen Chang, Xiyang Luo, Ondrej Stava, Ce Liu*, Peyman Milanfar, Feng Yang

Knowledge Distillation: A Good Teacher Is Patient and Consistent
Lucas Beyer, Xiaohua Zhai, Amélie Royer*, Larisa Markeeva*, Rohan Anil, Alexander Kolesnikov

Urban Radiance Fields
Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan, Jonathan T. Barron, Andrea Tagliasacchi, Thomas Funkhouser, Vittorio Ferrari

Manifold Learning Benefits GANs
Yao Ni, Piotr Koniusz, Richard Hartley, Richard Nock

MaskGIT: Masked Generative Image Transformer
Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu*, William T. Freeman

InOut: Diverse Image Outpainting via GAN Inversion
Yen-Chi Cheng, Chieh Hubert Lin, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov, Ming-Hsuan Yang

Scaling Vision Transformers (see blog post)
Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, Lucas Beyer

Fine-Tuning Image Transformers Using Learnable Memory
Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, Andrew Jackson

PokeBNN: A Binary Pursuit of Lightweight Accuracy
Yichi Zhang*, Zhiru Zhang, Lukasz Lew

Bending Graphs: Hierarchical Shape Matching Using Gated Optimal Transport
Mahdi Saleh, Shun-Cheng Wu, Luca Cosmo, Nassir Navab, Benjamin Busam, Federico Tombari

Uncertainty-Aware Deep Multi-View Photometric Stereo
Berk Kaya, Suryansh Kumar, Carlos Oliveira, Vittorio Ferrari, Luc Van Gool

Depth-Supervised NeRF: Fewer Views and Faster Training for Free
Kangle Deng, Andrew Liu, Jun-Yan Zhu, Deva Ramanan

Dense Depth Priors for Neural Radiance Fields from Sparse Input Views
Barbara Roessle, Jonathan T. Barron, Ben Mildenhall, Pratul P. Srinivasan, Matthias Nießner

Trajectory Optimization for Physics-Based Reconstruction of 3D Human Pose from Monocular Video
Erik Gärtner, Mykhaylo Andriluka, Hongyi Xu, Cristian Sminchisescu

Differentiable Dynamics for Articulated 3D Human Motion Reconstruction
Erik Gärtner, Mykhaylo Andriluka, Erwin Coumans, Cristian Sminchisescu

Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation
Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas J. Guibas, Andrea Tagliasacchi, Frank Dellaert, Thomas Funkhouser

Pyramid Adversarial Training Improves ViT Performance
Charles Herrmann, Kyle Sargent, Lu Jiang, Ramin Zabih, Huiwen Chang, Ce Liu*, Dilip Krishnan, Deqing Sun

Proper Reuse of Image Classification Features Improves Object Detection
Cristina Vasconcelos, Vighnesh Birodkar, Vincent Dumoulin

SOMSI: Spherical Novel View Synthesis with Soft Occlusion Multi-Sphere Images
Tewodros Habtegebrial, Christiano Gava, Marcel Rogge, Didier Stricker, Varun Jampani

TubeFormer-DeepLab: Video Mask Transformer
Dahun Kim, Jun Xie, Huiyu Wang, Siyuan Qiao, Qihang Yu, Hong-Seok Kim, Hartwig Adam, In So Kweon, Liang-Chieh Chen

Contextualized Spatio-Temporal Contrastive Learning with Self-Supervision
Liangzhe Yuan, Rui Qian*, Yin Cui, Boqing Gong, Florian Schroff, Ming-Hsuan Yang, Hartwig Adam, Ting Liu

When Does Contrastive Visual Representation Learning Work?
Elijah Cole, Xuan Yang, Kimberly Wilber, Oisin Mac Aodha, Serge Belongie

Less Is More: Generating Grounded Navigation Instructions from Landmarks
Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha Jaques, Austin Waters, Jason Baldridge, Peter Anderson

Forecasting Characteristic 3D Poses of Human Actions
Christian Diller, Thomas Funkhouser, Angela Dai

BEHAVE: Dataset and Method for Tracking Human Object Interactions
Bharat Lal Bhatnagar, Xianghui Xie, Ilya A. Petrov, Cristian Sminchisescu, Christian Theobalt, Gerard Pons-Moll

Motion-from-Blur: 3D Shape and Motion Estimation of Motion-Blurred Objects in Videos
Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Marc Pollefeys

End-to-End Generative Pretraining for Multimodal Video Captioning (see blog post)
Paul Hongsuck Seo, Arsha Nagrani, Anurag Arnab, Cordelia Schmid

Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose Estimation
Jogendra Nath Kundu, Siddharth Seth, Pradyumna YM, Varun Jampani, Anirban Chakraborty, R. Venkatesh Babu

Learning ABCs: Approximate Bijective Correspondence for Isolating Factors of Variation with Weak Supervision
Kieran A. Murphy, Varun Jampani, Srikumar Ramalingam, Ameesh Makadia

HumanNeRF: Free-Viewpoint Rendering of Moving People from Monocular Video
Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan, Jonathan T. Barron, Ira Kemelmacher-Shlizerman

Deblurring via Stochastic Refinement
Jay Whang*, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, Peyman Milanfar

NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan, Jonathan T. Barron

CoNeRF: Controllable Neural Radiance Fields
Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz Trzciński, Andrea Tagliasacchi

A Conservative Approach for Unbiased Learning on Unknown Biases
Myeongho Jeon, Daekyung Kim, Woochul Lee, Myungjoo Kang, Joonseok Lee

DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection (see blog post)
Yingwei Li*, Adams Wei Yu, Tianjian Meng, Ben Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen, Yifeng Lu, Denny Zhou, Quoc V. Le, Alan Yuille, Mingxing Tan

Video Frame Interpolation Transformer
Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, Ming-Hsuan Yang

Global Matching with Overlapping Attention for Optical Flow Estimation
Shiyu Zhao, Long Zhao, Zhixing Zhang, Enyu Zhou, Dimitris Metaxas

LiT: Zero-Shot Transfer with Locked-image Text Tuning (see blog post)
Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, Lucas Beyer

Are Multimodal Transformers Robust to Missing Modality?
Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, Xi Peng

3D-VField: Adversarial Augmentation of Point Clouds for Domain Generalization in 3D Object Detection
Alexander Lehner, Stefano Gasperini, Alvaro Marcos-Ramiro, Michael Schmidt, Mohammad-Ali Nikouei Mahani, Nassir Navab, Benjamin Busam, Federico Tombari

SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation
Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari, Fisher Yu

H4D: Human 4D Modeling by Learning Neural Compositional Representation
Boyan Jiang, Yinda Zhang, Xingkui Wei, Xiangyang Xue, Yanwei Fu

Gravitationally Lensed Black Hole Emission Tomography
Aviad Levis, Pratul P. Srinivasan, Andrew A. Chael, Ren Ng, Katherine L. Bouman

Deep Saliency Prior for Reducing Visual Distraction
Kfir Aberman, Junfeng He, Yossi Gandelsman, Inbar Mosseri, David E. Jacobs, Kai Kohlhoff, Yael Pritch, Michael Rubinstein

The Auto Arborist Dataset: A Large-Scale Benchmark for Multiview Urban Forest Monitoring Under Domain Shift
Sara Beery, Guanhang Wu, Trevor Edwards, Filip Pavetic, Bo Majewski, Shreyasee Mukherjee, Stanley Chan, John Morgan, Vivek Rathod, Jonathan Huang


Ethical Considerations in Creative Applications of Computer Vision
Chairs and Advisors: Negar Rostamzadeh, Fernando Diaz, Emily Denton, Mark Diaz, Jason Baldridge

Dynamic Neural Networks Meet Computer Vision Organizers
Invited Speaker: Barret Zoph

Precognition: Seeing Through the Future
Organizer: Utsav Prabhu
Invited Speaker: Sella Nevo

Computer Vision in the Built Environment for the Design, Construction, and Operation of Buildings
Invited Speakers: Thomas Funkhouser, Federico Tombari

Neural Architecture Search: Lightweight NAS Challenge
Invited Speaker: Barret Zoph

Transformers in Vision
Organizer: Lucas Beyer
Invited Speakers and Panelists: Alexander Kolesnikov, Mathilde Caron, Arsha Nagrani, Lucas Beyer

Challenge on Learned Image Compression
Organizers: George Toderici, Johannes Balle, Eirikur Agustsson, Nick Johnston, Fabian Mentzer, Luca Versari
Invited Speaker: Debargha Mukherjee

Embodied AI
Organizers: Anthony Francis, Sören Pirk, Alex Ku, Fei Xia, Peter Anderson
Scientific Advisory Board Members: Alexander Toshev, Jie Tan
Invited Speaker: Carolina Parada

Sight and Sound
Organizers: Arsha Nagrani, William Freeman

New Trends in Image Restoration and Enhancement
Organizers: Ming-Hsuan Yang, Vivek Kwatra, George Toderici

EarthVision: Large Scale Computer Vision for Remote Sensing Imagery
Invited Speaker: John Quinn

LatinX in Computer Vision Research
Organizer: Ruben Villegas

Fine-Grained Visual Categorization
Organizer: Kimberly Wilber

The Art of Robustness: Devil and Angel in Adversarial Machine Learning
Organizer: Florian Tramèr
Invited Speaker: Nicholas Carlini

AI for Content Creation
Organizers: Deqing Sun, Huiwen Chang, Lu Jiang
Invited Speaker: Chitwan Saharia

LOng-form VidEo Understanding
Invited Speaker: Cordelia Schmid

Visual Perception and Learning in an Open World
Invited Speaker: Rahul Sukthankar

Media Forensics
Organizer : Christoph Bregler
Technical Committee Members: Shruti Agarwal, Scott McCloskey, Peng Zhou

Vision Datasets Understanding
Organizer: José Lezama

Embedded Vision
Invited Speaker: Matthias Grundmann

Federated Learning for Computer Vision
Invited Speaker: Zheng Xu

Large Scale Holistic Video Understanding
Organizer: David Ross
Invited Speaker: Anurag Arnab

Learning With Limited Labelled Data for Image and Video Understanding
Invited Speaker: Hugo Larochelle

Bridging the Gap Between Computational Photography and Visual Recognition
Invited Speaker: Xiaohua Zhai

Explainable Artificial Intelligence for Computer Vision
Invited Speaker: Been Kim

Robustness in Sequential Data
Organizers: Sayna Ebrahimi, Kevin Murphy
Invited Speakers: Sayna Ebrahimi, Balaji Lakshminarayanan

Sketch-Oriented Deep Learning
Organizer: David Ha
Invited Speaker: Jonas Jongejan

Multimodal Learning and Applications
Invited Speaker: Cordelia Schmid

Computational Cameras and Displays
Organizer: Tali Dekel
Invited Speaker: Peyman Millanfar

Artificial Social Intelligence
Invited Speaker: Natasha Jaques

VizWiz Grand Challenge: Algorithms to Assist People Who Are Blind
Invited Speaker and Panelist: Andrew Howard

Image Matching: Local Features & Beyond
Organizer: Eduard Trulls

Multi-Agent Behavior: Representation, Modeling, Measurement, and Applications
Organizer: Ting Liu

Efficient Deep Learning for Computer Vision
Organizers: Pete Warden, Andrew Howard, Grace Chu, Jaeyoun Kim

Gaze Estimation and Prediction in the Wild
Organizer: Thabo Beeler


Denoising Diffusion-Based Generative Modeling: Foundations and Applications
Invited Speaker: Ruiqi Gao

Algorithmic Fairness: Why It's Hard and Why It's Interesting
Invited Speaker: Sanmi Koyejo

Beyond Convolutional Neural Networks
Invited Speakers: Neil Houlsby, Alexander Kolesnikov, Xiaohua Zhai

Joint Ego4D and Egocentric Perception, Interaction & Computing
Invited Speaker: Vittorio Ferrari

Deep AUC Maximization
Invited Speakers: Tianbao Yang

Vision-Based Robot Learning
Organizers: Michael S. Ryoo, Andy Zeng, Pete Florence

Graph Machine Learning for Visual Computing
Organizers: Federico Tombari
Invited Speakers: Federico Tombari, Fabian Manhardt

*Work done while at Google.  

Source: Google AI Blog

End-to-end Generative Pre-training for Multimodal Video Captioning

Multimodal video captioning systems utilize both the video frames and speech to generate natural language descriptions (captions) of videos. Such systems are stepping stones towards the longstanding goal of building multimodal conversational systems that effortlessly communicate with users while perceiving environments through multimodal input streams.

Unlike video understanding tasks (e.g., video classification and retrieval) where the key challenge lies in processing and understanding multimodal input videos, the task of multimodal video captioning includes the additional challenge of generating grounded captions. The most widely adopted approach for this task is to train an encoder-decoder network jointly using manually annotated data. However, due to a lack of large-scale, manually annotated data, the task of annotating grounded captions for videos is labor intensive and, in many cases, impractical. Previous research such as VideoBERT and CoMVT pre-train their models on unlabelled videos by leveraging automatic speech recognition (ASR). However, such models often cannot generate natural language sentences because they lack a decoder, and thus only the video encoder is transferred to the downstream tasks.

In “End-to-End Generative Pre-training for Multimodal Video Captioning”, published at CVPR 2022, we introduce a novel pre-training framework for multimodal video captioning. This framework, which we call multimodal video generative pre-training or MV-GPT, jointly trains a multimodal video encoder and a sentence decoder from unlabelled videos by leveraging a future utterance as the target text and formulating a novel bi-directional generation task. We demonstrate that MV-GPT effectively transfers to multimodal video captioning, achieving state-of-the-art results on various benchmarks. Additionally, the multimodal video encoder is competitive for multiple video understanding tasks, such as VideoQA, text-video retrieval, and action recognition.

Future Utterance as an Additional Text Signal
Typically, each training video clip for multimodal video captioning is associated with two different texts: (1) a speech transcript that is aligned with the clip as a part of the multimodal input stream, and (2) a target caption, which is often manually annotated. The encoder learns to fuse information from the transcript with visual contents, and the target caption is used to train the decoder for generation. However, in the case of unlabelled videos, each video clip comes only with a transcript from ASR, without a manually annotated target caption. Moreover, we cannot use the same text (the ASR transcript) for the encoder input and decoder target, since the generation of the target would then be trivial.

MV-GPT circumvents this challenge by leveraging a future utterance as an additional text signal and enabling joint pre-training of the encoder and decoder. However, training a model to generate future utterances that are often not grounded in the input content is not ideal. So we apply a novel bi-directional generation loss to reinforce the connection to the input.

Bi-directional Generation Loss
The issue of non-grounded text generation is mitigated by formulating a bi-directional generation loss that includes forward and backward generation. Forward generation produces future utterances given visual frames and their corresponding transcripts and allows the model to learn to fuse the visual content with its corresponding transcript. Backward generation takes the visual frames and future utterances to train the model to generate a transcript that contains more grounded text of the video clip. Bi-directional generation loss in MV-GPT allows the encoder and the decoder to be trained to handle visually grounded texts.

Bi-directional generation in MV-GPT. A model is trained with two generation losses. In forward generation, the model generates a future utterance (blue boxes) given the frames and the present utterance (red boxes), whereas the present is generated from the future utterance in backward generation. Two special beginning-of-sentence tokens ([BOS-F] and [BOS-B]) initiate forward and backward generation for the decoder.

Results on Multimodal Video Captioning
We compare MV-GPT to existing pre-training losses using the same model architecture, on YouCook2 with standard evaluation metrics (Bleu-4, Cider, Meteor and Rouge-L). While all pre-training techniques improve captioning performances, it is critical to pre-train the decoder jointly to improve model performance. We demonstrate that MV-GPT outperforms the previous state-of-the-art joint pre-training method by over 3.5% with relative gains across all four metrics.

Pre-training Loss Pre-trained Parts Bleu-4 Cider Meteor Rouge-L
No Pre-training N/A 13.25 1.03 17.56 35.48
CoMVT Encoder 14.46 1.24 18.46 37.17
UniVL Encoder + Decoder 19.95 1.98 25.27 46.81
MV-GPT (ours) Encoder + Decoder 21.26 2.14 26.36 48.58
MV-GPT performance across four metrics (Bleu-4, Cider, Meteor and Rouge-L) of different pre-training losses on YouCook2. “Pre-trained parts” indicates which parts of the model are pre-trained — only the encoder or both the encoder and decoder. We reimplement the loss functions of existing methods but use our model and training strategies for a fair comparison.

We transfer a model pre-trained by MV-GPT to four different captioning benchmarks: YouCook2, MSR-VTT, ViTT and ActivityNet-Captions. Our model achieves state-of-the-art performance on all four benchmarks by significant margins. For instance on the Meteor metric, MV-GPT shows over 12% relative improvements in all four benchmarks.

YouCook2 MSR-VTT ViTT ActivityNet-Captions
Best Baseline 22.35 29.90 11.00 10.90
MV-GPT (ours) 27.09 38.66 26.75 12.31
Meteor metric scores of the best baseline methods and MV-GPT on four benchmarks.

Results on Non-generative Video Understanding Tasks
Although MV-GPT is designed to train a generative model for multimodal video captioning, we also find that our pre-training technique learns a powerful multimodal video encoder that can be applied to multiple video understanding tasks, including VideoQA, text-video retrieval and action classification. When compared to the best comparable baseline models, the model transferred from MV-GPT shows superior performance in five video understanding benchmarks on their primary metrics — i.e., top-1 accuracy for VideoQA and action classification benchmarks, and recall at 1 for the retrieval benchmark.

Task Benchmark Best Comparable Baseline MV-GPT
VideoQA MSRVTT-QA 41.5 41.7
ActivityNet-QA 38.9 39.1
Text-Video Retrieval MSR-VTT 33.7 37.3
Action Recognition Kinetics-400 78.9 80.4
Kinetics-600 80.6 82.4
Comparisons of MV-GPT to best comparable baseline models on five video understanding benchmarks. For each dataset we report the widely used primary metric, i.e., MSRVTT-QA and ActivityNet-QA: Top-1 answer accuracy; MSR-VTT: Recall at 1; and Kinetics: Top-1 classification accuracy.

We introduce MV-GPT, a new generative pre-training framework for multimodal video captioning. Our bi-directional generative objective jointly pre-trains a multimodal encoder and a caption decoder by using utterances sampled at different times in unlabelled videos. Our pre-trained model achieves state-of-the-art results on multiple video captioning benchmarks and other video understanding tasks, namely VideoQA, video retrieval and action classification.

This research was conducted by Paul Hongsuck Seo, Arsha Nagrani, Anurag Arnab and Cordelia Schmid.

Source: Google AI Blog

Introducing Omnimattes: A New Approach to Matte Generation using Layered Neural Rendering

Image and video editing operations often rely on accurate mattes — images that define a separation between foreground and background. While recent computer vision techniques can produce high-quality mattes for natural images and videos, allowing real-world applications such as generating synthetic depth-of-field, editing and synthesising images, or removing backgrounds from images, one fundamental piece is missing: the various scene effects that the subject may generate, like shadows, reflections, or smoke, are typically overlooked.

In “Omnimatte: Associating Objects and Their Effects in Video”, presented at CVPR 2021, we describe a new approach to matte generation that leverages layered neural rendering to separate a video into layers called omnimattes that include not only the subjects but also all of the effects related to them in the scene. Whereas a typical state-of-the-art segmentation model extracts masks for the subjects in a scene, for example, a person and a dog, the method proposed here can isolate and extract additional details associated with the subjects, such as shadows cast on the ground.

A state-of-the-art segmentation network (e.g., MaskRCNN) takes an input video (left) and produces plausible masks for people and animals (middle), but misses their associated effects. Our method produces mattes that include not only the subjects, but their shadows as well (right; individual channels for person and dog visualized as blue and green).

Also unlike segmentation masks, omnimattes can capture partially-transparent, soft effects such as reflections, splashes, or tire smoke. Like conventional mattes, omnimattes are RGBA images that can be manipulated using widely-available image or video editing tools, and can be used wherever conventional mattes are used, for example, to insert text into a video underneath a smoke trail.

Layered Decomposition of Video
To generate omnimattes, we split the input video into a set of layers: one for each moving subject, and one additional layer for stationary background objects. In the example below, there is one layer for the person, one for the dog, and one for the background. When merged together using conventional alpha blending, these layers reproduce the input video.

Besides reproducing the video, the decomposition must capture the correct effects in each layer. For example, if the person’s shadow appears in the dog’s layer, the merged layers would still reproduce the input video, but inserting an additional element between the person and dog would produce an obvious error. The challenge is to find a decomposition where each subject’s layer captures only that subject’s effects, producing a true omnimatte.

Our solution is to apply our previously developed layered neural rendering approach to train a convolutional neural network (CNN) to map the subject’s segmentation mask and a background noise image into an omnimatte. Due to their structure, CNNs are naturally inclined to learn correlations between image effects, and the stronger the correlation between the effects, the easier for the CNN to learn. In the above video, for example, the spatial relationships between the person and their shadow, and the dog and its shadow, remain similar as they walk from right to left. The relationships change more (hence, the correlations are weaker) between the person and the dog’s shadow, or the dog and the person’s shadow. The CNN learns the stronger correlations first, leading to the correct decomposition.

The omnimatte system is shown in detail below. In a preprocess, the user chooses the subjects and specifies a layer for each. A segmentation mask for each subject is extracted using an off-the-shelf segmentation network, such as MaskRCNN, and camera transformations relative to the background are found using standard camera stabilization tools. A random noise image is defined in the background reference frame and sampled using the camera transformations to produce per-frame noise images. The noise images provide image features that are random but consistently track the background over time, providing a natural input for the CNN to learn to reconstruct the background colors.

The rendering CNN takes as input the segmentation mask and the per-frame noise images and produces the RGB color images and alpha maps, which capture the transparency of each layer. These outputs are merged using conventional alpha-blending to produce the output frame. The CNN is trained from scratch to reconstruct the input frames by finding and associating the effects not captured in a mask (e.g., shadows, reflections or smoke) with the given foreground layer, and to ensure the subject’s alpha roughly includes the segmentation mask. To make sure the foreground layers only capture the foreground elements and none of the stationary background, a sparsity loss is also applied on the foreground alpha.

A new rendering network is trained for each video. Because the network is only required to reconstruct the single input video, it is able to capture fine structures and fast motion in addition to separating the effects of each subject, as seen below. In the walking example, the omnimatte includes the shadow cast on the slats of the park bench. In the tennis example, the thin shadow and even the tennis ball are captured. In the soccer example, the shadow of the player and the ball are decomposed into their proper layers (with a slight error when the player’s foot is occluded by the ball).

This basic model already works well, but one can improve the results by augmenting the input of the CNN with additional buffers such as optical flow or texture coordinates.

Once the omnimattes are generated, how can they be used? As shown above, we can remove objects, simply by removing their layer from the composition. We can also duplicate objects, by repeating their layer in the composition. In the example below, the video has been “unwrapped” into a panorama, and the horse duplicated several times to produce a stroboscopic photograph effect. Note that the shadow that the horse casts on the ground and onto the obstacle is correctly captured.

A more subtle, but powerful application is to retime the subjects. Manipulation of time is widely used in film, but usually requires separate shots for each subject and a controlled filming environment. A decomposition into omnimattes makes retiming effects possible for everyday videos using only post-processing, simply by independently changing the playback rate of each layer. Since the omnimattes are standard RGBA images, this retiming edit can be done using conventional video editing software.

The video below is decomposed into three layers, one for each child. The children’s initial, unsynchronized jumps are aligned by simply adjusting the playback rate of their layers, producing realistic retiming for the splashes and reflections in the water.

In the original video (left), each child jumps at a different time. After editing (right), everyone jumps together.

It’s important to consider that any novel technique for manipulating images should be developed and applied responsibly, as it could be misused to produce fake or misleading information. Our technique was developed in accordance with our AI Principles and only allows rearrangement of content already present in the video, but even simple rearrangement can significantly alter the effect of a video, as shown in these examples. Researchers should be aware of these risks.

Future Work
There are a number of exciting directions to improve the quality of the omnimattes. On a practical level, this system currently only supports backgrounds that can be modeled as panoramas, where the position of the camera is fixed. When the camera position moves, the panorama model cannot accurately capture the entire background, and some background elements may clutter the foreground layers (sometimes visible in the above figures). Handling fully general camera motion, such as walking through a room or down a street, would require a 3D background model. Reconstruction of 3D scenes in the presence of moving objects and effects is still a difficult research challenge, but one that has seen promising recent progress.

On a theoretical level, the ability of CNNs to learn correlations is powerful, but still somewhat mysterious, and does not always lead to the expected layer decomposition. While our system allows for manual editing when the automatic result is imperfect, a better solution would be to fully understand the capabilities and limitations of CNNs to learn image correlations. Such an understanding could lead to improved denoising, inpainting, and many other video editing applications besides layer decomposition.

Erika Lu, from the University of Oxford, developed the omnimatte system during two internships at Google, in collaboration with Google researchers Forrester Cole, Tali Dekel, Michael Rubinstein, William T. Freeman and David Salesin, and University of Oxford researchers Weidi Xie and Andrew Zisserman.

Thank you to the friends and families of the authors who agreed to appear in the example videos. The “horse jump low”, “lucia”, and “tennis” videos are from the DAVIS 2016 dataset. The soccer video is used by permission from Online Soccer Skills. The car drift video was licensed from Shutterstock.

Source: Google AI Blog

Google at CVPR 2021

This week marks the start of the 2021 Conference on Computer Vision and Pattern Recognition (CVPR 2021), the premier annual computer vision event consisting of the main conference, workshops and tutorials. As a leader in computer vision research and a Champion Level Sponsor, Google will have a strong presence at CVPR 2021, with over 70 publications accepted, along with the organization of and participation in multiple workshops and tutorials.

If you are participating in CVPR this year, please visit our virtual booth to learn about Google research into the next generation of intelligent systems that utilize the latest machine learning techniques applied to various areas of machine perception.

You can also learn more about our research being presented at CVPR 2021 in the list below (Google affiliations in bold).

Organizing Committee Members

General Chair: Rahul Sukthankar
Finance Chair: Ramin Zabih
Workshop Chair: Caroline Pantofaru
Area Chairs: Chen Sun, Golnaz Ghiasi, Jonathan Barron, Kostas Rematas, Negar Rostamzadeh, Noah Snavely, Sanmi Koyejo, Tsung-Yi Lin


Cross-Modal Contrastive Learning for Text-to-Image Generation (see the blog post)
Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee*, Yinfei Yang

Learning Graph Embeddings for Compositional Zero-Shot Learning
Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari, Zeynep Akata

SPSG: Self-Supervised Photometric Scene Generation From RGB-D Scans
Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin, Matthias Nießner

3D-MAN: 3D Multi-Frame Attention Network for Object Detection
Zetong Yang*, Yin Zhou, Zhifeng Chen, Jiquan Ngiam

MIST: Multiple Instance Spatial Transformer
Baptiste Angles, Yuhe Jin, Simon Kornblith, Andrea Tagliasacchi, Kwang Moo Yi

OCONet: Image Extrapolation by Object Completion
Richard Strong Bowen*, Huiwen Chang, Charles Herrmann*, Piotr Teterwak*, Ce Liu, Ramin Zabih

Ranking Neural Checkpoints
Yandong Li, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang, Boqing Gong

LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces From Video Using Pose and Lighting Normalization
Avisek Lahiri, Vivek Kwatra, Christian Frueh, John Lewis, Chris Bregler

Differentiable Patch Selection for Image Recognition
Jean-Baptiste Cordonnier*, Aravindh Mahendran, Alexey Dosovitskiy, Dirk Weissenborn, Jakob Uszkoreit, Thomas Unterthiner

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences
Feitong Tan, Danhang Tang, Mingsong Dou, Kaiwen Guo, Rohit Pandey, Cem Keskin, Ruofei Du, Deqing Sun, Sofien Bouaziz, Sean Fanello, Ping Tan, Yinda Zhang

VIP-DeepLab: Learning Visual Perception With Depth-Aware Video Panoptic Segmentation (see the blog post)
Siyuan Qiao*, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys

HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps
Lu Mi, Hang Zhao, Charlie Nash, Xiaohan Jin, Jiyang Gao, Chen Sun, Cordelia Schmid, Nir Shavit, Yuning Chai, Dragomir Anguelov

Wide-Baseline Relative Camera Pose Estimation With Directional Learning
Kefan Chen, Noah Snavely, Ameesh Makadia

MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans, Mingxing Tan, Vikas Singh, Bo Chen

SMURF: Self-Teaching Multi-Frame Unsupervised RAFT With Full-Image Warping
Austin Stone, Daniel Maurer, Alper Ayvaci, Anelia Angelova, Rico Jonschkowski

Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts
Soravit Changpinyo, Piyush Sharma, Nan Ding, Radu Soricut

Uncalibrated Neural Inverse Rendering for Photometric Stereo of General Surfaces
Berk Kaya, Suryansh Kumar, Carlos Oliveira, Vittorio Ferrari, Luc Van Gool

MeanShift++: Extremely Fast Mode-Seeking With Applications to Segmentation and Object Tracking
Jennifer Jang, Heinrich Jiang

Repopulating Street Scenes
Yifan Wang*, Andrew Liu, Richard Tucker, Jiajun Wu, Brian L. Curless, Steven M. Seitz, Noah Snavely

MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers (see the blog post)
Huiyu Wang*, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

IBRNet: Learning Multi-View Image-Based Rendering
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser

From Points to Multi-Object 3D Reconstruction
Francis Engelmann*, Konstantinos Rematas, Bastian Leibe, Vittorio Ferrari

Learning Compositional Representation for 4D Captures With Neural ODE
Boyan Jiang, Yinda Zhang, Xingkui Wei, Xiangyang Xue, Yanwei Fu

Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Ben Wedin, Michael Terry, Tolga Bolukbasi

De-Rendering the World’s Revolutionary Artefacts
Shangzhe Wu*, Ameesh Makadia, Jiajun Wu, Noah Snavely, Richard Tucker, Angjoo Kanazawa

Spatiotemporal Contrastive Video Representation Learning
Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie, Yin Cui

Decoupled Dynamic Filter Networks
Jingkai Zhou, Varun Jampani, Zhixiong Pi, Qiong Liu, Ming-Hsuan Yang

NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering Using RGB Cameras
Xin Suo, Yuheng Jiang, Pei Lin, Yingliang Zhang, Kaiwen Guo, Minye Wu, Lan Xu

Regularizing Generative Adversarial Networks Under Limited Data
Hung-Yu Tseng*, Lu Jiang, Ce Liu, Ming-Hsuan Yang, Weilong Yang

SceneGraphFusion: Incremental 3D Scene Graph Prediction From RGB-D Sequences
Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, Federico Tombari

NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis
Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, Jonathan T. Barron

Adversarially Adaptive Normalization for Single Domain Generalization
Xinjie Fan*, Qifei Wang, Junjie Ke, Feng Yang, Boqing Gong, Mingyuan Zhou

Adaptive Prototype Learning and Allocation for Few-Shot Segmentation
Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun, Jonghyun Kim, Joongkyu Kim

Adversarial Robustness Across Representation Spaces
Pranjal Awasthi, George Yu, Chun-Sung Ferng, Andrew Tomkins, Da-Cheng Juan

Background Splitting: Finding Rare Classes in a Sea of Background
Ravi Teja Mullapudi, Fait Poms, William R. Mark, Deva Ramanan, Kayvon Fatahalian

Searching for Fast Model Families on Datacenter Accelerators
Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc Le, Norman P. Jouppi

Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild With Pose Annotations (see the blog post)
Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom Ablavatski, Matthias Grundmann

CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, Tomas Pfister

Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food
Quin Thames, Arjun Karpur, Wade Norris, Fangting Xia, Liviu Panait, Tobias Weyand, Jack Sim

CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning
Chen Wei*, Kihyuk Sohn, Clayton Mellina, Alan Yuille, Fan Yang

DetectoRS: Detecting Objects With Recursive Feature Pyramid and Switchable Atrous Convolution
Siyuan Qiao, Liang-Chieh Chen, Alan Yuille

DeRF: Decomposed Radiance Fields
Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi

Variational Transformer Networks for Layout Generation (see the blog post)
Diego Martin Arroyo, Janis Postels, Federico Tombari

Rich Features for Perceptual Quality Assessment of UGC Videos
Yilin Wang, Junjie Ke, Hossein Talebi, Joong Gon Yim, Neil Birkbeck, Balu Adsumilli, Peyman Milanfar, Feng Yang

Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds
Li Yi, Boqing Gong, Thomas Funkhouser

Neural Descent for Visual 3D Human Pose and Shape
Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Zanfir, William T. Freeman, Rahul Sukthankar, Cristian Sminchisescu

GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation
Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji

Look Before You Speak: Visually Contextualized Utterances
Paul Hongsuck Seo, Arsha Nagrani, Cordelia Schmid

LASR: Learning Articulated Shape Reconstruction From a Monocular Video
Gengshan Yang*, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Huiwen Chang, Deva Ramanan, William T. Freeman, Ce Liu

MoViNets: Mobile Video Networks for Efficient Video Recognition
Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong

No Shadow Left Behind: Removing Objects and Their Shadows Using Approximate Lighting and Geometry
Edward Zhang, Ricardo Martin-Brualla, Janne Kontkanen, Brian Curless

On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D'Amour, Dan Moldovan, Sylvain Gelly, Neil Houlsby, Xiaohua Zhai, Mario Lucic

Robust and Accurate Object Detection via Adversarial Learning
Xiangning Chen, Cihang Xie, Mingxing Tan, Li Zhang, Cho-Jui Hsieh, Boqing Gong

To the Point: Efficient 3D Object Detection in the Range Image With Graph Convolution Kernels
Yuning Chai, Pei Sun, Jiquan Ngiam, Weiyue Wang, Benjamin Caine, Vijay Vasudevan, Xiao Zhang, Dragomir Anguelov

Bottleneck Transformers for Visual Recognition
Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, Ashish Vaswani

Faster Meta Update Strategy for Noise-Robust Deep Learning
Youjiang Xu, Linchao Zhu, Lu Jiang, Yi Yang

Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier, Basil Mustafa, Efi Kokiopoulou, Rodolphe Jenatton, Jesse Berent

Learned Initializations for Optimizing Coordinate-Based Neural Representations
Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, Ren Ng

Simple Copy-Paste Is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi, Yin Cui, Aravind Srinivas*, Rui Qian, Tsung-Yi Lin, Ekin D. Cubuk, Quoc V. Le, Barret Zoph

Function4D: Real-Time Human Volumetric Capture From Very Sparse Consumer RGBD Sensors
Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, Yebin Liu

RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection
Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed, Alex Bewley, Xiao Zhang, Cristian Sminchisescu, Dragomir Anguelov

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth

Robust Neural Routing Through Space Partitions for Camera Relocalization in Dynamic Indoor Environments
Siyan Dong, Qingnan Fan, He Wang, Ji Shi, Li Yi, Thomas Funkhouser, Baoquan Chen, Leonidas Guibas

Taskology: Utilizing Task Relations at Scale
Yao Lu, Sören Pirk, Jan Dlabal, Anthony Brohan, Ankita Pasad*, Zhao Chen, Vincent Casser, Anelia Angelova, Ariel Gordon

Omnimatte: Associating Objects and Their Effects in Video
Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman, William T. Freeman, Michael Rubinstein

AutoFlow: Learning a Better Training Set for Optical Flow
Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih, William T. Freeman, and Ce Liu

Unsupervised Multi-Source Domain Adaptation Without Access to Source Data
Sk Miraj Ahmed, Dripta S. Raychaudhuri, Sujoy Paul, Samet Oymak, Amit K. Roy-Chowdhury

Meta Pseudo Labels
Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, Quoc V. Le

Spatially-Varying Outdoor Lighting Estimation From Intrinsics
Yongjie Zhu, Yinda Zhang, Si Li, Boxin Shi

Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
Long Zhao*, Yuxiao Wang, Jiaping Zhao, Liangzhe Yuan, Jennifer J. Sun, Florian Schroff, Hartwig Adam, Xi Peng, Dimitris Metaxas, Ting Liu

Benchmarking Representation Learning for Natural World Image Collections
Grant Van Horn, Elijah Cole, Sara Beery, Kimberly Wilber, Serge Belongie, Oisin Mac Aodha

Scaling Local Self-Attention for Parameter Efficient Visual Backbones
Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, Jonathon Shlens

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control
Tomas Jakab*, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Kanazawa

HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching
Vladimir Tankovich, Christian Häne, Yinda Zhang, Adarsh Kowdle, Sean Fanello, Sofien Bouaziz

POSEFusion: Pose-Guided Selective Fusion for Single-View Human Volumetric Capture
Zhe Li, Tao Yu, Zerong Zheng, Kaiwen Guo, Yebin Liu

Workshops (only Google affiliations are noted)

Media Forensics
Organizers: Christoph Bregler

Safe Artificial Intelligence for Automated Driving
Invited Speakers: Been Kim

VizWiz Grand Challenge
Organizers: Meredith Morris

3D Vision and Robotics
Invited Speaker: Andy Zeng

New Trends in Image Restoration and Enhancement Workshop and Challenges on Image and Video Processing
Organizers: Ming-Hsuan Yang Program Committee: George Toderici, Ming-Hsuan Yang

2nd Workshop on Extreme Vision Modeling
Invited Speakers: Quoc Le, Chen Sun

First International Workshop on Affective Understanding in Video
Organizers: Gautam Prasad, Ting Liu

Adversarial Machine Learning in Real-World Computer Vision Systems and Online Challenges
Program Committee: Nicholas Carlini, Nicolas Papernot

Ethical Considerations in Creative Applications of Computer Vision
Invited Speaker: Alex Hanna Organizers: Negar Rostamzadeh, Emily Denton, Linda Petrini

Visual Question Answering Workshop
Invited Speaker: Vittorio Ferrari

Sixth International Skin Imaging Collaboration (ISIC) Workshop on Skin Image Analysis
Invited Speakers: Sandra Avila Organizers: Yuan Liu Steering Committee: Yuan Liu, Dale Webster

The 4th Workshop and Prize Challenge: Bridging the Gap between Computational Photography and Visual Recognition (UG2+) in Conjunction with IEEE CVPR 2021
Invited Speakers: Peyman Milanfar, Chelsea Finn

The 3rd CVPR Workshop on 3D Scene Understanding for Vision, Graphics, and Robotics
Invited Speaker: Andrea Tagliasacchi

Robust Video Scene Understanding: Tracking and Video Segmentation
Organizers: Jordi Pont-Tuset, Sergi Caelles, Jack Valmadre, Alex Bewley

4th Workshop and Challenge on Learned Image Compression
Invited Speaker: Rianne van den Berg Organizers: George Toderici, Lucas Theis, Johannes Ballé, Eirikur Agustsson, Nick Johnston, Fabian Mentzer

The Third Workshop on Precognition: Seeing Through the Future
Invited Speaker: Anelia Angelova
Organizers: Utsav Prabhu Program Committee: Chen Sun, David Ross

Computational Cameras and Displays
Organizers: Tali Dekel Keynote Talks: Paul Debevec Program Committee: Ayan Chakrabarti, Tali Dekel

2nd Embodied AI Workshop
Organizing Committee: Anthony Francis Challenge Organizers: Peter Anderson, Anthony Francis, Alex Ku, Alexander Toshev Scientific Advisory Board: Alexander Toshev

Responsible Computer Vision
Program Committee: Caroline Pantofaru, Utsav Prabhu, Susanna Ricco, Negar Rostamzadeh, Candice Schumann

Dynamic Neural Networks Meets Computer Vision
Invited Speaker: Azalia Mirhoseini

Interactive Workshop on Bridging the Gap between Subjective and Computational Measurements of Machine Creativity
Invited Speaker: David Bau

GAZE 2021: The 3rd International Workshop on Gaze Estimation and Prediction in the Wild
Organizer: Thabo Beeler Program Committee: Thabo Beeler

Sight and Sound
Organizers: William Freeman

Future of Computer Vision Datasets
Invited Speaker: Emily Denton, Caroline Pantofaru

Open World Vision
Invited Speakers: Rahul Sukthankar

The 3rd Workshop on Learning from Unlabeled Videos
Organizers: Anelia Angelova, Honglak Lee Program Committee: AJ Piergiovanni

4th International Workshop on Visual Odometry and Computer Vision Applications Based on Location Clues — With a Focus on Mobile Platform Applications
Organizers: Anelia Angelova

4th Workshop on Efficient Deep Learning for Computer Vision
Invited Speaker: Andrew Howard
Organizers: Pete Warden, Andrew Howard

Second International Workshop on Large Scale Holistic Video Understanding
Invited Speaker: Cordelia Schmid Program Committee: AJ Piergiovanni Organizers: David Ross

Neural Architecture Search 1st Lightweight NAS Challenge and Moving Beyond
Invited Speakers: Sara Sabour

The Second Workshop on Fair, Data-Efficient, and Trusted Computer Vision
Invited Speakers: Gaurav Aggarwal

The 17th Embedded Vision Workshop
General Chair: Anelia Angelova

8th Workshop on Fine-Grained Visual Categorization
Organizers: Christine Kaeser-Chen, Kimberly Wilber

AI for Content Creation
Invited Speaker: Tali Dekel, Jon Barron, Emily Denton Organizers: Deqing Sun

Frontiers of Monocular 3D Perception
Invited Speakers: Anelia Angelova, Cordelia Schmid, Noah Snavely

Beyond Fairness: Towards a Just, Equitable, and Accountable Computer Vision
Organizers: Emily Denton

The 1st Workshop on Future Video Conferencing
Invited Speakers: Chuo-Ling Chang, Sergi Caelles

Tutorials (only Google affiliations are noted)

Tutorial on Fairness Accountability Transparency and Ethics in Computer Vision
Organizer: Emily Denton

Data-Efficient Learning in An Imperfect World
Organizers: Boqing Gong, Ting Chen

Semantic Segmentation of Point Clouds: a Deep Learning Framework for Cultural Heritage
Invited Speaker: Manzil Zaheer

From VQA to VLN: Recent Advances in Vision-and-Language Research
Organizer: Peter Anderson * Indicates work done while at Google

Source: Google AI Blog