Tag Archives: Machine Perception

VideoPrism: A foundational visual encoder for video understanding

An astounding number of videos are available on the Web, covering a variety of content from everyday moments people share to historical moments to scientific observations, each of which contains a unique record of the world. The right tools could help researchers analyze these videos, transforming how we understand the world around us.

Videos offer dynamic visual content far more rich than static images, capturing movement, changes, and dynamic relationships between entities. Analyzing this complexity, along with the immense diversity of publicly available video data, demands models that go beyond traditional image understanding. Consequently, many of the approaches that best perform on video understanding still rely on specialized models tailor-made for particular tasks. Recently, there has been exciting progress in this area using video foundation models (ViFMs), such as VideoCLIP, InternVideo, VideoCoCa, and UMT). However, building a ViFM that handles the sheer diversity of video data remains a challenge.

With the goal of building a single model for general-purpose video understanding, we introduced “VideoPrism: A Foundational Visual Encoder for Video Understanding”. VideoPrism is a ViFM designed to handle a wide spectrum of video understanding tasks, including classification, localization, retrieval, captioning, and question answering (QA). We propose innovations in both the pre-training data as well as the modeling strategy. We pre-train VideoPrism on a massive and diverse dataset: 36 million high-quality video-text pairs and 582 million video clips with noisy or machine-generated parallel text. Our pre-training approach is designed for this hybrid data, to learn both from video-text pairs and the videos themselves. VideoPrism is incredibly easy to adapt to new video understanding challenges, and achieves state-of-the-art performance using a single frozen model.

VideoPrism is a general-purpose video encoder that enables state-of-the-art results over a wide spectrum of video understanding tasks, including classification, localization, retrieval, captioning, and question answering, by producing video representations from a single frozen model.

Pre-training data

A powerful ViFM needs a very large collection of videos on which to train — similar to other foundation models (FMs), such as those for large language models (LLMs). Ideally, we would want the pre-training data to be a representative sample of all the videos in the world. While naturally most of these videos do not have perfect captions or descriptions, even imperfect text can provide useful information about the semantic content of the video.

To give our model the best possible starting point, we put together a massive pre-training corpus consisting of several public and private datasets, including YT-Temporal-180M, InternVid, VideoCC, WTS-70M, etc. This includes 36 million carefully selected videos with high-quality captions, along with an additional 582 million clips with varying levels of noisy text (like auto-generated transcripts). To our knowledge, this is the largest and most diverse video training corpus of its kind.

Statistics on the video-text pre-training data. The large variations of the CLIP similarity scores (the higher, the better) demonstrate the diverse caption quality of our pre-training data, which is a byproduct of the various ways used to harvest the text.

Two-stage training

The VideoPrism model architecture stems from the standard vision transformer (ViT) with a factorized design that sequentially encodes spatial and temporal information following ViViT. Our training approach leverages both the high-quality video-text data and the video data with noisy text mentioned above. To start, we use contrastive learning (an approach that minimizes the distance between positive video-text pairs while maximizing the distance between negative video-text pairs) to teach our model to match videos with their own text descriptions, including imperfect ones. This builds a foundation for matching semantic language content to visual content.

After video-text contrastive training, we leverage the collection of videos without text descriptions. Here, we build on the masked video modeling framework to predict masked patches in a video, with a few improvements. We train the model to predict both the video-level global embedding and token-wise embeddings from the first-stage model to effectively leverage the knowledge acquired in that stage. We then randomly shuffle the predicted tokens to prevent the model from learning shortcuts.

What is unique about VideoPrism’s setup is that we use two complementary pre-training signals: text descriptions and the visual content within a video. Text descriptions often focus on what things look like, while the video content provides information about movement and visual dynamics. This enables VideoPrism to excel in tasks that demand an understanding of both appearance and motion.


Results

We conducted extensive evaluation on VideoPrism across four broad categories of video understanding tasks, including video classification and localization, video-text retrieval, video captioning, question answering, and scientific video understanding. VideoPrism achieves state-of-the-art performance on 30 out of 33 video understanding benchmarks — all with minimal adaptation of a single, frozen model.

VideoPrism compared to the previous best-performing FMs.

Classification and localization

We evaluate VideoPrism on an existing large-scale video understanding benchmark (VideoGLUE) covering classification and localization tasks. We found that (1) VideoPrism outperforms all of the other state-of-the-art FMs, and (2) no other single model consistently came in second place. This tells us that VideoPrism has learned to effectively pack a variety of video signals into one encoder — from semantics at different granularities to appearance and motion cues — and it works well across a variety of video sources.

VideoPrism outperforms state-of-the-art approaches (including CLIP, VATT, InternVideo, and UMT) on the video understanding benchmark. In this plot, we show the absolute score differences compared with the previous best model to highlight the relative improvements of VideoPrism. On Charades, ActivityNet, AVA, and AVA-K, we use mean average precision (mAP) as the evaluation metric. On the other datasets, we report top-1 accuracy.

Combining with LLMs

We further explore combining VideoPrism with LLMs to unlock its ability to handle various video-language tasks. In particular, when paired with a text encoder (following LiT) or a language decoder (such as PaLM-2), VideoPrism can be utilized for video-text retrieval, video captioning, and video QA tasks. We compare the combined models on a broad and challenging set of vision-language benchmarks. VideoPrism sets the new state of the art on most benchmarks. From the visual results, we find that VideoPrism is capable of understanding complex motions and appearances in videos (e.g., the model can recognize the different colors of spinning objects on the window in the visual examples below). These results demonstrate that VideoPrism is strongly compatible with language models.

VideoPrism achieves competitive results compared with state-of-the-art approaches (including VideoCoCa, UMT and Flamingo) on multiple video-text retrieval (top) and video captioning and video QA (bottom) benchmarks. We also show the absolute score differences compared with the previous best model to highlight the relative improvements of VideoPrism. We report the Recall@1 on MASRVTT, VATEX, and ActivityNet, CIDEr score on MSRVTT-Cap, VATEX-Cap, and YouCook2, top-1 accuracy on MSRVTT-QA and MSVD-QA, and WUPS index on NExT-QA.

We show qualitative results using VideoPrism with a text encoder for video-text retrieval (first row) and adapted to a language decoder for video QA (second and third row). For video-text retrieval examples, the blue bars indicate the embedding similarities between the videos and the text queries.

Scientific applications

Finally, we tested VideoPrism on datasets used by scientists across domains, including fields such as ethology, behavioral neuroscience, and ecology. These datasets typically require domain expertise to annotate, for which we leverage existing scientific datasets open-sourced by the community including Fly vs. Fly, CalMS21, ChimpACT, and KABR. VideoPrism not only performs exceptionally well, but actually surpasses models designed specifically for those tasks. This suggests tools like VideoPrism have the potential to transform how scientists analyze video data across different fields.

VideoPrism outperforms the domain experts on various scientific benchmarks. We show the absolute score differences to highlight the relative improvements of VideoPrism. We report mean average precision (mAP) for all datasets, except for KABR which uses class-averaged top-1 accuracy.

Conclusion

With VideoPrism, we introduce a powerful and versatile video encoder that sets a new standard for general-purpose video understanding. Our emphasis on both building a massive and varied pre-training dataset and innovative modeling techniques has been validated through our extensive evaluations. Not only does VideoPrism consistently outperform strong baselines, but its unique ability to generalize positions it well for tackling an array of real-world applications. Because of its potential broad use, we are committed to continuing further responsible research in this space, guided by our AI Principles. We hope VideoPrism paves the way for future breakthroughs at the intersection of AI and video analysis, helping to realize the potential of ViFMs across domains such as scientific discovery, education, and healthcare.


Acknowledgements

This blog post is made on behalf of all the VideoPrism authors: Long Zhao, Nitesh B. Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J. Sun, Luke Friedman, Rui Qian, Tobias Weyand, Yue Zhao, Rachel Hornung, Florian Schroff, Ming-Hsuan Yang, David A. Ross, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko, Ting Liu, and Boqing Gong. We sincerely thank David Hendon for their product management efforts, and Alex Siegman, Ramya Ganeshan, and Victor Gomes for their program and resource management efforts. We also thank Hassan Akbari, Sherry Ben, Yoni Ben-Meshulam, Chun-Te Chu, Sam Clearwater, Yin Cui, Ilya Figotin, Anja Hauth, Sergey Ioffe, Xuhui Jia, Yeqing Li, Lu Jiang, Zu Kim, Dan Kondratyuk, Bill Mark, Arsha Nagrani, Caroline Pantofaru, Sushant Prakash, Cordelia Schmid, Bryan Seybold, Mojtaba Seyedhosseini, Amanda Sadler, Rif A. Saurous, Rachel Stigler, Paul Voigtlaender, Pingmei Xu, Chaochao Yan, Xuan Yang, and Yukun Zhu for the discussions, support, and feedback that greatly contributed to this work. We are grateful to Jay Yagnik, Rahul Sukthankar, and Tomas Izo for their enthusiastic support for this project. Lastly, we thank Tom Small, Jennifer J. Sun, Hao Zhou, Nitesh B. Gundavarapu, Luke Friedman, and Mikhail Sirotenko for the tremendous help with making this blog post.

Source: Google AI Blog


Open sourcing Project Guideline: A platform for computer vision accessibility technology

Two years ago we announced Project Guideline, a collaboration between Google Research and Guiding Eyes for the Blind that enabled people with visual impairments (e.g., blindness and low-vision) to walk, jog, and run independently. Using only a Google Pixel phone and headphones, Project Guideline leverages on-device machine learning (ML) to navigate users along outdoor paths marked with a painted line. The technology has been tested all over the world and even demonstrated during the opening ceremony at the Tokyo 2020 Paralympic Games.

Since the original announcement, we set out to improve Project Guideline by embedding new features, such as obstacle detection and advanced path planning, to safely and reliably navigate users through more complex scenarios (such as sharp turns and nearby pedestrians). The early version featured a simple frame-by-frame image segmentation that detected the position of the path line relative to the image frame. This was sufficient for orienting the user to the line, but provided limited information about the surrounding environment. Improving the navigation signals, such as alerts for obstacles and upcoming turns, required a much better understanding and mapping of the users’ environment. To solve these challenges, we built a platform that can be utilized for a variety of spatially-aware applications in the accessibility space and beyond.

Today, we announce the open source release of Project Guideline, making it available for anyone to use to improve upon and build new accessibility experiences. The release includes source code for the core platform, an Android application, pre-trained ML models, and a 3D simulation framework.


System design

The primary use-case is an Android application, however we wanted to be able to run, test, and debug the core logic in a variety of environments in a reproducible way. This led us to design and build the system using C++ for close integration with MediaPipe and other core libraries, while still being able to integrate with Android using the Android NDK.

Under the hood, Project Guideline uses ARCore to estimate the position and orientation of the user as they navigate the course. A segmentation model, built on the DeepLabV3+ framework, processes each camera frame to generate a binary mask of the guideline (see the previous blog post for more details). Points on the segmented guideline are then projected from image-space coordinates onto a world-space ground plane using the camera pose and lens parameters (intrinsics) provided by ARCore. Since each frame contributes a different view of the line, the world-space points are aggregated over multiple frames to build a virtual mapping of the real-world guideline. The system performs piecewise curve approximation of the guideline world-space coordinates to build a spatio-temporally consistent trajectory. This allows refinement of the estimated line as the user progresses along the path.

Project Guideline builds a 2D map of the guideline, aggregating detected points in each frame (red) to build a stateful representation (blue) as the runner progresses along the path.

A control system dynamically selects a target point on the line some distance ahead based on the user’s current position, velocity, and direction. An audio feedback signal is then given to the user to adjust their heading to coincide with the upcoming line segment. By using the runner’s velocity vector instead of camera orientation to compute the navigation signal, we eliminate noise caused by irregular camera movements common during running. We can even navigate the user back to the line while it’s out of camera view, for example if the user overshot a turn. This is possible because ARCore continues to track the pose of the camera, which can be compared to the stateful line map inferred from previous camera images.

Project Guideline also includes obstacle detection and avoidance features. An ML model is used to estimate depth from single images. To train this monocular depth model, we used SANPO, a large dataset of outdoor imagery from urban, park, and suburban environments that was curated in-house. The model is capable of detecting the depth of various obstacles, including people, vehicles, posts, and more. The depth maps are converted into 3D point clouds, similar to the line segmentation process, and used to detect the presence of obstacles along the user’s path and then alert the user through an audio signal.

Using a monocular depth ML model, Project Guideline constructs a 3D point cloud of the environment to detect and alert the user of potential obstacles along the path.

A low-latency audio system based on the AAudio API was implemented to provide the navigational sounds and cues to the user. Several sound packs are available in Project Guideline, including a spatial sound implementation using the Resonance Audio API. The sound packs were developed by a team of sound researchers and engineers at Google who designed and tested many different sound models. The sounds use a combination of panning, pitch, and spatialization to guide the user along the line. For example, a user veering to the right may hear a beeping sound in the left ear to indicate the line is to the left, with increasing frequency for a larger course correction. If the user veers further, a high-pitched warning sound may be heard to indicate the edge of the path is approaching. In addition, a clear “stop” audio cue is always available in the event the user veers too far from the line, an anomaly is detected, or the system fails to provide a navigational signal.

Project Guideline has been built specifically for Google Pixel phones with the Google Tensor chip. The Google Tensor chip enables the optimized ML models to run on-device with higher performance and lower power consumption. This is critical for providing real-time navigation instructions to the user with minimal delay. On a Pixel 8 there is a 28x latency improvement when running the depth model on the Tensor Processing Unit (TPU) instead of CPU, and 9x improvement compared to GPU.



Testing and simulation

Project Guideline includes a simulator that enables rapid testing and prototyping of the system in a virtual environment. Everything from the ML models to the audio feedback system runs natively within the simulator, giving the full Project Guideline experience without needing all the hardware and physical environment set up.

Screenshot of Project Guideline simulator.


Future direction

To launch the technology forward, WearWorks has become an early adopter and teamed up with Project Guideline to integrate their patented haptic navigation experience, utilizing haptic feedback in addition to sound to guide runners. WearWorks has been developing haptics for over 8 years, and previously empowered the first blind marathon runner to complete the NYC Marathon without sighted assistance. We hope that integrations like these will lead to new innovations and make the world a more accessible place.

The Project Guideline team is also working towards removing the painted line completely, using the latest advancements in mobile ML technology, such as the ARCore Scene Semantics API, which can identify sidewalks, buildings, and other objects in outdoor scenes. We invite the accessibility community to build upon and improve this technology while exploring new use cases in other fields.


Acknowledgements

Many people were involved in the development of Project Guideline and the technologies behind it. We’d like to thank Project Guideline team members: Dror Avalon, Phil Bayer, Ryan Burke, Lori Dooley, Song Chun Fan, Matt Hall, Amélie Jean-aimée, Dave Hawkey, Amit Pitaru, Alvin Shi, Mikhail Sirotenko, Sagar Waghmare, John Watkinson, Kimberly Wilber, Matthew Willson, Xuan Yang, Mark Zarich, Steven Clark, Jim Coursey, Josh Ellis, Tom Hoddes, Dick Lyon, Chris Mitchell, Satoru Arao, Yoojin Chung, Joe Fry, Kazuto Furuichi, Ikumi Kobayashi, Kathy Maruyama, Minh Nguyen, Alto Okamura, Yosuke Suzuki, and Bryan Tanaka. Thanks to ARCore contributors: Ryan DuToit, Abhishek Kar, and Eric Turner. Thanks to Alec Go, Jing Li, Liviu Panait, Stefano Pellegrini, Abdullah Rashwan, Lu Wang, Qifei Wang, and Fan Yang for providing ML platform support. We’d also like to thank Hartwig Adam, Tomas Izo, Rahul Sukthankar, Blaise Aguera y Arcas, and Huisheng Wang for their leadership support. Special thanks to our partners Guiding Eyes for the Blind and Achilles International.

Source: Google AI Blog


SANPO: A Scene understanding, Accessibility, Navigation, Pathfinding, & Obstacle avoidance dataset

As most people navigate their everyday world, they process visual input from the environment using an eye-level perspective. Unlike robots and self-driving cars, people don't have any "out-of-body" sensors to help guide them. Instead, a person’s sensory input is completely "egocentric", or "from the self." This also applies to new technologies that understand the world around us from a human-like perspective, e.g., robots navigating through unknown buildings, AR glasses that highlight objects, or assistive technology to help people run independently.

In computer vision, scene understanding is the subfield that studies how visible objects relate to the scene's 3D structure and layout by focusing on the spatial, functional, and semantic relationships between objects and their environment. For example, autonomous drivers must understand the 3D structure of the road, sidewalks, and surrounding buildings while identifying and recognizing street signs and stop lights, a task made easier with 3D data from a special laser scanner mounted on the top of the car rather than 2D images from the driver’s perspective. Robots navigating a park must understand where the path is and what obstacles might interfere, which is simplified with a map of their surroundings and GPS positioning data. Finally, AR glasses that help users find their way need to understand where the user is and what they are looking at.

The computer vision community typically studies scene understanding tasks in contexts like self-driving, where many other sensors (GPS, wheel positioning, maps, etc.) beyond egocentric imagery are available. Yet most datasets in this space do not focus exclusively on egocentric data, so they are less applicable to human-centered navigation tasks. While there are plenty of self-driving focused scene understanding datasets, they have limited generalization to egocentric human scene understanding. A comprehensive human egocentric dataset would help build systems for related applications and serve as a challenging benchmark for the scene understanding community.

To that end, we present the Scene understanding, Accessibility, Navigation, Pathfinding, Obstacle avoidance dataset, or SANPO (also the Japanese word for ”brisk stroll”), a multi-attribute video dataset for outdoor human egocentric scene understanding. The dataset consists of real world data and synthetic data, which we call SANPO-Real and SANPO-Synthetic, respectively. It supports a wide variety of dense prediction tasks, is challenging for current models, and includes real and synthetic data with depth maps and video panoptic masks in which each pixel is assigned a semantic class label (and for some semantic classes, each pixel is also assigned a semantic instance ID that uniquely identifies that object in the scene). The real dataset covers diverse environments and has videos from two stereo cameras to support multi-view methods, including 11.4 hours captured at 15 frames per second (FPS) with dense annotations. Researchers can download and use SANPO here.

3D scene of a real session built using the provided annotations (segmentation, depth and camera positions). The top center video shows the depth map, and the top right shows the RGB or semantic annotations.

SANPO-Real

SANPO-Real is a multiview video dataset containing 701 sessions recorded with two stereo cameras: a head-mounted ZED Mini and a chest-mounted ZED-2i. That’s four RGB streams per session at 15 FPS. 597 sessions are recorded at a resolution of 2208x1242 pixels, and the remainder are recorded at a resolution of 1920x1080 pixels. Each session is approximately 30 seconds long, and the recorded videos are rectified using Zed software and saved in a lossless format. Each session has high-level attribute annotations, camera pose trajectories, dense depth maps from CREStereo, and sparse depth maps provided by the Zed SDK. A subset of sessions have temporally consistent panoptic segmentation annotations of each instance.

The SANPO data collection system for collecting real-world data. Right: (i) a backpack with ZED 2i and ZED Mini cameras for data collection (bottom), (ii) the inside of the backpack showing the ZED box and battery pack mounted on a 3D printed container (middle), and (iii) an Android app showing the live feed from the ZED cameras (top). Left: The chest-mounted ZED-2i has a stereo baseline of 12cm with a 2.1mm focal length, and the head-mounted ZED Mini has a baseline of 6.3cm with a 2.1mm focal length.

Temporally consistent panoptic segmentation annotation protocol

SANPO includes thirty different class labels, including various surfaces (road, sidewalk, curb, etc.), fences (guard rails, walls,, gates), obstacles (poles, bike racks, trees), and creatures (pedestrians, riders, animals). Gathering high-quality annotations for these classes is an enormous challenge. To provide temporally consistent panoptic segmentation annotation we divide each video into 30-second sub-videos and annotate every fifth frame (90 frames per sub-video), using a cascaded annotation protocol. At each stage, we ask annotators to draw borders around five mutually exclusive labels at a time. We send the same image to different annotators with as many stages as it takes to collect masks until all labels are assigned, with annotations from previous subsets frozen and shown to the annotator. We use AOT, a machine learning model that reduces annotation effort by giving annotators automatic masks from which to start, taken from previous frames during the annotation process. AOT also infers segmentation annotations for intermediate frames using the manually annotated preceding and following frames. Overall, this approach reduces annotation time, improves boundary precision, and ensures temporally consistent annotations for up to 30 seconds.

Temporally consistent panoptic segmentation annotations. The segmentation mask’s title indicates whether it was manually annotated or AOT propagated.

SANPO-Synthetic

Real-world data has imperfect ground truth labels due to hardware, algorithms, and human mistakes, whereas synthetic data has near-perfect ground truth and can be customized. We partnered with Parallel Domain, a company specializing in lifelike synthetic data generation, to create SANPO-Synthetic, a high-quality synthetic dataset to supplement SANPO-Real. Parallel Domain is skilled at creating handcrafted synthetic environments and data for machine learning applications. Thanks to their work, SANPO-Synthetic matches real-world capture conditions with camera parameters, placement, and scenery.

3D scene of a synthetic session built using the provided annotations (segmentation, depth and odometry). The top center video shows the depth map, and the top right shows the RGB or semantic annotations.

SANPO-Synthetic is a high quality video dataset, handcrafted to match real world scenarios. It contains 1961 sessions recorded using virtualized Zed cameras, evenly split between chest-mounted and head-mounted positions and calibrations. These videos are monocular, recorded from the left lens only. These sessions vary in length and FPS (5, 14.28, and 33.33) for a mix of temporal resolution / length tradeoffs, and are saved in a lossless format. All the sessions have precise camera pose trajectories, dense pixel accurate depth maps and temporally consistent panoptic segmentation masks.

SANPO-Synthetic data has pixel-perfect annotations, even for small and distant instances. This helps develop challenging datasets that mimic the complexity of real-world scenes. SANPO-Synthetic and SANPO-Real are also drop-in replacements for each other, so researchers can study domain transfer tasks or use synthetic data during training with few domain-specific assumptions.

An even sampling of real and synthetic scenes.

Statistics

Semantic classes

We designed our SANPO taxonomy: i) with human egocentric navigation in mind, ii) with the goal of being reasonably easy to annotate, and iii) to be as close as possible to the existing segmentation taxonomies. Though built with human egocentric navigation in mind, it can be easily mapped or extended to other human egocentric scene understanding applications. Both SANPO-Real and SANPO-Synthetic feature a wide variety of objects one would expect in egocentric obstacle detection data, such as roads, buildings, fences, and trees. SANPO-Synthetic includes a broad distribution of hand-modeled objects, while SANPO-Real features more “long-tailed” classes that appear infrequently in images, such as gates, bus stops, or animals.

Distribution of images across the classes in the SANPO taxonomy.

Instance masks

SANPO-Synthetic and a portion of SANPO-Real are also annotated with panoptic instance masks, which assign each pixel to a class and instance ID. Because it is generally human-labeled, SANPO-Real has a large number of frames with generally less than 20 instances per frame. Similarly, SANPO-Synthetic’s virtual environment offers pixel-accurate segmentation of most unique objects in the scene. This means that synthetic images frequently feature many more instances within each frame.

When considering per-frame instance counts, synthetic data frequently features many more instances per frame than the labeled portions of SANPO-Real.

Comparison to other datasets

We compare SANPO to other important video datasets in this field, including SCAND, MuSoHu, Ego4D, VIPSeg, and Waymo Open. Some of these are intended for robot navigation (SCAND) or autonomous driving (Waymo) tasks. Across these datasets, only Waymo Open and SANPO have both panoptic segmentations and depth maps, and only SANPO has both real and synthetic data.

Comparison to other video datasets. For stereo vs mono video, datasets marked with ★ have stereo video for all scenes and those marked ☆ provide stereo video for a subset. For depth maps, ★ indicates dense depth while ☆ represents sparse depth, e.g., from a lower-resolution LIDAR scanner.

Conclusion and future work

We present SANPO, a large-scale and challenging video dataset for human egocentric scene understanding, which includes real and synthetic samples with dense prediction annotations. We hope SANPO will help researchers build visual navigation systems for the visually impaired and advance visual scene understanding. Additional details are available in the preprint and on the SANPO dataset GitHub repository.


Acknowledgements

This dataset was the outcome of hard work of many individuals from various teams within Google and our external partner, Parallel Domain.

Core Team: Mikhail Sirotenko, Dave Hawkey, Sagar Waghmare, Kimberly Wilber, Xuan Yang, Matthew Wilson

Parallel Domain: Stuart Park, Alan Doucet, Alex Valence-Lanoue, & Lars Pandikow.

We would also like to thank following team members: Hartwig Adam, Huisheng Wang, Lucian Ionita, Nitesh Bharadwaj, Suqi Liu, Stephanie Debats, Cattalyya Nuengsigkapian, Astuti Sharma, Alina Kuznetsova, Stefano Pellegrini, Yiwen Luo, Lily Pagan, Maxine Deines, Alex Siegman, Maura O’Brien, Rachel Stigler, Bobby Tran, Supinder Tohra, Umesh Vashisht, Sudhindra Kopalle, Reet Bhatia.

Source: Google AI Blog


MediaPipe FaceStylizer: On-device real-time few-shot face stylization

In recent years, we have witnessed rising interest across consumers and researchers in integrated augmented reality (AR) experiences using real-time face feature generation and editing functions in mobile applications, including short videos, virtual reality, and gaming. As a result, there is a growing demand for lightweight, yet high-quality face generation and editing models, which are often based on generative adversarial network (GAN) techniques. However, the majority of GAN models suffer from high computational complexity and the need for a large training dataset. In addition, it is also important to employ GAN models responsibly.

In this post, we introduce MediaPipe FaceStylizer, an efficient design for few-shot face stylization that addresses the aforementioned model complexity and data efficiency challenges while being guided by Google’s responsible AI Principles. The model consists of a face generator and a face encoder used as GAN inversion to map the image into latent code for the generator. We introduce a mobile-friendly synthesis network for the face generator with an auxiliary head that converts features to RGB at each level of the generator to generate high quality images from coarse to fine granularities. We also carefully designed the loss functions for the aforementioned auxiliary heads and combined them with the common GAN loss functions to distill the student generator from the teacher StyleGAN model, resulting in a lightweight model that maintains high generation quality. The proposed solution is available in open source through MediaPipe. Users can fine-tune the generator to learn a style from one or a few images using MediaPipe Model Maker, and deploy to on-device face stylization applications with the customized model using MediaPipe FaceStylizer.


Few-shot on-device face stylization


An end-to-end pipeline

Our goal is to build a pipeline to support users to adapt the MediaPipe FaceStylizer to different styles by fine-tuning the model with a few examples. To enable such a face stylization pipeline, we built the pipeline with a GAN inversion encoder and efficient face generator model (see below). The encoder and generator pipeline can then be adapted to different styles via a few-shot learning process. The user first sends a single or a few similar samples of the style images to MediaPipe ModelMaker to fine-tune the model. The fine-tuning process freezes the encoder module and only fine-tunes the generator. The training process samples multiple latent codes close to the encoding output of the input style images as the input to the generator. The generator is then trained to reconstruct an image of a person’s face in the style of the input style image by optimizing a joint adversarial loss function that also accounts for style and content. With such a fine-tuning process, the MediaPipe FaceStylizer can adapt to the customized style, which approximates the user’s input. It can then be applied to stylize test images of real human faces.


Generator: BlazeStyleGAN

The StyleGAN model family has been widely adopted for face generation and various face editing tasks. To support efficient on-device face generation, we based the design of our generator on StyleGAN. This generator, which we call BlazeStyleGAN, is similar to StyleGAN in that it also contains a mapping network and synthesis network. However, since the synthesis network of StyleGAN is the major contributor to the model’s high computation complexity, we designed and employed a more efficient synthesis network. The improved efficiency and generation quality is achieved by:

  1. Reducing the latent feature dimension in the synthesis network to a quarter of the resolution of the counterpart layers in the teacher StyleGAN,
  2. Designing multiple auxiliary heads to transform the downscaled feature to the image domain to form a coarse-to-fine image pyramid to evaluate the perceptual quality of the reconstruction, and
  3. Skipping all but the final auxiliary head at inference time.

With the newly designed architecture, we train the BlazeStyleGAN model by distilling it from a teacher StyleGAN model. We use a multi-scale perceptual loss and adversarial loss in the distillation to transfer the high fidelity generation capability from the teacher model to the student BlazeStyleGAN model and also to mitigate the artifacts from the teacher model.

More details of the model architecture and training scheme can be found in our paper.

Visual comparison between face samples generated by StyleGAN and BlazeStyleGAN. The images on the first row are generated by the teacher StyleGAN. The images on the second row are generated by the student BlazeStyleGAN. The face generated by BlazeStyleGAN has similar visual quality to the image generated by the teacher model. Some results demonstrate the student BlazeStyleGAN suppresses the artifacts from the teacher model in the distillation.

In the above figure, we demonstrate some sample results of our BlazeStyleGAN. By comparing with the face image generated by the teacher StyleGAN model (top row), the images generated by the student BlazeStyleGAN (bottom row) maintain high visual quality and further reduce artifacts produced by the teacher due to the loss function design in our distillation.


An encoder for efficient GAN inversion

To support image-to-image stylization, we also introduced an efficient GAN inversion as the encoder to map input images to the latent space of the generator. The encoder is defined by a MobileNet V2 backbone and trained with natural face images. The loss is defined as a combination of image perceptual quality loss, which measures the content difference, style similarity and embedding distance, as well as the L1 loss between the input images and reconstructed images.


On-device performance

We documented model complexities in terms of parameter numbers and computing FLOPs in the following table. Compared to the teacher StyleGAN (33.2M parameters), BlazeStyleGAN (generator) significantly reduces the model complexity, with only 2.01M parameters and 1.28G FLOPs for output resolution 256x256. Compared to StyleGAN-1024 (generating image size of 1024x1024), the BlazeStyleGAN-1024 can reduce both model size and computation complexity by 95% with no notable quality difference and can even suppress the artifacts from the teacher StyleGAN model.

Model     Image Size     #Params (M)     FLOPs (G)
StyleGAN     1024     33.17     74.3
BlazeStyleGAN     1024     2.07     4.70
BlazeStyleGAN     512     2.05     1.57
BlazeStyleGAN     256     2.01     1.28
Encoder     256     1.44     0.60

Model complexity measured by parameter numbers and FLOPs.

We benchmarked the inference time of the MediaPipe FaceStylizer on various high-end mobile devices and demonstrated the results in the table below. From the results, both BlazeStyleGAN-256 and BlazeStyleGAN-512 achieved real-time performance on all GPU devices. It can run in less than 10 ms runtime on a high-end phone’s GPU. BlazeStyleGAN-256 can also achieve real-time performance on the iOS devices’ CPU.

Model     BlazeStyleGAN-256 (ms)     Encoder-256 (ms)
iPhone 11     12.14     11.48
iPhone 12     11.99     12.25
iPhone 13 Pro     7.22     5.41
Pixel 6     12.24     11.23
Samsung Galaxy S10     17.01     12.70
Samsung Galaxy S20     8.95     8.20

Latency benchmark of the BlazeStyleGAN, face encoder, and the end-to-end pipeline on various mobile devices.

Fairness evaluation

The model has been trained with a high diversity dataset of human faces. The model is expected to be fair to different human faces. The fairness evaluation demonstrates the model performs good and balanced in terms of human gender, skin-tone, and ages.


Face stylization visualization

Some face stylization results are demonstrated in the following figure. The images in the top row (in orange boxes) represent the style images used to fine-tune the model. The images in the left column (in the green boxes) are the natural face images used for testing. The 2x4 matrix of images represents the output of the MediaPipe FaceStylizer which is blending outputs between the natural faces on the left-most column and the corresponding face styles on the top row. The results demonstrate that our solution can achieve high-quality face stylization for several popular styles.

Sample results of our MediaPipe FaceStylizer.

MediaPipe Solutions

The MediaPipe FaceStylizer is going to be released to public users in MediaPipe Solutions. Users can leverage MediaPipe Model Maker to train a customized face stylization model using their own style images. After training, the exported bundle of TFLite model files can be deployed to applications across platforms (Android, iOS, Web, Python, etc.) using the MediaPipe Tasks FaceStylizer API in just a few lines of code.


Acknowledgements

This work is made possible through a collaboration spanning several teams across Google. We’d like to acknowledge contributions from Omer Tov, Yang Zhao, Andrey Vakunov, Fei Deng, Ariel Ephrat, Inbar Mosseri, Lu Wang, Chuo-Ling Chang, Tingbo Hou, and Matthias Grundmann.

Source: Google AI Blog


Responsible AI at Google Research: Perception Fairness

Google’s Responsible AI research is built on a foundation of collaboration — between teams with diverse backgrounds and expertise, between researchers and product developers, and ultimately with the community at large. The Perception Fairness team drives progress by combining deep subject-matter expertise in both computer vision and machine learning (ML) fairness with direct connections to the researchers building the perception systems that power products across Google and beyond. Together, we are working to intentionally design our systems to be inclusive from the ground up, guided by Google’s AI Principles.

Perception Fairness research spans the design, development, and deployment of advanced multimodal models including the latest foundation and generative models powering Google's products.

Our team's mission is to advance the frontiers of fairness and inclusion in multimodal ML systems, especially related to foundation models and generative AI. This encompasses core technology components including classification, localization, captioning, retrieval, visual question answering, text-to-image or text-to-video generation, and generative image and video editing. We believe that fairness and inclusion can and should be top-line performance goals for these applications. Our research is focused on unlocking novel analyses and mitigations that enable us to proactively design for these objectives throughout the development cycle. We answer core questions, such as: How can we use ML to responsibly and faithfully model human perception of demographic, cultural, and social identities in order to promote fairness and inclusion? What kinds of system biases (e.g., underperforming on images of people with certain skin tones) can we measure and how can we use these metrics to design better algorithms? How can we build more inclusive algorithms and systems and react quickly when failures occur?


Measuring representation of people in media

ML systems that can edit, curate or create images or videos can affect anyone exposed to their outputs, shaping or reinforcing the beliefs of viewers around the world. Research to reduce representational harms, such as reinforcing stereotypes or denigrating or erasing groups of people, requires a deep understanding of both the content and the societal context. It hinges on how different observers perceive themselves, their communities, or how others are represented. There's considerable debate in the field regarding which social categories should be studied with computational tools and how to do so responsibly. Our research focuses on working toward scalable solutions that are informed by sociology and social psychology, are aligned with human perception, embrace the subjective nature of the problem, and enable nuanced measurement and mitigation. One example is our research on differences in human perception and annotation of skin tone in images using the Monk Skin Tone scale.

Our tools are also used to study representation in large-scale content collections. Through our Media Understanding for Social Exploration (MUSE) project, we've partnered with academic researchers, nonprofit organizations, and major consumer brands to understand patterns in mainstream media and advertising content. We first published this work in 2017, with a co-authored study analyzing gender equity in Hollywood movies. Since then, we've increased the scale and depth of our analyses. In 2019, we released findings based on over 2.7 million YouTube advertisements. In the latest study, we examine representation across intersections of perceived gender presentation, perceived age, and skin tone in over twelve years of popular U.S. television shows. These studies provide insights for content creators and advertisers and further inform our own research.

An illustration (not actual data) of computational signals that can be analyzed at scale to reveal representational patterns in media collections. [Video Collection / Getty Images]

Moving forward, we're expanding the ML fairness concepts on which we focus and the domains in which they are responsibly applied. Looking beyond photorealistic images of people, we are working to develop tools that model the representation of communities and cultures in illustrations, abstract depictions of humanoid characters, and even images with no people in them at all. Finally, we need to reason about not just who is depicted, but how they are portrayed — what narrative is communicated through the surrounding image content, the accompanying text, and the broader cultural context.


Analyzing bias properties of perceptual systems

Building advanced ML systems is complex, with multiple stakeholders informing various criteria that decide product behavior. Overall quality has historically been defined and measured using summary statistics (like overall accuracy) over a test dataset as a proxy for user experience. But not all users experience products in the same way.

Perception Fairness enables practical measurement of nuanced system behavior beyond summary statistics, and makes these metrics core to the system quality that directly informs product behaviors and launch decisions. This is often much harder than it seems. Distilling complex bias issues (e.g., disparities in performance across intersectional subgroups or instances of stereotype reinforcement) to a small number of metrics without losing important nuance is extremely challenging. Another challenge is balancing the interplay between fairness metrics and other product metrics (e.g., user satisfaction, accuracy, latency), which are often phrased as conflicting despite being compatible. It is common for researchers to describe their work as optimizing an "accuracy-fairness" tradeoff when in reality widespread user satisfaction is aligned with meeting fairness and inclusion objectives.

We built and released the MIAP dataset as part of Open Images, leveraging our research on perception of socially relevant concepts and detection of biased behavior in complex systems to create a resource that furthers ML fairness research in computer vision. Original photo credits — left: Boston Public Library; middle: jen robinson; right: Garin Fons; all used with permission under the CC- BY 2.0 license.

To these ends, our team focuses on two broad research directions. First, democratizing access to well-understood and widely-applicable fairness analysis tooling, engaging partner organizations in adopting them into product workflows, and informing leadership across the company in interpreting results. This work includes developing broad benchmarks, curating widely-useful high-quality test datasets and tooling centered around techniques such as sliced analysis and counterfactual testing — often building on the core representation signals work described earlier. Second, advancing novel approaches towards fairness analytics — including partnering with product efforts that may result in breakthrough findings or inform launch strategy.


Advancing AI responsibly

Our work does not stop with analyzing model behavior. Rather, we use this as a jumping-off point for identifying algorithmic improvements in collaboration with other researchers and engineers on product teams. Over the past year we've launched upgraded components that power Search and Memories features in Google Photos, leading to more consistent performance and drastically improving robustness through added layers that keep mistakes from cascading through the system. We are working on improving ranking algorithms in Google Images to diversify representation. We updated algorithms that may reinforce historical stereotypes, using additional signals responsibly, such that it’s more likely for everyone to see themselves reflected in Search results and find what they're looking for.

This work naturally carries over to the world of generative AI, where models can create collections of images or videos seeded from image and text prompts and can answer questions about images and videos. We're excited about the potential of these technologies to deliver new experiences to users and as tools to further our own research. To enable this, we're collaborating across the research and responsible AI communities to develop guardrails that mitigate failure modes. We’re leveraging our tools for understanding representation to power scalable benchmarks that can be combined with human feedback, and investing in research from pre-training through deployment to steer the models to generate higher quality, more inclusive, and more controllable output. We want these models to inspire people, producing diverse outputs, translating concepts without relying on tropes or stereotypes, and providing consistent behaviors and responses across counterfactual variations of prompts.


Opportunities and ongoing work

Despite over a decade of focused work, the field of perception fairness technologies still seems like a nascent and fast-growing space, rife with opportunities for breakthrough techniques. We continue to see opportunities to contribute technical advances backed by interdisciplinary scholarship. The gap between what we can measure in images versus the underlying aspects of human identity and expression is large — closing this gap will require increasingly complex media analytics solutions. Data metrics that indicate true representation, situated in the appropriate context and heeding a diversity of viewpoints, remains an open challenge for us. Can we reach a point where we can reliably identify depictions of nuanced stereotypes, continually update them to reflect an ever-changing society, and discern situations in which they could be offensive? Algorithmic advances driven by human feedback point a promising path forward.

Recent focus on AI safety and ethics in the context of modern large model development has spurred new ways of thinking about measuring systemic biases. We are exploring multiple avenues to use these models — along with recent developments in concept-based explainability methods, causal inference methods, and cutting-edge UX research — to quantify and minimize undesired biased behaviors. We look forward to tackling the challenges ahead and developing technology that is built for everybody.


Acknowledgements

We would like to thank every member of the Perception Fairness team, and all of our collaborators.

Source: Google AI Blog


Announcing the ICDAR 2023 Competition on Hierarchical Text Detection and Recognition

The last few decades have witnessed the rapid development of Optical Character Recognition (OCR) technology, which has evolved from an academic benchmark task used in early breakthroughs of deep learning research to tangible products available in consumer devices and to third party developers for daily use. These OCR products digitize and democratize the valuable information that is stored in paper or image-based sources (e.g., books, magazines, newspapers, forms, street signs, restaurant menus) so that they can be indexed, searched, translated, and further processed by state-of-the-art natural language processing techniques.

Research in scene text detection and recognition (or scene text spotting) has been the major driver of this rapid development through adapting OCR to natural images that have more complex backgrounds than document images. These research efforts, however, focus on the detection and recognition of each individual word in images, without understanding how these words compose sentences and articles.

Layout analysis is another relevant line of research that takes a document image and extracts its structure, i.e., title, paragraphs, headings, figures, tables and captions. These layout analysis efforts are parallel to OCR and have been largely developed as independent techniques that are typically evaluated only on document images. As such, the synergy between OCR and layout analysis remains largely under-explored. We believe that OCR and layout analysis are mutually complementary tasks that enable machine learning to interpret text in images and, when combined, could improve the accuracy and efficiency of both tasks.

With this in mind, we announce the Competition on Hierarchical Text Detection and Recognition (the HierText Challenge), hosted as part of the 17th annual International Conference on Document Analysis and Recognition (ICDAR 2023). The competition is hosted on the Robust Reading Competition website, and represents the first major effort to unify OCR and layout analysis. In this competition, we invite researchers from around the world to build systems that can produce hierarchical annotations of text in images using words clustered into lines and paragraphs. We hope this competition will have a significant and long-term impact on image-based text understanding with the goal to consolidate the research efforts across OCR and layout analysis, and create new signals for downstream information processing tasks.

The concept of hierarchical text representation.


Constructing a hierarchical text dataset

In this competition, we use the HierText dataset that we published at CVPR 2022 with our paper "Towards End-to-End Unified Scene Text Detection and Layout Analysis". It’s the first real-image dataset that provides hierarchical annotations of text, containing word, line, and paragraph level annotations. Here, "words" are defined as sequences of textual characters not interrupted by spaces. "Lines" are then interpreted as "space"-separated clusters of "words" that are logically connected in one direction, and aligned in spatial proximity. Finally, "paragraphs" are composed of "lines" that share the same semantic topic and are geometrically coherent.

To build this dataset, we first annotated images from the Open Images dataset using the Google Cloud Platform (GCP) Text Detection API. We filtered through these annotated images, keeping only images rich in text content and layout structure. Then, we worked with our third-party partners to manually correct all transcriptions and to label words, lines and paragraph composition. As a result, we obtained 11,639 transcribed images, split into three subsets: (1) a train set with 8,281 images, (2) a validation set with 1,724 images, and (3) a test set with 1,634 images. As detailed in the paper, we also checked the overlap between our dataset, TextOCR, and Intel OCR (both of which also extracted annotated images from Open Images), making sure that the test images in the HierText dataset were not also included in the TextOCR or Intel OCR training and validation splits and vice versa. Below, we visualize examples using the HierText dataset and demonstrate the concept of hierarchical text by shading each text entity with different colors. We can see that HierText has a diversity of image domain, text layout, and high text density.

Samples from the HierText dataset. Left: Illustration of each word entity. Middle: Illustration of line clustering. Right: Illustration paragraph clustering.


Dataset with highest density of text

In addition to the novel hierarchical representation, HierText represents a new domain of text images. We note that HierText is currently the most dense publicly available OCR dataset. Below we summarize the characteristics of HierText in comparison with other OCR datasets. HierText identifies 103.8 words per image on average, which is more than 3x the density of TextOCR and 25x more dense than ICDAR-2015. This high density poses unique challenges for detection and recognition, and as a consequence HierText is used as one of the primary datasets for OCR research at Google.


Dataset       Training split       Validation split       Testing split       Words per image      
ICDAR-2015       1,000       0       500       4.4      
TextOCR       21,778       3,124       3,232       32.1      
Intel OCR       19,1059       16,731       0       10.0      
HierText       8,281       1,724       1,634       103.8

Comparing several OCR datasets to the HierText dataset.


Spatial distribution

We also find that text in the HierText dataset has a much more even spatial distribution than other OCR datasets, including TextOCR, Intel OCR, IC19 MLT, COCO-Text and IC19 LSVT. These previous datasets tend to have well-composed images, where text is placed in the middle of the images, and are thus easier to identify. On the contrary, text entities in HierText are broadly distributed across the images. It's proof that our images are from more diverse domains. This characteristic makes HierText uniquely challenging among public OCR datasets.

Spatial distribution of text instances in different datasets.


The HierText challenge

The HierText Challenge represents a novel task and with unique challenges for OCR models. We invite researchers to participate in this challenge and join us in ICDAR 2023 this year in San Jose, CA. We hope this competition will spark research community interest in OCR models with rich information representations that are useful for novel down-stream tasks.


Acknowledgements

The core contributors to this project are Shangbang Long, Siyang Qin, Dmitry Panteleev, Alessandro Bissacco, Yasuhisa Fujii and Michalis Raptis. Ashok Popat and Jake Walker provided valuable advice. We also thank Dimosthenis Karatzas and Sergi Robles from Autonomous University of Barcelona for helping us set up the competition website.

Source: Google AI Blog


Infinite Nature: Generating 3D Flythroughs from Still Photos

We live in a world of great natural beauty — of majestic mountains, dramatic seascapes, and serene forests. Imagine seeing this beauty as a bird does, flying past richly detailed, three-dimensional landscapes. Can computers learn to synthesize this kind of visual experience? Such a capability would allow for new kinds of content for games and virtual reality experiences: for instance, relaxing within an immersive flythrough of an infinite nature scene. But existing methods that synthesize new views from images tend to allow for only limited camera motion.

In a research effort we call Infinite Nature, we show that computers can learn to generate such rich 3D experiences simply by viewing nature videos and photographs. Our latest work on this theme, InfiniteNature-Zero (presented at ECCV 2022) can produce high-resolution, high-quality flythroughs starting from a single seed image, using a system trained only on still photographs, a breakthrough capability not seen before. We call the underlying research problem perpetual view generation: given a single input view of a scene, how can we synthesize a photorealistic set of output views corresponding to an arbitrarily long, user-controlled 3D path through that scene? Perpetual view generation is very challenging because the system must generate new content on the other side of large landmarks (e.g., mountains), and render that new content with high realism and in high resolution.




Example flythrough generated with InfiniteNature-Zero. It takes a single input image of a natural scene and synthesizes a long camera path flying into that scene, generating new scene content as it goes.

Background: Learning 3D Flythroughs from Videos

To establish the basics of how such a system could work, we’ll describe our first version, “Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image” (presented at ICCV 2021). In that work we explored a “learn from video” approach, where we collected a set of online videos captured from drones flying along coastlines, with the idea that we could learn to synthesize new flythroughs that resemble these real videos. This set of online videos is called the Aerial Coastline Imagery Dataset (ACID). In order to learn how to synthesize scenes that respond dynamically to any desired 3D camera path, however, we couldn’t simply treat these videos as raw collections of pixels; we also had to compute their underlying 3D geometry, including the camera position at each frame.

The basic idea is that we learn to generate flythroughs step-by-step. Given a starting view, like the first image in the figure below, we first compute a depth map using single-image depth prediction methods. We then use that depth map to render the image forward to a new camera viewpoint, shown in the middle, resulting in a new image and depth map from that new viewpoint.

However, this intermediate image has some problems — it has holes where we can see behind objects into regions that weren’t visible in the starting image. It is also blurry, because we are now closer to objects, but are stretching the pixels from the previous frame to render these now-larger objects.

To handle these problems, we learn a neural image refinement network that takes this low-quality intermediate image and outputs a complete, high-quality image and corresponding depth map. These steps can then be repeated, with this synthesized image as the new starting point. Because we refine both the image and the depth map, this process can be iterated as many times as desired — the system automatically learns to generate new scenery, like mountains, islands, and oceans, as the camera moves further into the scene.

Our Infinite Nature methods take an input view and its corresponding depth map (left). Using this depth map, the system renders the input image to a new desired viewpoint (center). This intermediate image has problems, such as missing pixels revealed behind foreground content (shown in magenta). We learn a deep network that refines this image to produce a new high-quality image (right). This process can be repeated to produce a long trajectory of views. We thus call this approach “render-refine-repeat”.

We train this render-refine-repeat synthesis approach using the ACID dataset. In particular, we sample a video from the dataset and then a frame from that video. We then use this method to render several new views moving into the scene along the same camera trajectory as the ground truth video, as shown in the figure below, and compare these rendered frames to the corresponding ground truth video frames to derive a training signal. We also include an adversarial setup that tries to distinguish synthesized frames from real images, encouraging the generated imagery to appear more realistic.

Infinite Nature can synthesize views corresponding to any camera trajectory. During training, we run our system for T steps to generate T views along a camera trajectory calculated from a training video sequence, then compare the resulting synthesized views to the ground truth ones. In the figure, each camera viewpoint is generated from the previous one by performing a warp operation R, followed by the neural refinement operation gθ.

The resulting system can generate compelling flythroughs, as featured on the project webpage, along with a “flight simulator” Colab demo. Unlike prior methods on video synthesis, this method allows the user to interactively control the camera and can generate much longer camera paths.


InfiniteNature-Zero: Learning Flythroughs from Still Photos

One problem with this first approach is that video is difficult to work with as training data. High-quality video with the right kind of camera motion is challenging to find, and the aesthetic quality of an individual video frame generally cannot compare to that of an intentionally captured nature photograph. Therefore, in “InfiniteNature-Zero: Learning Perpetual View Generation of Natural Scenes from Single Images”, we build on the render-refine-repeat strategy above, but devise a way to learn perpetual view synthesis from collections of still photos — no videos needed. We call this method InfiniteNature-Zero because it learns from “zero” videos. At first, this might seem like an impossible task — how can we train a model to generate video flythroughs of scenes when all it’s ever seen are isolated photos?

To solve this problem, we had the key insight that if we take an image and render a camera path that forms a cycle — that is, where the path loops back such that the last image is from the same viewpoint as the first — then we know that the last synthesized image along this path should be the same as the input image. Such cycle consistency provides a training constraint that helps the model learn to fill in missing regions and increase image resolution during each step of view generation.

However, training with these camera cycles is insufficient for generating long and stable view sequences, so as in our original work, we include an adversarial strategy that considers long, non-cyclic camera paths, like the one shown in the figure above. In particular, if we render T frames from a starting frame, we optimize our render-refine-repeat model such that a discriminator network can’t tell which was the starting frame and which was the final synthesized frame. Finally, we add a component trained to generate high-quality sky regions to increase the perceived realism of the results.

With these insights, we trained InfiniteNature-Zero on collections of landscape photos, which are available in large quantities online. Several resulting videos are shown below — these demonstrate beautiful, diverse natural scenery that can be explored along arbitrarily long camera paths. Compared to our prior work — and to prior video synthesis methods — these results exhibit significant improvements in quality and diversity of content (details available in the paper).




Several nature flythroughs generated by InfiniteNature-Zero from single starting photos.

Conclusion

There are a number of exciting future directions for this work. For instance, our methods currently synthesize scene content based only on the previous frame and its depth map; there is no persistent underlying 3D representation. Our work points towards future algorithms that can generate complete, photorealistic, and consistent 3D worlds.


Acknowledgements

Infinite Nature and InfiniteNature-Zero are the result of a collaboration between researchers at Google Research, UC Berkeley, and Cornell University. The key contributors to the work represented in this post include Angjoo Kanazawa, Andrew Liu, Richard Tucker, Zhengqi Li, Noah Snavely, Qianqian Wang, Varun Jampani, and Ameesh Makadia.

Source: Google AI Blog


Open Images V7 — Now Featuring Point Labels

Open Images is a computer vision dataset covering ~9 million images with labels spanning thousands of object categories. Researchers around the world use Open Images to train and evaluate computer vision models. Since the initial release of Open Images in 2016, which included image-level labels covering 6k categories, we have provided multiple updates to enrich annotations and expand the potential use cases of the dataset. Through several releases, we have added image-level labels for over 20k categories on all images and bounding box annotations, visual relations, instance segmentations, and localized narratives (synchronized voice, mouse trace, and text caption) on a subset of 1.9M images.

Today, we are happy to announce the release of Open Images V7, which expands the Open Images dataset even further with a new annotation type called point-level labels and includes a new all-in-one visualization tool that allows a better exploration of the rich data available.


Point Labels

The main strategy used to collect the new point-level label annotations leveraged suggestions from a machine learning (ML) model and human verification. First, the ML model selected points of interest and asked a yes or no question, e.g., “is this point on a pumpkin?”. Then, human annotators spent an average of 1.1 seconds answering the yes or no questions. We aggregated the answers from different annotators over the same question and assigned a final “yes”, “no”, or “unsure” label to each annotated point.

Illustration of the annotations interface.
(Image by Lenore Edman, under CC BY 2.0 license)

For each annotated image, we provide a collection of points, each with a “yes” or “no” label for a given class. These points provide sparse information that can be used for the semantic segmentation task. We collected a total of 38.6M new point annotations (12.4M with “yes” labels) that cover 5.8 thousand classes and 1.4M images.

By focusing on point labels, we expanded the number of images annotated and categories covered. We also concentrated the efforts of our annotators on efficiently collecting useful information. Compared to our instance segmentation, the new points include 16x more classes and cover more images. The new points also cover 9x more classes than our box annotations. Compared to existing segmentation datasets, like PASCAL VOC, COCO, Cityscapes, LVIS, or ADE20K, our annotations cover more classes and more images than previous work. The new point label annotations are the first type of annotation in Open Images that provides localization information for both things (countable objects, like cars, cats, and catamarans), and stuff categories (uncountable objects like grass, granite, and gravel). Overall, the newly collected data is roughly equivalent to two years of human annotation effort.

Our initial experiments show that this type of sparse data is suitable for both training and evaluating segmentation models. Training a model directly on sparse data allows us to reach comparable quality to training on dense annotations. Similarly, we show that one can directly compute the traditional semantic segmentation intersection-over-union (IoU) metric over sparse data. The ranking across different methods is preserved, and the sparse IoU values are an accurate estimate of its dense version. See our paper for more details.

Below, we show four example images with their point-level labels, illustrating the rich and diverse information these annotations provide. Circles ⭘ are “yes” labels, and squares are “no” labels.

Four example images with point-level labels.
Images by Richie Diesterheft, John AM Nueva, Sarah Ackerman, and C Thomas, all under CC BY 2.0 license.

New Visualizers

In addition to the new data release, we also expanded the available visualizations of the Open Images annotations. The Open Images website now includes dedicated visualizers to explore the localized narratives annotations, the new point-level annotations, and a new all-in-one view. This new all-in-one view is available for the subset of 1.9M densely annotated images and allows one to explore the rich annotations that Open Images has accumulated over seven releases. On average these images have annotations for 6.7 image-labels (classes), 8.3 boxes, 1.7 relations, 1.5 masks, 0.4 localized narratives and 34.8 point-labels per image.

Below, we show two example images with various annotations in the all-in-one visualizer. The figures show the image-level labels, bounding boxes, box relations, instance masks, localized narrative mouse trace and caption, and point-level labels. The + classes have positive annotations (of any kind), while classes have only negative annotations (image-level or point-level).

Two example images with various annotations in the all-in-one visualizer.
Images by Jason Paris, and Rubén Vique, all under CC BY 2.0 license.

Conclusion

We hope that this new data release will enable computer vision research to cover ever more diverse and challenging scenarios. As the quality of automated semantic segmentation models improves over common classes, we want to move towards the long tail of visual concepts, and sparse point annotations are a step in that direction. More and more works are exploring how to use such sparse annotations (e.g., as supervision for instance segmentation or semantic segmentation), and Open Images V7 contributes to this research direction. We are looking forward to seeing what you will build next.


Acknowledgements

Thanks to Vittorio Ferrari, Jordi Pont-Tuset, Alina Kuznetsova, Ashlesha Sadras, and the annotators team for their support creating this new data release.

Source: Google AI Blog


Learning to Walk in the Wild from Terrain Semantics

An important promise for quadrupedal robots is their potential to operate in complex outdoor environments that are difficult or inaccessible for humans. Whether it’s to find natural resources deep in the mountains, or to search for life signals in heavily-damaged earthquake sites, a robust and versatile quadrupedal robot could be very helpful. To achieve that, a robot needs to perceive the environment, understand its locomotion challenges, and adapt its locomotion skill accordingly. While recent advances in perceptive locomotion have greatly enhanced the capability of quadrupedal robots, most works focus on indoor or urban environments, thus they cannot effectively handle the complexity of off-road terrains. In these environments, the robot needs to understand not only the terrain shape (e.g., slope angle, smoothness), but also its contact properties (e.g., friction, restitution, deformability), which are important for a robot to decide its locomotion skills. As existing perceptive locomotion systems mostly focus on the use of depth cameras or LiDARs, it can be difficult for these systems to estimate such terrain properties accurately.

In “Learning Semantics-Aware Locomotion Skills from Human Demonstrations”, we design a hierarchical learning framework to improve a robot’s ability to traverse complex, off-road environments. Unlike previous approaches that focus on environment geometry, such as terrain shape and obstacle locations, we focus on environment semantics, such as terrain type (grass, mud, etc.) and contact properties, which provide a complementary set of information useful for off-road environments. As the robot walks, the framework decides the locomotion skill, including the speed and gait (i.e., shape and timing of the legs’ movement) of the robot based on the perceived semantics, which allows the robot to walk robustly on a variety of off-road terrains, including rocks, pebbles, deep grass, mud, and more.

Our framework selects skills (gait and speed) of the robot from the camera RGB image. We first compute the speed from terrain semantics, and then select a gait based on the speed.

Overview
The hierarchical framework consists of a high-level skill policy and a low level motor controller. The skill policy selects a locomotion skill based on camera images, and the motor controller converts the selected skill into motor commands. The high-level skill policy is further decomposed into a learned speed policy and a heuristic-based gait selector. To decide a skill, the speed policy first computes the desired forward speed, based on the semantic information from the onboard RGB camera. For energy efficiency and robustness, quadrupedal robots usually select a different gait for each speed, so we designed the gait selector to compute a desired gait based on the forward speed. Lastly, a low-level convex model-predictive controller (MPC) converts the desired locomotion skill into motor torque commands, and executes them on the real hardware. We train the speed policy directly in the real world using imitation learning because it requires fewer training data compared to standard reinforcement learning algorithms.

The framework consists of a high-level skill policy and a low-level motor controller.

Learning Speed Command from Human Demonstrations
As the central component in our pipeline, the speed policy outputs the desired forward speed of the robot based on the RGB image from the onboard camera. Although many robot learning tasks can leverage simulation as a source of lower-cost data collection, we train the speed policy in the real world because accurate simulation of complex and diverse off-road environments is not yet available. As policy learning in the real world is time-consuming and potentially unsafe, we make two key design choices to improve the data efficiency and safety of our system.

The first is learning from human demonstrations. Standard reinforcement learning algorithms typically learn by exploration, where the agent attempts different actions in an environment and builds preferences based on the rewards received. However, such explorations can be potentially unsafe, especially in off-road environments, since any robot failures can damage both the robot hardware and the surrounding environment. To ensure safety, we train the speed policy using imitation learning from human demonstrations. We first ask a human operator to teleoperate the robot on a variety of off-road terrains, where the operator controls the speed and heading of the robot using a remote joystick. Next, we collect the training data by storing (image, forward_speed) pairs. We then train the speed policy using standard supervised learning to predict the human operator’s speed command. As it turns out, the human demonstration is both safe and high-quality, and allows the robot to learn a proper speed choice for different terrains.

The second key design choice is the training method. Deep neural networks, especially those involving high-dimensional visual inputs, typically require lots of data to train. To reduce the amount of real-world training data required, we first pre-train a semantic segmentation model on RUGD (an off-road driving dataset where the images look similar to those captured by the robot’s onboard camera), where the model predicts the semantic class (grass, mud, etc.) for every pixel in the camera image. We then extract a semantic embedding from the model’s intermediate layers and use that as the feature for on-robot training. With the pre-trained semantic embedding, we can train the speed policy effectively using less than 30 minutes of real-world data, which greatly reduces the amount of effort required.

We pre-train a semantic segmentation model and extract a semantic embedding to be fine-tuned on robot data.

Gait Selection and Motor Control
The next component in the pipeline, the gait selector, computes the appropriate gait based on the speed command from the speed policy. The gait of a robot, including its stepping frequency, swing height, and base height, can greatly affect the robot’s ability to traverse different terrains.

Scientific studies have shown that animals switch between different gaits at different speeds, and this result is further validated in quadrupedal robots, so we designed the gait selector to compute a robust gait for each speed. Compared to using a fixed gait across all speeds, we find that the gait selector further enhances the robot’s navigation performance on off-road terrains (more details in the paper).

The last component of the pipeline is a motor controller, which converts the speed and gait commands into motor torques. Similar to previous work, we use separate control strategies for swing and stance legs. By separating the task of skill learning and motor control, the skill policy only needs to output the desired speed, and does not need to learn low-level locomotion controls, which greatly simplifies the learning process.

Experiment Results
We implemented our framework on an A1 quadrupedal robot and tested it on an outdoor trail with multiple terrain types, including grass, gravel, and asphalt, which pose varying degrees of difficulty for the robot. For example, while the robot needs to walk slowly with high foot swings in deep grass to prevent its foot from getting stuck, on asphalt it can walk much faster with lower foot swings for better energy efficiency. Our framework captures such differences and selects an appropriate skill for each terrain type: slow speed (0.5m/s) on deep grass, medium speed (1m/s) on gravel, and high speed (1.4m/s) on asphalt. It completes the 460m-long trail in 9.6 minutes with an average speed of 0.8m/s (i.e., that’s 1.8 miles or 2.9 kilometers per hour). In contrast, non-adaptive policies either cannot complete the trail safely or walk significantly slower (0.5m/s), illustrating the importance of adapting locomotion skills based on the perceived environments.

The framework selects different speeds based on conditions of the trail.

To test generalizability, we also deployed the robot to a number of trails that are not seen during training. The robot traverses through all of them without failure, and adjusts its locomotion skills based on terrain semantics. In general, the skill policy selects a faster skill on rigid and flat terrains and a slower speed on deformable or uneven terrain. At the time of writing, the robot has traversed over 6km of outdoor trails without failure.

With the framework, the robot walks safely on a variety of outdoor terrains not seen during training.

Conclusion
In this work, we present a hierarchical framework to learn semantic-aware locomotion skills for off-road locomotion. Using less than 30 minutes of human demonstration data, the framework learns to adjust the speed and gait of the robot based on the perceived semantics of the environment. The robot can walk safely and efficiently on a wide variety of off-road terrains. One limitation of our framework is that it only adjusts locomotion skills for standard walking and does not support more agile behaviors such as jumping, which can be essential for traversing more difficult terrains with gaps or hurdles. Another limitation is that our framework currently requires manual steering commands to follow a desired path and reach the goal. In future work, we plan to look into a deeper integration of high-level skill policy with the low-level controller for more agile behaviors, and incorporate navigation and path planning into the framework so that the robot can operate fully autonomously in challenging off-road environments.

Acknowledgements
We would like to thank our paper co-authors: Xiangyun Meng, Wenhao Yu, Tingnan Zhang, Jie Tan, and Byron Boots. We would also like to thank the team members of Robotics at Google for discussions and feedback.

Source: Google AI Blog


High-Definition Segmentation in Google Meet

In recent years video conferencing has played an increasingly important role in both work and personal communication for many users. Over the past two years, we have enhanced this experience in Google Meet by introducing privacy-preserving machine learning (ML) powered background features, also known as “virtual green screen”, which allows users to blur their backgrounds or replace them with other images. What is unique about this solution is that it runs directly in the browser without the need to install additional software.

So far, these ML-powered features have relied on CPU inference made possible by leveraging neural network sparsity, a common solution that works across devices, from entry level computers to high-end workstations. This enables our features to reach the widest audience. However, mid-tier and high-end devices often have powerful GPUs that remain untapped for ML inference, and existing functionality allows web browsers to access GPUs via shaders (WebGL).

With the latest update to Google Meet, we are now harnessing the power of GPUs to significantly improve the fidelity and performance of these background effects. As we detail in “Efficient Heterogeneous Video Segmentation at the Edge”, these advances are powered by two major components: 1) a novel real-time video segmentation model and 2) a new, highly efficient approach for in-browser ML acceleration using WebGL. We leverage this capability to develop fast ML inference via fragment shaders. This combination results in substantial gains in accuracy and latency, leading to crisper foreground boundaries.

CPU segmentation vs. HD segmentation in Meet.

Moving Towards Higher Quality Video Segmentation Models
To predict finer details, our new segmentation model now operates on high definition (HD) input images, rather than lower-resolution images, effectively doubling the resolution over the previous model. To accommodate this, the model must be of higher capacity to extract features with sufficient detail. Roughly speaking, doubling the input resolution quadruples the computation cost during inference.

Inference of high-resolution models using the CPU is not feasible for many devices. The CPU may have a few high-performance cores that enable it to execute arbitrary complex code efficiently, but it is limited in its ability for the parallel computation required for HD segmentation. In contrast, GPUs have many, relatively low-performance cores coupled with a wide memory interface, making them uniquely suitable for high-resolution convolutional models. Therefore, for mid-tier and high-end devices, we adopt a significantly faster pure GPU pipeline, which is integrated using WebGL.

This change inspired us to revisit some of the prior design decisions for the model architecture.

  • Backbone: We compared several widely-used backbones for on-device networks and found EfficientNet-Lite to be a better fit for the GPU because it removes the squeeze-and-excitation block, a component that is inefficient on WebGL (more below).
  • Decoder: We switched to a multi-layer perceptron (MLP) decoder consisting of 1x1 convolutions instead of using simple bilinear upsampling or the more expensive squeeze-and-excitation blocks. MLP has been successfully adopted in other segmentation architectures, like DeepLab and PointRend, and is efficient to compute on both CPU and GPU.
  • Model size: With our new WebGL inference and the GPU-friendly model architecture, we were able to afford a larger model without sacrificing the real-time frame rate necessary for smooth video segmentation. We explored the width and the depth parameters using a neural architecture search.
HD segmentation model architecture.

In aggregate, these changes substantially improve the mean Intersection over Union (IoU) metric by 3%, resulting in less uncertainty and crisper boundaries around hair and fingers.

We have also released the accompanying model card for this segmentation model, which details our fairness evaluations. Our analysis shows that the model is consistent in its performance across the various regions, skin-tones, and genders, with only small deviations in IoU metrics.

Model     Resolution     Inference     IoU     Latency (ms)
CPU segmenter     256×144     Wasm SIMD     94.0%     8.7
GPU segmenter     512×288     WebGL     96.9%     4.3
Comparison of the previous segmentation model vs. the new HD segmentation model on a Macbook Pro (2018).

Accelerating Web ML with WebGL
One common challenge for web-based inference is that web technologies can incur a performance penalty when compared to apps running natively on-device. For GPUs, this penalty is substantial, only achieving around 25% of native OpenGL performance. This is because WebGL, the current GPU standard for Web-based inference, was primarily designed for image rendering, not arbitrary ML workloads. In particular, WebGL does not include compute shaders, which allow for general purpose computation and enable ML workloads in mobile and native apps.

To overcome this challenge, we accelerated low-level neural network kernels with fragment shaders that typically compute the output properties of a pixel like color and depth, and then applied novel optimizations inspired by the graphics community. As ML workloads on GPUs are often bound by memory bandwidth rather than compute, we focused on rendering techniques that would improve the memory access, such as Multiple Render Targets (MRT).

MRT is a feature in modern GPUs that allows rendering images to multiple output textures (OpenGL objects that represent images) at once. While MRT was originally designed to support advanced graphics rendering such as deferred shading, we found that we could leverage this feature to drastically reduce the memory bandwidth usage of our fragment shader implementations for critical operations, like convolutions and fully connected layers. We do so by treating intermediate tensors as multiple OpenGL textures.

In the figure below, we show an example of intermediate tensors having four underlying GL textures each. With MRT, the number of GPU threads, and thus effectively the number of memory requests for weights, is reduced by a factor of four and saves memory bandwidth usage. Although this introduces considerable complexities in the code, it helps us reach over 90% of native OpenGL performance, closing the gap with native applications.

Left: A classic implementation of Conv2D with 1-to-1 correspondence of tensor and an OpenGL texture. Red, yellow, green, and blue boxes denote different locations in a single texture each for intermediate tensor A and B. Right: Our implementation of Conv2D with MRT where intermediate tensors A and B are realized with a set of 4 GL textures each, depicted as red, yellow, green, and blue boxes. Note that this reduces the request count for weights by 4x.

Conclusion
We have made rapid strides in improving the quality of real-time segmentation models by leveraging the GPU on mid-tier and high-end devices for use with Google Meet. We look forward to the possibilities that will be enabled by upcoming technologies like WebGPU, which bring compute shaders to the web. Beyond GPU inference, we're also working on improving the segmentation quality for lower powered devices with quantized inference via XNNPACK WebAssembly.

Acknowledgements
Special thanks to those on the Meet team and others who worked on this project, in particular Sebastian Jansson, Sami Kalliomäki, Rikard Lundmark, Stephan Reiter, Fabian Bergmark, Ben Wagner, Stefan Holmer, Dan Gunnarsson, Stéphane Hulaud, and to all our team members who made this possible: Siargey Pisarchyk, Raman Sarokin, Artsiom Ablavatski, Jamie Lin, Tyler Mullen, Gregory Karpiak, Andrei Kulik, Karthik Raveendran, Trent Tolley, and Matthias Grundmann.

Source: Google AI Blog