Tag Archives: machine learning

Machine Learning GDEs: Q1 2021 highlights, projects and achievements

Posted by HyeJung Lee and MJ You, Google ML Ecosystem Community Managers. Reviewed by Soonson Kwon, Developer Relations Program Manager.

Google Developers Experts is a community of passionate developers who love to share their knowledge with others. Many of them specialize in Machine Learning (ML). Despite many unexpected changes over the last months and reduced opportunities for various in person activities during the ongoing pandemic, their enthusiasm did not stop.

Here are some highlights of the ML GDE’s hard work during the Q1 2021 which contributed to the global ML ecosystem.

ML GDE YouTube channel

ML GDE YouTube page

With the initiative and lead of US-based GDE Margaret Maynard-Reid, we launched the ML GDEs YouTube channel. It is a great way for GDEs to reach global audiences, collaborate as a community, create unique content and promote each other's work. It will contain all kinds of ML related topics: talks on technical topics, tutorials, interviews with another (ML) GDE, a Googler or anyone in the ML community etc. Many videos have already been uploaded, including: ML GDE’s intro from all over the world, tips for TensorFlow & GCP Certification and how to use Google Cloud Platform etc. Subscribe to the channel now!!

TensorFlow Everywhere

TensorFlow Everywhere logo

17 ML GDEs presented at TensorFlow Everywhere (a global community-led event series for TensorFlow and Machine Learning enthusiasts and developers around the world) hosted by local TensorFlow user groups. You can watch the recorded sessions in the TensorFlow Everywhere playlist on the ML GDE Youtube channel. Most of the sessions cover new features in Tensorflow.

International Women’s Day

Many ML GDEs participated in activities to celebrate International Women’s Day (March 8th). GDE Ruqiya Bin Safi (based in Saudi Arabia) cooperated with WTM Saudi Arabia to organize “Socialthon” - social development hackathons and gave a talk “Successful Experiences in Social Development", which reached 77K viervers live and hit 10K replays. India-based GDE Charmi Chokshi participated in GirlScript's International Women's Day event and gave a talk: “Women In Tech and How we can help the underrepresented in the challenging world”. If you’re looking for more inspiring materials, check out the “Women in AI” playlist on our ML GDE YouTube channel!

Mentoring

ML GDEs are also very active in mentoring community developers, students in the Google Developer Student Clubs and startups in the Google for Startups Accelerator program. Among many, GDE Arnaldo Gualberto (Brazil) conducted mentorship sessions for startups in the Google Fast Track program, discussing how to solve challanges using Machine Learning/Deep Learning with TensorFlow.

TensorFlow

Practical Adversarial Robustness in Deep Learning: Problems and Solutions
ML using TF cookbook and ML for Dummies book

Meanwhile in Europe, GDEs Alexia Audevart (based in France) and Luca Massaron (based in Italy) released “Machine Learning using TensorFlow Cookbook”. It provides simple and effective ideas to successfully use TensorFlow 2.x in computer vision, NLP and tabular data projects. Additionally, Luca published the second edition of the Machine Learning For Dummies book, first published in 2015. Her latest edition is enhanced with product updates and the principal is a larger share of pages devoted to discussion of Deep Learning and TensorFlow / Keras usage.

YouTube video screenshot

On top of her women-in-tech related activities, Ruqiya Bin Safi is also running a “Welcome to Deep Learning Course and Orientation” monthly workshop throughout 2021. The course aims to help participants gain foundational knowledge of deep learning algorithms and get practical experience in building neural networks in TensorFlow.

TensorFlow Project showcase

Nepal-based GDE Kshitiz Rimal gave a talk “TensorFlow Project Showcase: Cash Recognition for Visually Impaired" on his project which uses TensorFlow, Google Cloud AutoML and edge computing technologies to create a solution for the visually impaired community in Nepal.

Screenshot of TF Everywhere NA talk

On the other side of the world, in Canada, GDE Tanmay Bakshi presented a talk “Machine Learning-powered Pipelines to Augment Human Specialists” during TensorFlow Everywhere NA. It covered the world of NLP through Deep Learning, how it's historically been done, the Transformer revolution, and how using the TensorFlow & Keras to implement use cases ranging from small-scale name generation to large-scale Amazon review quality ranking.

Google Cloud Platform

Google Cloud Platform YouTube playlist screenshot

We have been equally busy on the GCP side as well. In the US, GDE Srivatsan Srinivasan created a series of videos called “Artificial Intelligence on Google Cloud Platform”, with one of the episodes, "Google Cloud Products and Professional Machine Learning Engineer Certification Deep Dive", getting over 3,000 views.

ML Analysis Pipeline

Korean GDE Chansung Park contributed to TensorFlow User Group Korea with his “Machine Learning Pipeline (CI/CD for ML Products in GCP)” analysis, focused on about machine learning pipeline in Google Cloud Platform.

Analytics dashboard

Last but not least, GDE Gad Benram based in Israel wrote an article on “Seven Tips for Forecasting Cloud Costs”, where he explains how to build and deploy ML models for time series forecasting with Google Cloud Run. It is linked with his solution of building a cloud-spend control system that helps users more-easily analyze their cloud costs.

If you want to know more about the Google Experts community and all their global open-source ML contributions, visit the GDE Directory and connect with GDEs on Twitter and LinkedIn. You can also meet them virtually on the ML GDE’s YouTube Channel!

KELM: Integrating Knowledge Graphs with Language Model Pre-training Corpora

Large pre-trained natural language processing (NLP) models, such as BERT, RoBERTa, GPT-3, T5 and REALM, leverage natural language corpora that are derived from the Web and fine-tuned on task specific data, and have made significant advances in various NLP tasks. However, natural language text alone represents a limited coverage of knowledge, and facts may be contained in wordy sentences in many different ways. Furthermore, existence of non-factual information and toxic content in text can eventually cause biases in the resulting models.

Alternate sources of information are knowledge graphs (KGs), which consist of structured data. KGs are factual in nature because the information is usually extracted from more trusted sources, and post-processing filters and human editors ensure inappropriate and incorrect content are removed. Therefore, models that can incorporate them carry the advantages of improved factual accuracy and reduced toxicity. However, their different structural format makes it difficult to integrate them with the existing pre-training corpora in language models.

In “Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training” (KELM), accepted at NAACL 2021, we explore converting KGs to synthetic natural language sentences to augment existing pre-training corpora, enabling their integration into the pre-training of language models without architectural changes. To that end, we leverage the publicly available English Wikidata KG and convert it into natural language text in order to create a synthetic corpus. We then augment REALM, a retrieval-based language model, with the synthetic corpus as a method of integrating natural language corpora and KGs in pre-training. We have released this corpus publicly for the broader research community.

Converting KG to Natural Language Text
KGs consist of factual information represented explicitly in a structured format, generally in the form of [subject entity, relation, object entity] triples, e.g., [10x10 photobooks, inception, 2012]. A group of related triples is called an entity subgraph. An example of an entity subgraph that builds on the previous example of a triple is { [10x10 photobooks, instance of, Nonprofit Organization], [10x10 photobooks, inception, 2012] }, which is illustrated in the figure below. A KG can be viewed as interconnected entity subgraphs.

Converting subgraphs into natural language text is a standard task in NLP known as data-to-text generation. Although there have been significant advances on data-to-text-generation on benchmark datasets such as WebNLG, converting an entire KG into natural text has additional challenges. The entities and relations in large KGs are more vast and diverse than small benchmark datasets. Moreover, benchmark datasets consist of predefined subgraphs that can form fluent meaningful sentences. With an entire KG, such a segmentation into entity subgraphs needs to be created as well.

An example illustration of how the pipeline converts an entity subgraph (in bubbles) into synthetic natural sentences (far right).

In order to convert the Wikidata KG into synthetic natural sentences, we developed a verbalization pipeline named “Text from KG Generator” (TEKGEN), which is made up of the following components: a large training corpus of heuristically aligned Wikipedia text and Wikidata KG triples, a text-to-text generator (T5) to convert the KG triples to text, an entity subgraph creator for generating groups of triples to be verbalized together, and finally, a post-processing filter to remove low quality outputs. The result is a corpus containing the entire Wikidata KG as natural text, which we call the Knowledge-Enhanced Language Model (KELM) corpus. It consists of ~18M sentences spanning ~45M triples and ~1500 relations.

Converting a KG to natural language, which is then used for language model augmentation

Integrating Knowledge Graph and Natural Text for Language Model Pre-training
Our evaluation shows that KG verbalization is an effective method of integrating KGs with natural language text. We demonstrate this by augmenting the retrieval corpus of REALM, which includes only Wikipedia text.

To assess the effectiveness of verbalization, we augment the REALM retrieval corpus with the KELM corpus (i.e., “verbalized triples”) and compare its performance against augmentation with concatenated triples without verbalization. We measure the accuracy with each data augmentation technique on two popular open-domain question answering datasets: Natural Questions and Web Questions.

Augmenting REALM with even the concatenated triples improves accuracy, potentially adding information not expressed in text explicitly or at all. However, augmentation with verbalized triples allows for a smoother integration of the KG with the natural language text corpus, as demonstrated by the higher accuracy. We also observed the same trend on a knowledge probe called LAMA that queries the model using fill-in-the-blank questions.

Conclusion
With KELM, we provide a publicly-available corpus of a KG as natural text. We show that KG verbalization can be used to integrate KGs with natural text corpora to overcome their structural differences. This has real-world applications for knowledge-intensive tasks, such as question answering, where providing factual knowledge is essential. Moreover, such corpora can be applied in pre-training of large language models, and can potentially reduce toxicity and improve factuality. We hope that this work encourages further advances in integrating structured knowledge sources into pre-training of large language models.

Acknowledgements
This work has been a collaborative effort involving Oshin Agarwal, Heming Ge, Siamak Shakeri and Rami Al-Rfou. We thank William Woods, Jonni Kanerva, Tania Rojas-Esponda, Jianmo Ni, Aaron Cohen and Itai Rolnick for rating a sample of the synthetic corpus to evaluate its quality. We also thank Kelvin Guu for his valuable feedback on the paper.

Source: Google AI Blog


KELM: Integrating Knowledge Graphs with Language Model Pre-training Corpora

Large pre-trained natural language processing (NLP) models, such as BERT, RoBERTa, GPT-3, T5 and REALM, leverage natural language corpora that are derived from the Web and fine-tuned on task specific data, and have made significant advances in various NLP tasks. However, natural language text alone represents a limited coverage of knowledge, and facts may be contained in wordy sentences in many different ways. Furthermore, existence of non-factual information and toxic content in text can eventually cause biases in the resulting models.

Alternate sources of information are knowledge graphs (KGs), which consist of structured data. KGs are factual in nature because the information is usually extracted from more trusted sources, and post-processing filters and human editors ensure inappropriate and incorrect content are removed. Therefore, models that can incorporate them carry the advantages of improved factual accuracy and reduced toxicity. However, their different structural format makes it difficult to integrate them with the existing pre-training corpora in language models.

In “Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training” (KELM), accepted at NAACL 2021, we explore converting KGs to synthetic natural language sentences to augment existing pre-training corpora, enabling their integration into the pre-training of language models without architectural changes. To that end, we leverage the publicly available English Wikidata KG and convert it into natural language text in order to create a synthetic corpus. We then augment REALM, a retrieval-based language model, with the synthetic corpus as a method of integrating natural language corpora and KGs in pre-training. We have released this corpus publicly for the broader research community.

Converting KG to Natural Language Text
KGs consist of factual information represented explicitly in a structured format, generally in the form of [subject entity, relation, object entity] triples, e.g., [10x10 photobooks, inception, 2012]. A group of related triples is called an entity subgraph. An example of an entity subgraph that builds on the previous example of a triple is { [10x10 photobooks, instance of, Nonprofit Organization], [10x10 photobooks, inception, 2012] }, which is illustrated in the figure below. A KG can be viewed as interconnected entity subgraphs.

Converting subgraphs into natural language text is a standard task in NLP known as data-to-text generation. Although there have been significant advances on data-to-text-generation on benchmark datasets such as WebNLG, converting an entire KG into natural text has additional challenges. The entities and relations in large KGs are more vast and diverse than small benchmark datasets. Moreover, benchmark datasets consist of predefined subgraphs that can form fluent meaningful sentences. With an entire KG, such a segmentation into entity subgraphs needs to be created as well.

An example illustration of how the pipeline converts an entity subgraph (in bubbles) into synthetic natural sentences (far right).

In order to convert the Wikidata KG into synthetic natural sentences, we developed a verbalization pipeline named “Text from KG Generator” (TEKGEN), which is made up of the following components: a large training corpus of heuristically aligned Wikipedia text and Wikidata KG triples, a text-to-text generator (T5) to convert the KG triples to text, an entity subgraph creator for generating groups of triples to be verbalized together, and finally, a post-processing filter to remove low quality outputs. The result is a corpus containing the entire Wikidata KG as natural text, which we call the Knowledge-Enhanced Language Model (KELM) corpus. It consists of ~18M sentences spanning ~45M triples and ~1500 relations.

Converting a KG to natural language, which is then used for language model augmentation

Integrating Knowledge Graph and Natural Text for Language Model Pre-training
Our evaluation shows that KG verbalization is an effective method of integrating KGs with natural language text. We demonstrate this by augmenting the retrieval corpus of REALM, which includes only Wikipedia text.

To assess the effectiveness of verbalization, we augment the REALM retrieval corpus with the KELM corpus (i.e., “verbalized triples”) and compare its performance against augmentation with concatenated triples without verbalization. We measure the accuracy with each data augmentation technique on two popular open-domain question answering datasets: Natural Questions and Web Questions.

Augmenting REALM with even the concatenated triples improves accuracy, potentially adding information not expressed in text explicitly or at all. However, augmentation with verbalized triples allows for a smoother integration of the KG with the natural language text corpus, as demonstrated by the higher accuracy. We also observed the same trend on a knowledge probe called LAMA that queries the model using fill-in-the-blank questions.

Conclusion
With KELM, we provide a publicly-available corpus of a KG as natural text. We show that KG verbalization can be used to integrate KGs with natural text corpora to overcome their structural differences. This has real-world applications for knowledge-intensive tasks, such as question answering, where providing factual knowledge is essential. Moreover, such corpora can be applied in pre-training of large language models, and can potentially reduce toxicity and improve factuality. We hope that this work encourages further advances in integrating structured knowledge sources into pre-training of large language models.

Acknowledgements
This work has been a collaborative effort involving Oshin Agarwal, Heming Ge, Siamak Shakeri and Rami Al-Rfou. We thank William Woods, Jonni Kanerva, Tania Rojas-Esponda, Jianmo Ni, Aaron Cohen and Itai Rolnick for rating a sample of the synthetic corpus to evaluate its quality. We also thank Kelvin Guu for his valuable feedback on the paper.

Source: Google AI Blog


Learning to Manipulate Deformable Objects

While the robotics research community has driven recent advances that enable robots to grasp a wide range of rigid objects, less research has been devoted to developing algorithms that can handle deformable objects. One of the challenges in deformable object manipulation is that it is difficult to specify such an object's configuration. For example, with a rigid cube, knowing the configuration of a fixed point relative to its center is sufficient to describe its arrangement in 3D space, but a single point on a piece of fabric can remain fixed while other parts shift. This makes it difficult for perception algorithms to describe the complete “state” of the fabric, especially under occlusions. In addition, even if one has a sufficiently descriptive state representation of a deformable object, its dynamics are complex. This makes it difficult to predict the future state of the deformable object after some action is applied to it, which is often needed for multi-step planning algorithms.

In "Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks," to appear at ICRA 2021, we release an open-source simulated benchmark, called DeformableRavens, with the goal of accelerating research into deformable object manipulation. DeformableRavens features 12 tasks that involve manipulating cables, fabrics, and bags and includes a set of model architectures for manipulating deformable objects towards desired goal configurations, specified with images. These architectures enable a robot to rearrange cables to match a target shape, to smooth a fabric to a target zone, and to insert an item in a bag. To our knowledge, this is the first simulator that includes a task in which a robot must use a bag to contain other items, which presents key challenges in enabling a robot to learn more complex relative spatial relations.

The DeformableRavens Benchmark
DeformableRavens expands our prior work on rearranging objects and includes a suite of 12 simulated tasks involving 1D, 2D, and 3D deformable structures. Each task contains a simulated UR5 arm with a mock gripper for pinch grasping, and is bundled with scripted demonstrators to autonomously collect data for imitation learning. Tasks randomize the starting state of the items within a distribution to test generality to different object configurations.

Examples of scripted demonstrators for manipulation of 1D (cable), 2D (fabric), and 3D (bag) deformable structures in our simulator, using PyBullet. These show three of the 12 tasks in DeformableRavens. Left: the task is to move the cable so it matches the underlying green target zone. Middle: the task is to wrap the cube with the fabric. Right: the task is to insert the item in the bag, then to lift and move the bag to the square target zone.

Specifying goal configurations for manipulation tasks can be particularly challenging with deformable objects. Given their complex dynamics and high-dimensional configuration spaces, goals cannot be as easily specified as a set of rigid object poses, and may involve complex relative spatial relations, such as “place the item inside the bag”. Hence, in addition to tasks defined by the distribution of scripted demonstrations, our benchmark also contains goal-conditioned tasks that are specified with goal images. For goal-conditioned tasks, a given starting configuration of objects must be paired with a separate image that shows the desired configuration of those same objects. A success for that particular case is then based on whether the robot is able to get the current configuration to be sufficiently close to the configuration conveyed in the goal image.

Goal-Conditioned Transporter Networks
To complement the goal-conditioned tasks in our simulated benchmark, we integrated goal-conditioning into our previously released Transporter Network architecture — an action-centric model architecture that works well on rigid object manipulation by rearranging deep features to infer spatial displacements from visual input. The architecture takes as input both an image of the current environment and a goal image with a desired final configuration of objects, computes deep visual features for both images, then combines the features using element-wise multiplication to condition pick and place correlations to manipulate both the rigid and deformable objects in the scene. A strength of the Transporter Network architecture is that it preserves the spatial structure of the visual images, which provides inductive biases that reformulate image-based goal conditioning into a simpler feature matching problem and improves the learning efficiency with convolutional networks.

An example task involving goal-conditioning is shown below. In order to place the green block into the yellow bag, the robot needs to learn spatial features that enable it to perform a multi-step sequence of actions to spread open the top opening of the yellow bag, before placing the block into it. After it places the block into the yellow bag, the demonstration ends in a success. If in the goal image the block were placed in the blue bag, then the demonstrator would need to put the block in the blue bag.

An example of a goal-conditioned task in DeformableRavens. Left: A frontal camera view of the UR5 robot and the bags, plus one item, in a desired goal configuration. Middle: The top-down orthographic image of this setup, which is size 160x320 and passed as the goal image to specify the task success criterion. Right: A video of the demonstration policy showing that the item goes into the yellow bag, instead of the blue one.

Results
Our results suggest that goal-conditioned Transporter Networks enable agents to manipulate deformable structures into flexibly specified configurations without test-time visual anchors for target locations. We also significantly extend prior results using Transporter Networks for manipulating deformable objects by testing on tasks with 2D and 3D deformables. Results additionally suggest that the proposed approach is more sample-efficient than alternative approaches that rely on using ground-truth pose and vertex position instead of images as input.

For example, the learned policies can effectively simulate bagging tasks, and one can also provide a goal image so that the robot must infer into which bag the item should be placed.

An example of policies trained using Transporter Networks applied in action on bagging tasks, where the objective is to first open the bag, then to put one (left) or two (right) items in the bag, then to insert the bag into the target zone. The left animation is zoomed in for clarity.
An example of the learned policy using Goal-Conditioned Transporter Networks. Left: The frontal camera view. Middle: The goal image that the Goal-Conditioned Transporter Network receives as input, which shows that the item should go in the red bag, instead of the blue distractor bag. Right: The learned policy putting the item in the red bag, instead of the distractor bag (colored yellow in this case).

We encourage other researchers to check out our open-source code to try the simulated environments and to build upon this work. For more details, please check out our paper.

Future Work
This work exposes several directions for future development, including the mitigation of observed failure modes. As shown below, one failure is when the robot pulls the bag upwards and causes the item to fall out. Another is when the robot places the item on the irregular exterior surface of the bag, which causes the item to fall off. Future algorithmic improvements might allow actions that operate at a higher frequency rate, so that the robot can react in real time to counteract such failures.

Examples of failure cases from the learned Transporter-based policies on bag manipulation tasks. Left: the robot inserts the cube into the opening of the bag, but the bag pulling action fails to enclose the cube. Right: the robot fails to insert the cube into the opening, and is unable to perform recovery actions to insert the cube in a better location.

Another area for advancement is to train Transporter Network-based models for deformable object manipulation using techniques that do not require expert demonstrations, such as example-based control or model-based reinforcement learning. Finally, the ongoing pandemic limited access to physical robots, so in future work we will explore the necessary ingredients to get a system working with physical bags, and to extend the system to work with different types of bags.

Acknowledgments
This research was conducted during Daniel Seita's internship at Google’s NYC office in Summer 2020. We thank our collaborators Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sindhwani, and Ken Goldberg.

Source: Google AI Blog


Crisscrossed Captions: Semantic Similarity for Images and Text

The past decade has seen remarkable progress on automatic image captioning, a task in which a computer algorithm creates written descriptions for images. Much of the progress has come through the use of modern deep learning methods developed for both computer vision and natural language processing, combined with large scale datasets that pair images with descriptions created by people. In addition to supporting important practical applications, such as providing descriptions of images for visually impaired people, these datasets also enable investigations into important and exciting research questions about grounding language in visual inputs. For example, learning deep representations for a word like “car”, means using both linguistic and visual contexts.

Image captioning datasets that contain pairs of textual descriptions and their corresponding images, such as MS-COCO and Flickr30k, have been widely used to learn aligned image and text representations and to build captioning models. Unfortunately, these datasets have limited cross-modal associations: images are not paired with other images, captions are only paired with other captions of the same image (also called co-captions), there are image-caption pairs that match but are not labeled as a match, and there are no labels that indicate when an image-caption pair does not match. This undermines research into how inter-modality learning (connecting captions to images, for example) impacts intra-modality tasks (connecting captions to captions or images to images). This is important to address, especially because a fair amount of work on learning from images paired with text is motivated by arguments about how visual elements should inform and improve representations of language.

To address this evaluation gap, we present "Crisscrossed Captions: Extended Intramodal and Intermodal Semantic Similarity Judgments for MS-COCO", which was recently presented at EACL 2021. The Crisscrossed Captions (CxC) dataset extends the development and test splits of MS-COCO with semantic similarity ratings for image-text, text-text and image-image pairs. The rating criteria are based on Semantic Textual Similarity, an existing and widely-adopted measure of semantic relatedness between pairs of short texts, which we extend to include judgments about images as well. In all, CxC contains human-derived semantic similarity ratings for 267,095 pairs (derived from 1,335,475 independent judgments), a massive extension in scale and detail to the 50k original binary pairings in MS-COCO’s development and test splits. We have released CxC’s ratings, along with code to merge CxC with existing MS-COCO data. Anyone familiar with MS-COCO can thus easily enhance their experiments with CxC.

Crisscrossed Captions extends the MS-COCO evaluation sets by adding human-derived semantic similarity ratings for existing image-caption pairs and co-captions (solid lines), and it increases rating density by adding human ratings for new image-caption, caption-caption and image-image pairs (dashed lines).*

Creating the CxC Dataset
If a picture is worth a thousand words, it is likely because there are so many details and relationships between objects that are generally depicted in pictures. We can describe the texture of the fur on a dog, name the logo on the frisbee it is chasing, mention the expression on the face of the person who has just thrown the frisbee, or note the vibrant red on a large leaf in a tree above the person’s head, and so on.

The CxC dataset extends the MS-COCO evaluation splits with graded similarity associations within and across modalities. MS-COCO has five captions for each image, split into 410k training, 25k development, and 25k test captions (for 82k, 5k, 5k images, respectively). An ideal extension would rate every pair in the dataset (caption-caption, image-image, and image-caption), but this is infeasible as it would require obtaining human ratings for billions of pairs.

Given that randomly selected pairs of images and captions are likely to be dissimilar, we came up with a way to select items for human rating that would include at least some new pairs with high expected similarity. To reduce the dependence of the chosen pairs on the models used to find them, we introduce an indirect sampling scheme (depicted below) where we encode images and captions using different encoding methods and compute the similarity between pairs of same modality items, resulting in similarity matrices. Images are encoded using Graph-RISE embeddings, while captions are encoded using two methods — Universal Sentence Encoder (USE) and average bag-of-words (BoW) based on GloVe embeddings. Since each MS-COCO example has five co-captions, we average the co-caption encodings to create a single representation per example, ensuring all caption pairs can be mapped to image pairs (more below on how we select intermodality pairs).

Top: Text similarity matrix (each cell corresponds to a similarity score) constructed using averaged co-caption encodings, so each text entry corresponds to a single image, resulting in a 5k x 5k matrix. Two different text encoding methods were used, but only one text similarity matrix has been shown for simplicity. Bottom: Image similarity matrix for each image in the dataset, resulting in a 5k x 5k matrix.

The next step of the indirect sampling scheme is to use the computed similarities of images for a biased sampling of caption pairs for human rating (and vice versa). For example, we select two captions with high computed similarities from the text similarity matrix, then take each of their images, resulting in a new pair of images that are different in appearance but similar in what they depict based on their descriptions. For example, the captions “A dog looking bashfully to the side” and “A black dog lifts its head to the side to enjoy a breeze” would have a reasonably high model similarity, so the corresponding images of the two dogs in the figure below could be selected for image similarity rating. This step can also start with two images with high computed similarities to yield a new pair of captions. We now have indirectly sampled new intramodal pairs — at least some of which are highly similar — for which we obtain human ratings.

Top: Pairs of images are picked based on their computed caption similarity. Bottom: Pairs of captions are picked based on the computed similarity of the images they describe.

Last, we then use these new intramodal pairs and their human ratings to select new intermodal pairs for human rating. We do this by using existing image-caption pairs to link between modalities. For example, if a caption pair example ij was rated by humans as highly similar, we pick the image from example i and caption from example j to obtain a new intermodal pair for human rating. And again, we use the intramodal pairs with the highest rated similarity for sampling because this includes at least some new pairs with high similarity. Finally, we also add human ratings for all existing intermodal pairs and a large sample of co-captions.

The following table shows examples of semantic image similarity (SIS) and semantic image-text similarity (SITS) pairs corresponding to each rating, with 5 being the most similar and 0 being completely dissimilar.

Examples for each human-derived similarity score (left: 5 to 0, 5 being very similar and 0 being completely dissimilar) of image pairs based on SIS (middle) and SITS (right) tasks. Note that these examples are for illustrative purposes and are not themselves in the CxC dataset.

Evaluation
MS-COCO supports three retrieval tasks:

  1. Given an image, find its matching captions out of all other captions in the evaluation set.
  2. Given a caption, find its corresponding image out of all other images in the evaluation set.
  3. Given a caption, find its other co-captions out of all other captions in the evaluation set.

MS-COCO’s pairs are incomplete because captions created for one image at times apply equally well to another, yet these associations are not captured in the dataset. CxC enhances these existing retrieval tasks with new positive pairs, and it also supports a new image-image retrieval task. With its graded similarity judgements, CxC also makes it possible to measure correlations between model and human rankings. Retrieval metrics in general focus only on positive pairs, while CxC’s correlation scores additionally account for the relative ordering of similarity and include low-scoring items (non-matches). Supporting these evaluations on a common set of images and captions makes them more valuable for understanding inter-modal learning compared to disjoint sets of caption-image, caption-caption, and image-image associations.

We ran a series of experiments to show the utility of CxC’s ratings. For this, we constructed three dual encoder (DE) models using BERT-base as the text encoder and EfficientNet-B4 as the image encoder:

  1. A text-text (DE_T2T) model that uses a shared text encoder for both sides.
  2. An image-text model (DE_I2T) that uses the aforementioned text and image encoders, and includes a layer above the text encoder to match the image encoder output.
  3. A multitask model (DE_I2T+T2T) trained on a weighted combination of text-text and image-text tasks.
CxC retrieval results — a comparison of our text-text (T2T), image-text (I2T) and multitask (I2T+T2T) dual encoder models on all the four retrieval tasks.

From the results on the retrieval tasks, we can see that DE_I2T+T2T (yellow bar) performs better than DE_I2T (red bar) on the image-text and text-image retrieval tasks. Thus, adding the intramodal (text-text) training task helped improve the intermodal (image-text, text-image) performance. As for the other two intramodal tasks (text-text and image-image), DE_I2T+T2T shows strong, balanced performance on both of them.

CxC correlation results for the same models shown above.

For the correlation tasks, DE_I2T performs the best on SIS and DE_I2T+T2T is the best overall. The correlation scores also show that DE_I2T performs well only on images: it has the highest SIS but has much worse STS. Adding the text-text loss to DE_I2T training (DE_I2T+T2T) produces more balanced overall performance.

The CxC dataset provides a much more complete set of relationships between and among images and captions than the raw MS-COCO image-caption pairs. The new ratings have been released and further details are in our paper. We hope to encourage the research community to push the state of the art on the tasks introduced by CxC with better models for jointly learning inter- and intra-modal representations.

Acknowledgments
The core team includes Daniel Cer, Yinfei Yang and Austin Waters. We thank Julia Hockenmaier for her inputs on CxC’s formulation, the Google Data Compute Team, especially Ashwin Kakarla and Mohd Majeed for their tooling and annotation support, Yuan Zhang, Eugene Ie for their comments on the initial versions of the paper and Daphne Luong for executive support for the data collection.


  *All the images in the article have been taken from the Open Images dataset under the CC-by 4.0 license. 

Source: Google AI Blog


Introducing FELIX: Flexible Text Editing Through Tagging and Insertion

Sequence-to-sequence (seq2seq) models have become a favoured approach for tackling natural language generation tasks, with applications ranging from machine translation to monolingual generation tasks, such as summarization, sentence fusion, text simplification, and machine translation post-editing. However these models appear to be a suboptimal choice for many monolingual tasks, as the desired output text often represents a minor rewrite of the input text. When accomplishing such tasks, seq2seq models are both slower because they generate the output one word at a time (i.e., autoregressively), and wasteful because most of the input tokens are simply copied into the output.

Instead, text-editing models have recently received a surge of interest as they propose to predict edit operations – such as word deletion, insertion, or replacement – that are applied to the input to reconstruct the output. However, previous text-editing approaches have limitations. They are either fast (being non-autoregressive), but not flexible, because they use a limited number of edit operations, or they are flexible, supporting all possible edit operations, but slow (autoregressive). In either case, they have not focused on modeling large structural (syntactic) transformations, for example switching from active voice, “They ate steak for dinner,” to passive, “Steak was eaten for dinner.” Instead, they've focused on local transformations, deleting or replacing short phrases. When a large structural transformation needs to occur, they either can’t produce it or insert a large amount of new text, which is slow.

In “FELIX: Flexible Text Editing Through Tagging and Insertion”, we introduce FELIX, a fast and flexible text-editing system that models large structural changes and achieves a 90x speed-up compared to seq2seq approaches whilst achieving impressive results on four monolingual generation tasks. Compared to traditional seq2seq methods, FELIX has the following three key advantages:

  • Sample efficiency: Training a high precision text generation model typically requires large amounts of high-quality supervised data. FELIX uses three techniques to minimize the amount of required data: (1) fine-tuning pre-trained checkpoints, (2) a tagging model that learns a small number of edit operations, and (3) a text insertion task that is very similar to the pre-training task.
  • Fast inference time: FELIX is fully non-autoregressive, avoiding slow inference times caused by an autoregressive decoder.
  • Flexible text editing: FELIX strikes a balance between the complexity of learned edit operations and flexibility in the transformations it models.

In short, FELIX is designed to derive the maximum benefit from self-supervised pre-training, being efficient in low-resource settings, with little training data.

Overview
To achieve the above, FELIX decomposes the text-editing task into two sub-tasks: tagging to decide on the subset of input words and their order in the output text, and insertion, where words that are not present in the input are inserted. The tagging model employs a novel pointer mechanism, which supports structural transformations, while the insertion model is based on a Masked Language Model. Both of these models are non-autoregressive, ensuring the model is fast. A diagram of FELIX can be seen below.

An example of FELIX trained on data for a text simplification task. Input words are first tagged as KEEP (K), DELETE (D) or KEEP and INSERT (I). After tagging, the input is reordered. This reordered input is then fed to a masked language model.

The Tagging Model
The first step in FELIX is the tagging model, which consists of two components. First the tagger determines which words should be kept or deleted and where new words should be inserted. When the tagger predicts an insertion, a special MASK token is added to the output. After tagging, there is a reordering step where the pointer reorders the input to form the output, by which it is able to reuse parts of the input instead of inserting new text. The reordering step supports arbitrary rewrites, which enables modeling large changes. The pointer network is trained such that each word in the input points to the next word as it will appear in the output, as shown below.

Realization of the pointing mechanism to transform "There are 3 layers in the walls of the heart" into "the heart MASK 3 layers".

The Insertion Model
The output of the tagging model is the reordered input text with deleted words and MASK tokens predicted by the insertion tag. The insertion model must predict the content of MASK tokens. Because FELIX’s insertion model is very similar to the pretraining objective of BERT, it can take direct advantage of the pre-training, which is particularly advantageous when data is limited.

Example of the insertion model, where the tagger predicts two words will be inserted and the insertion model predicts the content of the MASK tokens.

Results
We evaluated FELIX on sentence fusion, text simplification, abstractive summarization, and machine translation post-editing. These tasks vary significantly in the types of edits required and dataset sizes under which they operate. Below are the results on the sentence fusion task (i.e., merging two sentences into one), comparing FELIX against a large pre-trained seq2seq model (BERT2BERT) and a text-editing model (LaserTager), under a range of dataset sizes. We see that FELIX outperforms LaserTagger and can be trained on as little as a few hundred training examples. For the full dataset, the autoregressive BERT2BERT outperforms FELIX. However, during inference, this model takes significantly longer.

A comparison of different training dataset sizes on the DiscoFuse dataset. We compare FELIX (using the best performing model) against BERT2BERT and LaserTagger.
Latency in milliseconds for a batch of 32 on a Nvidia Tesla P100.

Conclusion
We have presented FELIX, which is fully non-autoregressive, providing even faster inference times, while achieving state-of-the-art results. FELIX also minimizes the amount of required training data with three techniques — fine-tuning pre-trained checkpoints, learning a small number of edit operations, and an insertion task that mimics masked language model task from the pre-training. Lastly, FELIX strikes a balance between the complexity of learned edit operations and the percentage of input-output transformations it can handle. We have open-sourced the code for FELIX and hope it will provide researchers with a faster, more efficient, and more flexible text-editing model.

Acknowledgements
This research was conducted by Jonathan Mallinson, Aliaksei Severyn (equal contribution), Eric Malmi, Guillermo Garrido. We would like to thank Aleksandr Chuklin, Daniil Mirylenka, Ryan McDonald, and Sebastian Krause for useful discussions, running early experiments and paper suggestions.

Source: Google AI Blog


Do Wide and Deep Networks Learn the Same Things?

A common practice to improve a neural network’s performance and tailor it to available computational resources is to adjust the architecture depth and width. Indeed, popular families of neural networks, including EfficientNet, ResNet and Transformers, consist of a set of architectures of flexible depths and widths. However, beyond the effect on accuracy, there is limited understanding of how these fundamental choices of architecture design affect the model, such as the impact on its internal representations.

In “Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth”, we perform a systematic study of the similarity between wide and deep networks from the same architectural family through the lens of their hidden representations and final outputs. In very wide or very deep models, we find a characteristic block structure in their internal representations, and establish a connection between this phenomenon and model overparameterization. Comparisons across models demonstrate that those without the block structure show significant similarity between representations in corresponding layers, but those containing the block structure exhibit highly dissimilar representations. These properties of the internal representations in turn translate to systematically different errors at the class and example levels for wide and deep models when they are evaluated on the same test set.

Comparing Representation Similarity with CKA
We extended prior work on analyzing representations by leveraging our previously developed Centered Kernel Alignment (CKA) technique, which provides a robust, scalable way to determine the similarity between the representations learned by any pair of neural network layers. CKA takes as input the representations (i.e., the activation matrices) from two layers, and outputs a similarity score between 0 (not at all similar) and 1 (identical representations).

We apply CKA to a family of ResNets of varying depths and widths, trained on common benchmark datasets (CIFAR-10, CIFAR-100 and ImageNet), and use representation heatmaps to illustrate the results. The x and y axes of each heatmap index the layers of the model(s) in consideration, going from input to output, and each entry (i, j) is the CKA similarity score between layer i and layer j.

We use CKA to compute the representation similarity for all pairs of layers within a single model (i.e., when network 1 and network 2 are identical), and across models (i.e., when network 1 and network 2 are trained with different random initializations, or have different architectures altogether).

Below is an example of the resulting heatmap when we compare representations of each layer to every other layer within a single ResNet of depth 26 and width multiplier 1. In the design convention used here, the stated depth only refers to the number of convolutional layers in the network, but we analyze all layers present, and the width multiplier applies to the number of filters in each convolution. Notice the checkerboard pattern in the heatmap, which is caused by skip connections (shortcuts between layers) in the architecture.

The Emergence of the Block Structure
What stands out from the representation heatmaps of deeper or wider networks is the emergence of a large set of consecutive layers with highly similar representations, which appears in the heatmaps as a yellow square (i.e., a region with high CKA scores). This phenomenon, which we call the block structure, suggests that the underlying layers may not be as efficient at progressively refining the network’s representations as we expect. Indeed, we show that the task performance becomes stagnant inside the block structure, and that it is possible to prune some underlying layers without affecting the final performance.

Block structure — a large, contiguous set of layers with highly similar representations — emerges with increasing width or depth. Each heatmap panel shows the CKA similarity between all pairs of layers within a single neural network. While its size and position can vary across different training runs, the block structure is a robust phenomenon that arises consistently in larger models.

With additional experiments, we show that the block structure has less to do with the absolute model size, than with the size of the model relative to the size of the training dataset. As we reduce the training dataset size, the block structure starts to appear in shallower and narrower networks:

With increasing network width (towards the right along each row) and decreasing dataset size (down each column), the relative model capacity (with respect to a given task) is effectively inflated, and the block structure begins to appear in smaller models.

Through further analysis, we are also able to demonstrate that the block structure arises from preserving and propagating the dominant principal components of its underlying representations. Refer to our paper for more details.

Comparing Representations Across Models
Going further, we study the implications of depth and width on representations across models of different random initializations and different architectures, and find that the presence of block structure makes a significant difference in this context as well. Despite having different architectures, wide and deep models without the block structure do exhibit representation similarity with each other, with corresponding layers broadly being of the same proportional depth in the model. However, when the block structure is present, its representations are unique to each model. This suggests that despite having similar overall performance, each wide or deep model with the block structure picks up a unique mapping from the input to the output.

For smaller models (e.g., ResNet-38 1×), CKA across different initializations (off the diagonal) closely resembles CKA within a single model (on the diagonal). In contrast, representations within the block structure of wider and deeper models (e.g., ResNet-38 10×, ResNet-164 1×) are highly dissimilar across training runs.

Error Analysis of Wide and Deep Models
Having explored the properties of the learned representations of wide and deep models, we next turn to understanding how they influence the diversity of the output predictions. We train populations of networks of different architectures and determine on which test set examples each architecture configuration tends to make errors.

On both CIFAR-10 and ImageNet datasets, wide and deep models that have the same average accuracy still demonstrate statistically significant differences in example-level predictions. The same observation holds for class-level errors on ImageNet, with wide models exhibiting a small advantage in identifying classes corresponding to scenes, and deep networks being relatively more accurate on consumer goods.

Per-class differences on ImageNet between models with increased width (y-axis) or depth (x-axis). Orange dots reflect differences between two sets of 50 different random initializations of ResNet-83 (1×).

Conclusions
In studying the effects of depth and width on internal representations, we uncover a block structure phenomenon, and demonstrate its connection to model capacity. We also show that wide and deep models exhibit systematic output differences at class and example levels. Check out the paper for full details on these results and additional insights! We’re excited about the many interesting open questions these findings suggest, such as how the block structure arises during training, whether the phenomenon occurs in domains beyond image classification, and ways these insights on internal representations can inform model efficiency and generalization.

Acknowledgements
This is a joint work with Maithra Raghu and Simon Kornblith. We would like to thank Tom Small for the visualizations of the representation heatmap.

Source: Google AI Blog


Lyra – enabling voice calls for the next billion users

 

Lyra Logo

The past year has shown just how vital online communication is to our lives. Never before has it been more important to clearly understand one another online, regardless of where you are and whatever network conditions are available. That’s why in February we introduced Lyra: a revolutionary new audio codec using machine learning to produce high-quality voice calls.

As part of our efforts to make the best codecs universally available, we are open sourcing Lyra, allowing other developers to power their communications apps and take Lyra in powerful new directions. This release provides the tools needed for developers to encode and decode audio with Lyra, optimized for the 64-bit ARM android platform, with development on Linux. We hope to expand this codebase and develop improvements and support for additional platforms in tandem with the community.

The Lyra Architecture

Lyra’s architecture is separated into two pieces, the encoder and decoder. When someone talks into their phone the encoder captures distinctive attributes from their speech. These speech attributes, also called features, are extracted in chunks of 40ms, then compressed and sent over the network. It is the decoder’s job to convert the features back into an audio waveform that can be played out over the listener’s phone speaker. The features are decoded back into a waveform via a generative model. Generative models are a particular type of machine learning model well suited to recreate a full audio waveform from a limited number of features. The Lyra architecture is very similar to traditional audio codecs, which have formed the backbone of internet communication for decades. Whereas these traditional codecs are based on digital signal processing (DSP) techniques, the key advantage for Lyra comes from the ability of the generative model to reconstruct a high-quality voice signal.

Lyra Architecture Chart

The Impact

While mobile connectivity has steadily increased over the past decade, the explosive growth of on-device compute power has outstripped access to reliable high speed wireless infrastructure. For regions where this contrast exists—in particular developing countries where the next billion internet users are coming online—the promise that technology will enable people to be more connected has remained elusive. Even in areas with highly reliable connections, the emergence of work-from-anywhere and telecommuting have further strained mobile data limits. While Lyra compresses raw audio down to 3kbps for quality that compares favourably to other codecs, such as Opus, it is not aiming to be a complete alternative, but can save meaningful bandwidth in these kinds of scenarios.

These trends provided motivation for Lyra and are the reason our open source library focuses on its potential for real time voice communication. There are also other applications we recognize Lyra may be uniquely well suited for, from archiving large amounts of speech, and saving battery by leveraging the computationally cheap Lyra encoder, to alleviating network congestion in emergency situations where many people are trying to make calls at once. We are excited to see the creativity the open source community is known for applied to Lyra in order to come up with even more unique and impactful applications.

The Open Source Release

The Lyra code is written in C++ for speed, efficiency, and interoperability, using the Bazel build framework with Abseil and the GoogleTest framework for thorough unit testing. The core API provides an interface for encoding and decoding at the file and packet levels. The complete signal processing toolchain is also provided, which includes various filters and transforms. Our example app integrates with the Android NDK to show how to integrate the native Lyra code into a Java-based android app. We also provide the weights and vector quantizers that are necessary to run Lyra.

We are releasing Lyra as a beta version today because we wanted to enable developers and get feedback as soon as possible. As a result, we expect the API and bitstream to change as it is developed. All of the code for running Lyra is open sourced under the Apache license, except for a math kernel, for which a shared library is provided until we can implement a fully open solution over more platforms. We look forward to seeing what people do with Lyra now that it is open sourced. Check out the code and demo on GitHub, let us know what you think, and how you plan to use it!

By Andrew Storus and Michael Chinen – Chrome

Acknowledgements

The following people helped make the open source release possible:
Yero Yeh, Alejandro Luebs, Jamieson Brettle, Tom Denton, Felicia Lim, Bastiaan Kleijn, Jan Skoglund, Yaowu Xu, Jim Bankoski (Chrome), Chenjie Gu, Zach Gleicher, Tom Walters, Norman Casagrande, Luis Cobo, Erich Elsen (DeepMind).

Progress and Challenges in Long-Form Open-Domain Question Answering

Open-domain long-form question answering (LFQA) is a fundamental challenge in natural language processing (NLP) that involves retrieving documents relevant to a given question and using them to generate an elaborate paragraph-length answer. While there has been remarkable recent progress in factoid open-domain question answering (QA), where a short phrase or entity is enough to answer a question, much less work has been done in the area of long-form question answering. LFQA is nevertheless an important task, especially because it provides a testbed to measure the factuality of generative text models. But, are current benchmarks and evaluation metrics really suitable for making progress on LFQA?

In “Hurdles to Progress in Long-form Question Answering” (to appear at NAACL 2021), we present a new system for open-domain long-form question answering that leverages two recent advances in NLP: 1) state-of-the-art sparse attention models, such as Routing Transformer (RT), which allow attention-based models to scale to long sequences, and 2) retrieval-based models, such as REALM, which facilitate retrievals of Wikipedia articles related to a given query. To encourage more factual grounding, our system combines information from several retrieved Wikipedia articles related to the given question before generating an answer. It achieves a new state of the art on ELI5, the only large-scale publicly available dataset for long-form question answering.

However, while our system tops the public leaderboard, we discover several troubling trends with the ELI5 dataset and its associated evaluation metrics. In particular, we find 1) little evidence that models actually use the retrievals on which they condition; 2) that trivial baselines (e.g., input copying) beat modern systems, like RAG / BART+DPR; and 3) that there is a significant train/validation overlap in the dataset. Our paper suggests mitigation strategies for each of these issues.

Text Generation
The main workhorse of NLP models is the Transformer architecture, in which each token in a sequence attends to every other token in a sequence, resulting in a model that scales quadratically with sequence length. The RT model introduces a dynamic, content-based sparse attention mechanism that reduces the complexity of attention in the Transformer model from n2 to n1.5, where n is the sequence length, which enables it to scale to long sequences. This allows each word to attend to other relevant words anywhere in the entire piece of text, unlike methods such as Transformer-XL where a word can only attend to words in its immediate vicinity.

The key insight of the RT work is that each token attending to every other token is often redundant, and may be approximated by a combination of local and global attention. Local attention allows each token to build up a local representation over several layers of the model, where each token attends to a local neighborhood, facilitating local consistency and fluency. Complementing local attention, the RT model also uses mini-batch k-means clustering to enable each token to attend only to a set of most relevant tokens.

Attention maps for the content-based sparse attention mechanism used in Routing Transformer. The word sequence is represented by the diagonal dark colored squares. In the Transformer model (left), each token attends to every other token. The shaded squares represent the tokens in the sequence to which a given token (the dark square) is attending. The RT model uses both local attention (middle), where tokens attend only to other tokens in their local neighborhood, and routing attention (right), in which a token only attends to clusters of tokens most relevant to it in context. The dark red, green and blue tokens only attend to the corresponding color of lightly shaded tokens.

We pre-train an RT model on the Project Gutenberg (PG-19) data-set with a language modeling objective, i.e, the model learns to predict the next word given all the previous words, so as to be able to generate fluent paragraph long text.

Information Retrieval
To demonstrate the effectiveness of the RT model on the task of LFQA, we combine it with retrievals from REALM. The REALM model (Guu et al. 2020) is a retrieval-based model that uses the maximum inner product search to retrieve Wikipedia articles relevant to a particular query or question. The model was fine-tuned for factoid-based question answering on the Natural Questions dataset. REALM utilizes the BERT model to learn good representations for a question and uses SCANN to retrieve Wikipedia articles that have a high topical similarity with the question representation. This is then trained end-to-end to maximize the log-likelihood on the QA task.

We further improve the quality of REALM retrievals by using a contrastive loss. The idea behind this is to encourage the representation of a question to get close to its ground truth answer and diverge from the other answers in its mini-batch. This ensures that when the system retrieves relevant items using this question representation, it returns articles that are "similar" to ground truth answers. We call this retriever contrastive-REALM or c-REALM.

The combined RT + c-REALM system for LFQA.

Evaluation
We test the model on long-form question answering using the ELI5 dataset, which is a part of the KILT benchmark, and is the only publicly available large-scale LFQA dataset. The KILT benchmark measures text retrievals using Precision (R-Prec) and text generation using ROUGE-L. The two scores are combined to give a KILT R-L score, which determines a model’s ranking on the leaderboard. We fine-tune the pre-trained RT model together with retrievals from c-REALM on the ELI5 dataset from KILT.

Our submission tops the KILT leaderboard for long-form question answering on ELI5 with a combined KILT R-L score of 2.36. It improves on the previous leaderboard entry of BART + DPR (KILT R-L score of 1.9), while having a similar number of parameters as the other models on the leaderboard. In terms of text generation quality, we see an improvement of +4.11, +5.78 and +9.14 Rouge-L over T5, BART + DPR and RAG, respectively.

Our results on the KILT leaderboard for long form question answering on ELI5.

Example Generations from the RT Model

  • Q: Why are almost all boats white?

    Boats are generally painted white for obvious reasons, as they are inexpensive and easy to clean. Ships are also often painted to provide a visible visual contrast to the sea. Boats also often have high visibility ports to allow for easy international trade. In addition, many boats have an air-breathing function that makes them easier to spot and stay afloat, which is a good thing if you're a pirate or trying to get into some country's waters. Lastly, many ships are built in the last few decades, so they are not as exotic looking as they were thirty years ago. And lastly, many ships are made out of materials that are easy to work with, and so many of them are painted white as a practical matter. There are many, many more reasons for why ships are white, but those are the ones I know of. I'm sure there are many other reasons, but those are the ones I know of. Edit: I forgot to mention that the other answers about visibility and easy to see ports are also true. Ships are painted to appear to be larger, and more expensive. That makes them appear more impressive, and so they are more likely to be bought by people who want to show off their wealth and status.
  • Q: What causes the trail behind jets at high altitude?

    The same thing that causes the clouds you see at the start of a storm to form in the first place. The air pressure changes as the jet moves through the air, causing it to cool down and condense into water droplets. These droplets are in fact a lot bigger than the water droplets in the clouds, so when the plane passes through them, they can cause the air pressure to change, causing the water droplets to condense into clouds. This is what you see when you look at a cloud formation from the ground. In addition to this, when the plane passes through the clouds, it also moves through the air, causing it to change its temperature, causing the water droplets to condense and form clouds. These clouds are often quite large, and can block out the sun. This is what you see when you look at a contrail. Finally, the water vapor that forms at high altitudes is cooled by the air above, and as it cools, it condenses into clouds. This is what you see when you look at a cumulonimbus cloud. These clouds are even larger than the water droplets in the clouds, and they block out the sun.
  • Q: How do shampoo and conditioner work?

    The key ingredients in shampoo and conditioner are usually surfactants, they tend to attract oil from your skin. Shampoo will usually contain an anti-dandruff agent (dandruff is caused by fungi in your skin which cause dandruff). They also contain some moisturizing agents (moisturizers are things that stay in your skin longer and protect your scalp from cleaning), and a lot of anti-dandruff (dandruff is a side effect of high doses of both surfactants and moisturizers) Conditioner will contain moisturizing agents, like a skin moisturizer. They tend to cause oils to be separated from your hair (e.g. wash your hair with conditioner instead of shampoo). They both have a foaming agent that makes them foam up (usually Hydrogen Peroxide). They also have a foaming agent that stops dirt from attaching to your hair. Some conditioner will also suppress the action of the shampoo (to help prevent dirt from attaching to your hair).
  • Q: When glancing at a clock, why does the first second after glancing at it sometimes feel longer than the rest?

    This is known as chronostasis. Your brain gets used to seeing the second hand move after the first, so it ignores the first one. If you were to look at the clock a lot, you'd see the second hand move a lot more than the first, and you'd be able to tell the difference between the second and the first. The second hand will appear to move much slower than the first hand because your brain is used to seeing the second hand move a lot more than the first. If you were to go on a long trip, you'd get used to the second hand moving a lot more than the first, and you'd have no problem telling the difference between the second and the first hand. It's kind of like how you don't notice your nose when you're driving, but if you look at it for a while, you start to notice it. Your brain is just getting used to seeing the nose move a lot more than the other, and it can't tell the difference between the two. It's kind of like that with your eyes.
  • Q: Why do Britain and other English empire countries still bow to monarchs? What real purpose does the queen serve?

    Depends what you define as "purpose". There is no specific purpose for the British monarch - rather, they are figureheads that serve a role. The role is to have a high degree of influence over a country, though the rules of the monarchy can somewhat vary from country to country, and the ceremony of "kissing the royal corpse" does not always involve kissing the monarch. Whether that's the only reason for the custom, or if it was the only reason, I can't say, but that's the reasoning. When the U.K. was in full power, the monarch was a puppet of Parliament, and the powers of the monarch were transferred to the Prime Minister and thus to the Prime Minister's deputy, who then became the Prime Minister. Since then, Parliament has been able to vote on legislation that goes through the monarch, although they may still act as the monarch's representative in negotiating treaties, which can have very very deep consequences. The Queen's role, as a representative of Britain, doesn't necessarily involve her formal approval of any of the laws or legislation that goes through Parliament, though.
  • Q: What exactly is fire, in detail? How can light and heat come from something we can't really touch?

    Fire is the chemical reaction of fuel (oxygen) with (what we call) impurities (ash, soot, oil etc). These impurities are created due to a number of things. If you were to study the chemical composition of a log (or a candle) and analyse it you would discover the chemical formula (A, C, and G) which is a simplified version of what actually happens. There is always fuel, and there is always the ash/soot. Wood is made up of mostly carbon and hydrogen and these are the fuels that create the fire. Hydrogen and oxygen are reactive, and they form water (H2O) and CO2 (CO2). If we split a log into smaller pieces, we start to see the process of combustion as it occurs. The carbon is burned, and with the explosion of CO, H2O and H2CO2, we get water and carbon dioxide (mostly). If we smash a log together, we start to see what happens when we also hit another log with another log...imagine smashing two sand castles together. We see how the sand castles and brick castles form and collapse at different rates...then it starts to burn. The smoke, ash and flames are the actual combustion of fuel.
  • Q: What goes on in those tall tower buildings owned by major banks?

    The actual buildings are not there for profit but for show. There are many real world historical buildings that have little to no effect other than being a symbol of an economic entity or symbol of an era or location, and nothing more. For example look at Sears, Sears didn't care what went on inside, it was all about the \_appearance\_ of its location, the prestige of the location, the facilities and so on. It didn't care about how long it took it to operate, it was about how much people would pay to go see it. Sears was a landmark as a cultural movement and other big companies followed suit, so if you want to see a building you've never seen before, you have to go see Sears, just like you have to see a Toyota Camry for Toyota Camry. They used to be all about building new factories, some of them if I recall, but now that they're bigger, that means that more factory jobs are coming to them. You've probably seen them in stores as stores where people buy and sell stuff, so there aren't that many places for them to come from. Instead, it's just for show, a symbol of rich people.

Hurdles Towards Progress in LFQA
However, while the RT system described here tops the public leaderboard, a detailed analysis of the model and the ELI5 dataset reveal some concerning trends.

  • Many held-out questions are paraphrased in the training set. Best answer to similar train questions gets 27.4 ROUGE-L.

  • Simply retrieving answers to random unrelated training questions yields relatively high ROUGE-L, while actual gold answers underperform generations.

  • Conditioning answer generation on random documents instead of relevant ones does not measurably impact its factual correctness. Longer outputs get higher ROUGE-L.

We find little to no evidence that the model is actually grounding its text generation in the retrieved documents — fine-tuning an RT model with random retrievals from Wikipedia (i.e., random retrieval + RT) performs nearly as well as the c-REALM + RT model (24.2 vs 24.4 ROUGE-L). We also find significant overlap in the training, validation and test sets of ELI5 (with several questions being paraphrases of each other), which may eliminate the need for retrievals. The KILT benchmark measures the quality of retrievals and generations separately, without making sure that the text generation actually use the retrievals.

Trivial baselines get higher Rouge-L scores than RAG and BART + DPR.

Moreover, we find issues with the Rouge-L metric used to evaluate the quality of text generation, with trivial nonsensical baselines, such as a Random Training Set answer and Input Copying, achieving relatively high Rouge-L scores (even beating BART + DPR and RAG).

Conclusion
We proposed a system for long form-question answering based on Routing Transformers and REALM, which tops the KILT leaderboard on ELI5. However, a detailed analysis reveals several issues with the benchmark that preclude using it to inform meaningful modelling advances. We hope that the community works together to solve these issues so that researchers can climb the right hills and make meaningful progress in this challenging but important task.

Acknowledgments
The Routing Transformer work has been a team effort involving Aurko Roy, Mohammad Saffar, Ashish Vaswani and David Grangier. The follow-up work on open-domain long-form question answering has been a collaboration involving Kalpesh Krishna, Aurko Roy and Mohit Iyyer. We wish to thank Vidhisha Balachandran, Niki Parmar and Ashish Vaswani for several helpful discussions, and the REALM team (Kenton Lee, Kelvin Guu, Ming-Wei Chang and Zora Tung) for help with their codebase and several useful discussions, which helped us improve our experiments. We are grateful to Tu Vu for help with the QQP classifier used to detect paraphrases in ELI5 train and test sets. We thank Jules Gagnon-Marchand and Sewon Min for suggesting useful experiments on checking ROUGE-L bounds. Finally we thank Shufan Wang, Andrew Drozdov, Nader Akoury and the rest of the UMass NLP group for helpful discussions and suggestions at various stages in the project.

Source: Google AI Blog


Leveraging Machine Learning for Game Development

Over the years, online multiplayer games have exploded in popularity, captivating millions of players across the world. This popularity has also exponentially increased demands on game designers, as players expect games to be well-crafted and balanced — after all, it's no fun to play a game where a single strategy beats all the rest.

In order to create a positive gameplay experience, game designers typically tune the balance of a game iteratively:

  1. Stress-test through thousands of play-testing sessions from test users
  2. Incorporate feedback and re-design the game
  3. Repeat 1 & 2 until both the play-testers and game designers are satisfied

This process is not only time-consuming but also imperfect — the more complex the game, the easier it is for subtle flaws to slip through the cracks. When games often have many different roles that can be played, with dozens of interconnecting skills, it makes it all the more difficult to hit the right balance.

Today, we present an approach that leverages machine learning (ML) to adjust game balance by training models to serve as play-testers, and demonstrate this approach on the digital card game prototype Chimera, which we’ve previously shown as a testbed for ML-generated art. By running millions of simulations using trained agents to collect data, this ML-based game testing approach enables game designers to more efficiently make a game more fun, balanced, and aligned with their original vision.

Chimera
We developed Chimera as a game prototype that would heavily lean on machine learning during its development process. For the game itself, we purposefully designed the rules to expand the possibility space, making it difficult to build a traditional hand-crafted AI to play the game.

The gameplay of Chimera revolves around the titular chimeras, creature mash-ups that players aim to strengthen and evolve. The objective of the game is to defeat the opponent's chimera. These are the key points in the game design:

  • Players may play:
    • creatures, which can attack (through their attack stat) or be attacked (against their health stat), or
    • spells, which produce special effects.
  • Creatures are summoned into limited-capacity biomes, which are placed physically on the board space. Each creature has a preferred biome and will take repeated damage if placed on an incorrect biome or a biome that is over capacity.
  • A player controls a single chimera, which starts off in a basic "egg" state and can be evolved and strengthened by absorbing creatures. To do this, the player must also acquire a certain amount of link energy, which is generated from various gameplay mechanics.
  • The game ends when a player has successfully brought the health of the opponent's chimera to 0.

Learning to Play Chimera
As an imperfect information card game with a large state space, we expected Chimera to be a difficult game for an ML model to learn, especially as we were aiming for a relatively simple model. We used an approach inspired by those used by earlier game-playing agents like AlphaGo, in which a convolutional neural network (CNN) is trained to predict the probability of a win when given an arbitrary game state. After training an initial model on games where random moves were chosen, we set the agent to play against itself, iteratively collecting game data, that was then used to train a new agent. With each iteration, the quality of the training data improved, as did the agent’s ability to play the game.

The ML agent's performance against our best hand-crafted AI as training progressed. The initial ML agent (version 0) picked moves randomly.

For the actual game state representation that the model would receive as input, we found that passing an "image" encoding to the CNN resulted in the best performance, beating all benchmark procedural agents and other types of networks (e.g. fully connected). The chosen model architecture is small enough to run on a CPU in reasonable time, which allowed us to download the model weights and run the agent live in a Chimera game client using Unity Barracuda.

An example game state representation used to train the neural network.
In addition to making decisions for the game AI, we also used the model to display the estimated win probability for a player over the course of the game.

Balancing Chimera
This approach enabled us to simulate millions more games than real players would be capable of playing in the same time span. After collecting data from the games played by the best-performing agents, we analyzed the results to find imbalances between the two of the player decks we had designed.

First, the Evasion Link Gen deck was composed of spells and creatures with abilities that generated extra link energy used to evolve a player’s chimera. It also contained spells that enabled creatures to evade attacks. In contrast, the Damage-Heal deck contained creatures of variable strength with spells that focused on healing and inflicting minor damage. Although we had designed these decks to be of equal strength, the Evasion Link Gen deck was winning 60% of the time when played against the Damage-Heal deck.

When we collected various stats related to biomes, creatures, spells, and chimera evolutions, two things immediately jumped out at us:

  1. There was a clear advantage in evolving a chimera — the agent won a majority of the games where it evolved its chimera more than the opponent did. Yet, the average number of evolves per game did not meet our expectations. To make it more of a core game mechanic, we wanted to increase the overall average number of evolves while keeping its usage strategic.
  2. The T-Rex creature was overpowered. Its appearances correlated strongly with wins, and the model would always play the T-Rex regardless of penalties for summoning into an incorrect or overcrowded biome.

From these insights, we made some adjustments to the game. To emphasize chimera evolution as a core mechanism in the game, we decreased the amount of link energy required to evolve a chimera from 3 to 1. We also added a “cool-off” period to the T-Rex creature, doubling the time it took to recover from any of its actions.

Repeating our ‘self-play’ training procedure with the updated rules, we observed that these changes pushed the game in the desired direction — the average number of evolves per game increased, and the T-Rex's dominance faded.

One example comparison of the T-Rex’s influence before and after balancing. The charts present the number of games won (or lost) when a deck initiates a particular spell interaction (e.g., using the “Dodge” spell to benefit a T-Rex). Left: Before the changes, the T-Rex had a strong influence in every metric examined — highest survival rate, most likely to be summoned ignoring penalties, most absorbed creature during wins. Right: After the changes, the T-Rex was much less overpowered.

By weakening the T-Rex, we successfully reduced the Evasion Link Gen deck's reliance on an overpowered creature. Even so, the win ratio between the decks remained at 60/40 rather than 50/50. A closer look at the individual game logs revealed that the gameplay was often less strategic than we would have liked. Searching through our gathered data again, we found several more areas to introduce changes in.

To start, we increased the starting health of both players as well as the amount of health that healing spells could replenish. This was to encourage longer games that would allow a more diverse set of strategies to flourish. In particular, this enabled the Damage-Heal deck to survive long enough to take advantage of its healing strategy. To encourage proper summoning and strategic biome placement, we increased the existing penalties on playing creatures into incorrect or overcrowded biomes. And finally, we decreased the gap between the strongest and weakest creatures through minor attribute adjustments.

New adjustments in place, we arrived at the final game balance stats for these two decks:

Deck Avg # evolves per game    
(before → after)    
Win % (1M games)
(before → after)
Evasion Link Gen     1.54 → 2.16     59.1% → 49.8%
Damage Heal 0.86 → 1.76     40.9% → 50.2%

Conclusion
Normally, identifying imbalances in a newly prototyped game can take months of playtesting. With this approach, we were able to not only discover potential imbalances but also introduce tweaks to mitigate them in a span of days. We found that a relatively simple neural network was sufficient to reach high level performance against humans and traditional game AI. These agents could be leveraged in further ways, such as for coaching new players or discovering unexpected strategies. We hope this work will inspire more exploration in the possibilities of machine learning for game development.

Acknowledgements
This project was conducted in collaboration with many people. Thanks to Ryan Poplin, Maxwell Hannaman, Taylor Steil, Adam Prins, Michal Todorovic, Xuefan Zhou, Aaron Cammarata, Andeep Toor, Trung Le, Erin Hoffman-John, and Colin Boswell. Thanks to everyone who contributed through playtesting, advising on game design, and giving valuable feedback.

Source: Google AI Blog