Tag Archives: NLP

Constructing Transformers For Longer Sequences with Sparse Attention Methods

Natural language processing (NLP) models based on Transformers, such as BERT, RoBERTa, T5, or GPT3, are successful for a wide variety of tasks and a mainstay of modern NLP research. The versatility and robustness of Transformers are the primary drivers behind their wide-scale adoption, leading them to be easily adapted for a diverse range of sequence-based tasks — as a seq2seq model for translation, summarization, generation, and others, or as a standalone encoder for sentiment analysis, POS tagging, machine reading comprehension, etc. The key innovation in Transformers is the introduction of a self-attention mechanism, which computes similarity scores for all pairs of positions in an input sequence, and can be evaluated in parallel for each token of the input sequence, avoiding the sequential dependency of recurrent neural networks, and enabling Transformers to vastly outperform previous sequence models like LSTM.

A limitation of existing Transformer models and their derivatives, however, is that the full self-attention mechanism has computational and memory requirements that are quadratic with the input sequence length. With commonly available current hardware and model sizes, this typically limits the input sequence to roughly 512 tokens, and prevents Transformers from being directly applicable to tasks that require larger context, like question answering, document summarization or genome fragment classification. Two natural questions arise: 1) Can we achieve the empirical benefits of quadratic full Transformers using sparse models with computational and memory requirements that scale linearly with the input sequence length? 2) Is it possible to show theoretically that these linear Transformers preserve the expressivity and flexibility of the quadratic full Transformers?

We address both of these questions in a recent pair of papers. In “ETC: Encoding Long and Structured Inputs in Transformers”, presented at EMNLP 2020, we present the Extended Transformer Construction (ETC), which is a novel method for sparse attention, in which one uses structural information to limit the number of computed pairs of similarity scores. This reduces the quadratic dependency on input length to linear and yields strong empirical results in the NLP domain. Then, in “Big Bird: Transformers for Longer Sequences”, presented at NeurIPS 2020, we introduce another sparse attention method, called BigBird that extends ETC to more generic scenarios where prerequisite domain knowledge about structure present in the source data may be unavailable. Moreover, we also show that theoretically our proposed sparse attention mechanism preserves the expressivity and flexibility of the quadratic full Transformers. Our proposed methods achieve a new state of the art on challenging long-sequence tasks, including question answering, document summarization and genome fragment classification.

Attention as a Graph
The attention module used in Transformer models computes similarity scores for all pairs of positions in an input sequence. It is useful to think of the attention mechanism as a directed graph, with tokens represented by nodes and the similarity score computed between a pair of tokens represented by an edge. In this view, the full attention model is a complete graph. The core idea behind our approach is to carefully design sparse graphs, such that one only computes a linear number of similarity scores.

Full attention can be viewed as a complete graph.

Extended Transformer Construction (ETC)
On NLP tasks that require long and structured inputs, we propose a structured sparse attention mechanism, which we call Extended Transformer Construction (ETC). To achieve structured sparsification of self attention, we developed the global-local attention mechanism. Here the input to the Transformer is split into two parts: a global input where tokens have unrestricted attention, and a long input where tokens can only attend to either the global input or to a local neighborhood. This achieves linear scaling of attention, which allows ETC to significantly scale input length.

In order to further exploit the structure of long documents, ETC combines additional ideas: representing the positional information of the tokens in a relative way, rather than using their absolute position in the sequence; using an additional training objective beyond the usual masked language model (MLM) used in models like BERT; and flexible masking of tokens to control which tokens can attend to which other tokens. For example, given a long selection of text, a global token is applied to each sentence, which connects to all tokens within the sentence, and a global token is also applied to each paragraph, which connects to all tokens within the same paragraph.

An example of document structure based sparse attention of ETC model. The global variables are denoted by C (in blue) for paragraph, S (yellow) for sentence while the local variables are denoted by X (grey) for tokens corresponding to the long input.

With this approach, we report state-of-the-art results in five challenging NLP datasets requiring long or structured inputs: TriviaQA, Natural Questions (NQ), HotpotQA, WikiHop, and OpenKP.

Test set result on Question Answering. For both verified TriviaQA and WikiHop, using ETC achieved a new state of the art.

BigBird
Extending the work of ETC, we propose BigBird — a sparse attention mechanism that is also linear in the number of tokens and is a generic replacement for the attention mechanism used in Transformers. In contrast to ETC, BigBird doesn’t require any prerequisite knowledge about structure present in the source data. Sparse attention in the BigBird model consists of three main parts:

  • A set of global tokens attending to all parts of the input sequence
  • All tokens attending to a set of local neighboring tokens
  • All tokens attending to a set of random tokens
BigBird sparse attention can be seen as adding few global tokens on Watts-Strogatz graph.

In the BigBird paper, we explain why sparse attention is sufficient to approximate quadratic attention, partially explaining why ETC was successful. A crucial observation is that there is an inherent tension between how few similarity scores one computes and the flow of information between different nodes (i.e., the ability of one token to influence each other). Global tokens serve as a conduit for information flow and we prove that sparse attention mechanisms with global tokens can be as powerful as the full attention model. In particular, we show that BigBird is as expressive as the original Transformer, is computationally universal (following the work of Yun et al. and Perez et al.), and is a universal approximator of continuous functions. Furthermore, our proof suggests that the use of random graphs can further help ease the flow of information — motivating the use of the random attention component.

This design scales to much longer sequence lengths for both structured and unstructured tasks. Further scaling can be achieved by using gradient checkpointing by trading off training time for sequence length. This lets us extend our efficient sparse transformers to include generative tasks that require an encoder and a decoder, such as long document summarization, on which we achieve a new state of the art.

Summarization ROUGE score for long documents. Both for BigPatent and ArXiv datasets, we achieve a new state of the art result.

Moreover, the fact that BigBird is a generic replacement also allows it to be extended to new domains without pre-existing domain knowledge. In particular, we introduce a novel application of Transformer-based models where long contexts are beneficial — extracting contextual representations of genomic sequences (DNA). With longer masked language model pre-training, BigBird achieves state-of-the-art performance on downstream tasks, such as promoter-region prediction and chromatin profile prediction.

On multiple genomics tasks, such as promoter region prediction (PRP), chromatin-profile prediction including transcription factors (TF), histone-mark (HM) and DNase I hypersensitive (DHS) detection, we outperform baselines. Moreover our results show that Transformer models can be applied to multiple genomics tasks that are currently underexplored.

Main Implementation Idea
One of the main impediments to the large scale adoption of sparse attention is the fact that sparse operations are quite inefficient in modern hardware. Behind both ETC and BigBird, one of our key innovations is to make an efficient implementation of the sparse attention mechanism. As modern hardware accelerators like GPUs and TPUs excel using coalesced memory operations, which load blocks of contiguous bytes at once, it is not efficient to have small sporadic look-ups caused by a sliding window (for local attention) or random element queries (random attention). Instead we transform the sparse local and random attention into dense tensor operations to take full advantage of modern single instruction, multiple data (SIMD) hardware.

To do this, we first “blockify” the attention mechanism to better leverage GPUs/TPUs, which are designed to operate on blocks. Then we convert the sparse attention mechanism computation into a dense tensor product through a series of simple matrix operations such as reshape, roll, and gather, as illustrated in the animation below.

Illustration of how sparse window attention is efficiently computed using roll and reshape, and without small sporadic look-ups.

Recently, “Long Range Arena: A Benchmark for Efficient Transformers“ provided a benchmark of six tasks that require longer context, and performed experiments to benchmark all existing long range transformers. The results show that the BigBird model, unlike its counterparts, clearly reduces memory consumption without sacrificing performance.

Conclusion
We show that carefully designed sparse attention can be as expressive and flexible as the original full attention model. Along with theoretical guarantees, we provide a very efficient implementation which allows us to scale to much longer inputs. As a consequence, we achieve state-of-the-art results for question answering, document summarization and genome fragment classification. Given the generic nature of our sparse attention, the approach should be applicable to many other tasks like program synthesis and long form open domain question answering. We have open sourced the code for both ETC (github) and BigBird (github), both of which run efficiently for long sequences on both GPUs and TPUs.

Acknowledgements
This research resulted as a collaboration with Amr Ahmed, Joshua Ainslie, Chris Alberti, Vaclav Cvicek, Avinava Dubey, Zachary Fisher, Guru Guruganesh, Santiago Ontañón, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, Li Yang, Manzil Zaheer, who co-authored EMNLP and NeurIPS papers.

Source: Google AI Blog


Constructing Transformers For Longer Sequences with Sparse Attention Methods

Natural language processing (NLP) models based on Transformers, such as BERT, RoBERTa, T5, or GPT3, are successful for a wide variety of tasks and a mainstay of modern NLP research. The versatility and robustness of Transformers are the primary drivers behind their wide-scale adoption, leading them to be easily adapted for a diverse range of sequence-based tasks — as a seq2seq model for translation, summarization, generation, and others, or as a standalone encoder for sentiment analysis, POS tagging, machine reading comprehension, etc. The key innovation in Transformers is the introduction of a self-attention mechanism, which computes similarity scores for all pairs of positions in an input sequence, and can be evaluated in parallel for each token of the input sequence, avoiding the sequential dependency of recurrent neural networks, and enabling Transformers to vastly outperform previous sequence models like LSTM.

A limitation of existing Transformer models and their derivatives, however, is that the full self-attention mechanism has computational and memory requirements that are quadratic with the input sequence length. With commonly available current hardware and model sizes, this typically limits the input sequence to roughly 512 tokens, and prevents Transformers from being directly applicable to tasks that require larger context, like question answering, document summarization or genome fragment classification. Two natural questions arise: 1) Can we achieve the empirical benefits of quadratic full Transformers using sparse models with computational and memory requirements that scale linearly with the input sequence length? 2) Is it possible to show theoretically that these linear Transformers preserve the expressivity and flexibility of the quadratic full Transformers?

We address both of these questions in a recent pair of papers. In “ETC: Encoding Long and Structured Inputs in Transformers”, presented at EMNLP 2020, we present the Extended Transformer Construction (ETC), which is a novel method for sparse attention, in which one uses structural information to limit the number of computed pairs of similarity scores. This reduces the quadratic dependency on input length to linear and yields strong empirical results in the NLP domain. Then, in “Big Bird: Transformers for Longer Sequences”, presented at NeurIPS 2020, we introduce another sparse attention method, called BigBird that extends ETC to more generic scenarios where prerequisite domain knowledge about structure present in the source data may be unavailable. Moreover, we also show that theoretically our proposed sparse attention mechanism preserves the expressivity and flexibility of the quadratic full Transformers. Our proposed methods achieve a new state of the art on challenging long-sequence tasks, including question answering, document summarization and genome fragment classification.

Attention as a Graph
The attention module used in Transformer models computes similarity scores for all pairs of positions in an input sequence. It is useful to think of the attention mechanism as a directed graph, with tokens represented by nodes and the similarity score computed between a pair of tokens represented by an edge. In this view, the full attention model is a complete graph. The core idea behind our approach is to carefully design sparse graphs, such that one only computes a linear number of similarity scores.

Full attention can be viewed as a complete graph.

Extended Transformer Construction (ETC)
On NLP tasks that require long and structured inputs, we propose a structured sparse attention mechanism, which we call Extended Transformer Construction (ETC). To achieve structured sparsification of self attention, we developed the global-local attention mechanism. Here the input to the Transformer is split into two parts: a global input where tokens have unrestricted attention, and a long input where tokens can only attend to either the global input or to a local neighborhood. This achieves linear scaling of attention, which allows ETC to significantly scale input length.

In order to further exploit the structure of long documents, ETC combines additional ideas: representing the positional information of the tokens in a relative way, rather than using their absolute position in the sequence; using an additional training objective beyond the usual masked language model (MLM) used in models like BERT; and flexible masking of tokens to control which tokens can attend to which other tokens. For example, given a long selection of text, a global token is applied to each sentence, which connects to all tokens within the sentence, and a global token is also applied to each paragraph, which connects to all tokens within the same paragraph.

An example of document structure based sparse attention of ETC model. The global variables are denoted by C (in blue) for paragraph, S (yellow) for sentence while the local variables are denoted by X (grey) for tokens corresponding to the long input.

With this approach, we report state-of-the-art results in five challenging NLP datasets requiring long or structured inputs: TriviaQA, Natural Questions (NQ), HotpotQA, WikiHop, and OpenKP.

Test set result on Question Answering. For both verified TriviaQA and WikiHop, using ETC achieved a new state of the art.

BigBird
Extending the work of ETC, we propose BigBird — a sparse attention mechanism that is also linear in the number of tokens and is a generic replacement for the attention mechanism used in Transformers. In contrast to ETC, BigBird doesn’t require any prerequisite knowledge about structure present in the source data. Sparse attention in the BigBird model consists of three main parts:

  • A set of global tokens attending to all parts of the input sequence
  • All tokens attending to a set of local neighboring tokens
  • All tokens attending to a set of random tokens
BigBird sparse attention can be seen as adding few global tokens on Watts-Strogatz graph.

In the BigBird paper, we explain why sparse attention is sufficient to approximate quadratic attention, partially explaining why ETC was successful. A crucial observation is that there is an inherent tension between how few similarity scores one computes and the flow of information between different nodes (i.e., the ability of one token to influence each other). Global tokens serve as a conduit for information flow and we prove that sparse attention mechanisms with global tokens can be as powerful as the full attention model. In particular, we show that BigBird is as expressive as the original Transformer, is computationally universal (following the work of Yun et al. and Perez et al.), and is a universal approximator of continuous functions. Furthermore, our proof suggests that the use of random graphs can further help ease the flow of information — motivating the use of the random attention component.

This design scales to much longer sequence lengths for both structured and unstructured tasks. Further scaling can be achieved by using gradient checkpointing by trading off training time for sequence length. This lets us extend our efficient sparse transformers to include generative tasks that require an encoder and a decoder, such as long document summarization, on which we achieve a new state of the art.

Summarization ROUGE score for long documents. Both for BigPatent and ArXiv datasets, we achieve a new state of the art result.

Moreover, the fact that BigBird is a generic replacement also allows it to be extended to new domains without pre-existing domain knowledge. In particular, we introduce a novel application of Transformer-based models where long contexts are beneficial — extracting contextual representations of genomic sequences (DNA). With longer masked language model pre-training, BigBird achieves state-of-the-art performance on downstream tasks, such as promoter-region prediction and chromatin profile prediction.

On multiple genomics tasks, such as promoter region prediction (PRP), chromatin-profile prediction including transcription factors (TF), histone-mark (HM) and DNase I hypersensitive (DHS) detection, we outperform baselines. Moreover our results show that Transformer models can be applied to multiple genomics tasks that are currently underexplored.

Main Implementation Idea
One of the main impediments to the large scale adoption of sparse attention is the fact that sparse operations are quite inefficient in modern hardware. Behind both ETC and BigBird, one of our key innovations is to make an efficient implementation of the sparse attention mechanism. As modern hardware accelerators like GPUs and TPUs excel using coalesced memory operations, which load blocks of contiguous bytes at once, it is not efficient to have small sporadic look-ups caused by a sliding window (for local attention) or random element queries (random attention). Instead we transform the sparse local and random attention into dense tensor operations to take full advantage of modern single instruction, multiple data (SIMD) hardware.

To do this, we first “blockify” the attention mechanism to better leverage GPUs/TPUs, which are designed to operate on blocks. Then we convert the sparse attention mechanism computation into a dense tensor product through a series of simple matrix operations such as reshape, roll, and gather, as illustrated in the animation below.

Illustration of how sparse window attention is efficiently computed using roll and reshape, and without small sporadic look-ups.

Recently, “Long Range Arena: A Benchmark for Efficient Transformers“ provided a benchmark of six tasks that require longer context, and performed experiments to benchmark all existing long range transformers. The results show that the BigBird model, unlike its counterparts, clearly reduces memory consumption without sacrificing performance.

Conclusion
We show that carefully designed sparse attention can be as expressive and flexible as the original full attention model. Along with theoretical guarantees, we provide a very efficient implementation which allows us to scale to much longer inputs. As a consequence, we achieve state-of-the-art results for question answering, document summarization and genome fragment classification. Given the generic nature of our sparse attention, the approach should be applicable to many other tasks like program synthesis and long form open domain question answering. We have open sourced the code for both ETC (github) and BigBird (github), both of which run efficiently for long sequences on both GPUs and TPUs.

Acknowledgements
This research resulted as a collaboration with Amr Ahmed, Joshua Ainslie, Chris Alberti, Vaclav Cvicek, Avinava Dubey, Zachary Fisher, Guru Guruganesh, Santiago Ontañón, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, Li Yang, Manzil Zaheer, who co-authored EMNLP and NeurIPS papers.

Source: Google AI Blog


RxR: A Multilingual Benchmark for Navigation Instruction Following

A core challenge in machine learning (ML) is to build agents that can navigate complex human environments in response to spoken or written commands. While today’s agents, including robots, can often navigate complicated environments, they cannot yet understand navigation goals expressed in natural language, such as, “Go past the brown double doors that are closed to your right and stand behind the chair at the head of the table.”

This challenge, referred to as vision-and-language navigation (VLN), demands a sophisticated understanding of spatial language. For example, the ability to identify the position “behind the chair at the head of the table requires finding the table, identifying which part of the table is considered to be the “head”, finding the chair closest to the head, identifying the area behind this chair and so on. While people can follow these instructions easily, these challenges cannot be easily solved with current ML-based methods, requiring systems that can better connect language to the physical world it describes.

To help spur progress in this area, we are excited to introduce Room-Across-Room (RxR), a new dataset for VLN. Described in “Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense Spatiotemporal Grounding”, RxR is the first multilingual dataset for VLN, containing 126,069 human-annotated navigation instructions in three typologically diverse languages — English, Hindi and Telugu. Each instruction describes a path through a photorealistic simulator populated with indoor environments from the Matterport3D dataset, which includes 3D captures of homes, offices and public buildings. To track progress on VLN, we are also announcing the RxR Challenge, a competition that encourages the machine learning community to train and evaluate their own instruction following agents on RxR instructions.

Language Instruction
en-US Starting next to the long dining room table, turn so the table is to your right. Walk towards the glass double doors. When you reach the mat before the doors, turn immediately left and walk down the stairs. When you reach the bottom of the stairs, walk through the open doors to your left and continue through the art exhibit with the tub to your right hand side. Down the length of the table until you reach the small step at the end of the room before you reach the tub and stop.
  
hi-IN अभी हमारे बायीं ओर एक बड़ा मेज़ है कुछ कुर्सियाँ हैं और कुछ दीपक मेज़ के ऊपर रखे हैं। उलटी दिशा में घूम जाएँ और सिधा चलें। अभी हमारे दायीं ओर एक गोल मेज़ है वहां से सीधा बढ़ें और सामने एक शीशे का बंद दरवाज़ा है उससे पहले बायीं ओर एक सीढ़ी है उससे निचे उतरें। निचे उतरने के बाद दायीं ओर मुड़े और एक भूरे रंग के दरवाज़े से अंदर प्रवेश करें और सीधा चलें। अभी हमारे दायीं ओर एक बड़ा मेज़ है और दो कुर्सियां राखी हैं सीधा आगे बढ़ें। हमारे सामने एक पानी का कल है और सामने तीन कुर्सियां दिवार के पास रखी हैं यहीं पर ठहर जाएँ।
  
te-IN ఉన్న చోటు నుండి వెనకకు తిరిగి, నేరుగా వెళ్తే, మీ ముందర ఒక బల్ల ఉంటుంది. దాన్ని దాటుకొని ఎడమవైపుకి తిరిగితే, మీ ముందర మెట్లు ఉంటాయి. వాటిని పూర్తిగా దిగండి. ఇప్పుడు మీ ముందర రెండు తెరిచిన ద్వారాలు ఉంటాయి. ఎడమవైపు ఉన్న ద్వారం గుండా బయటకు వెళ్ళి, నేరుగా నడవండి. ఇప్పుడు మీ కుడివైపున పొడవైన బల్ల ఉంటుంది. దాన్ని దాటుకొని ముందరే ఉన్న మెట్ల వద్దకు వెళ్ళి ఆగండి.

Examples of English, Hindi and Telugu navigation instructions from the RxR dataset. Each navigation instruction describes the same path.

Pose Traces
In addition to navigation instructions and paths, RxR also includes a new, more detailed multimodal annotation called a pose trace. Inspired by the mouse traces captured in the Localized Narratives dataset, pose traces provide dense groundings between language, vision and movement in a rich 3D setting. To generate navigation instructions, we ask guide annotators to move along a path in the simulator while narrating the path based on the surroundings. The pose trace is a record of everything the guide sees along the path, time-aligned with the words in the navigation instructions. These traces are then paired with pose traces from follower annotators, who are tasked with following the intended path by listening to the guide’s audio, thereby validating the quality of the navigation instructions. Pose traces implicitly capture notions of landmark selection and visual saliency, and represent a play-by-play account of how to solve the navigation instruction generation task (for guides) and the navigation instruction following task (for followers).

Example English navigation instruction in the RxR dataset. Words in the instruction text (right) are color-coded to align with the pose trace (left) that illustrates the movements and visual percepts of the guide annotator as they move through the environment describing the path.
The same RxR example with words in the navigation instruction aligned to 360° images along the path. The parts of the scene the guide annotator observed are highlighted; parts of the scene ignored by the annotator are faded. Red and yellow boxes highlight some of the close alignments between the textual instructions and the annotator's visual cues. The red cross indicates the next direction the annotator moved.

Scale
In total, RxR contains almost 10 million words, making it around 10 times larger than existing datasets, such as R2R and Touchdown/Retouchdown. This is important because, in comparison to tasks based on static image and text data, language tasks that require learning through movement or interaction with an environment typically suffer from a lack of large-scale training data. RxR also addresses known biases in the construction of the paths that have arisen in other datasets, such as R2R in which all paths have similar lengths and take the shortest route to the goal. In contrast, the paths in RxR are on average longer and less predictable, making them more challenging to follow and encouraging models trained on the dataset to place greater emphasis on the role of language in the task. The size, scope and detail of RxR will expand the frontier for research on grounded language learning while reducing the dominance of high resource languages such as English.

Left: RxR is an order of magnitude larger than similar existing datasets. Right: Compared to R2R, the paths in RxR are typically longer and less predictable, making them more challenging to follow.

Baselines
To better characterize and understand the RxR dataset, we trained a variety of agents on RxR using our open source framework VALAN, and language representations from the multilingual BERT model. We found that results were improved by including follower annotations as well as guide annotations during training, and that independently trained monolingual agents outperformed a single multilingual agent.

Conceptually, evaluation of these agents is straightforward — did the agent follow the intended path? Empirically, we measure the similarity between the path taken by the VLN agent and the reference path using NDTW, a normalized measure of path fidelity that ranges between 100 (perfect correspondence) and 0 (completely wrong). The average score for the follower annotators across all three languages is 79.5, due to natural variation between similar paths. In contrast, the best model (a composite of three independently trained monolingual agents, one for each language) achieved an NDTW score on the RxR test set of 41.5. While this is much better than random (15.4), it remains far below human performance. Although advances in language modeling continue to rapidly erode the headroom for improvement in text-only language understanding benchmarks such as GLUE and SuperGLUE, benchmarks like RxR that connect language to the physical world offer substantial room for improvement.

Results for our multilingual and monolingual instruction following agents on the RxR test-standard split. While performance is much better than a random walk, there remains considerable headroom to reach human performance on this task.

Competition
To encourage further research in this area, we are launching the RxR Challenge, an ongoing competition for the machine learning community to develop computational agents that can follow natural language navigation instructions. To take part, participants upload the navigation paths taken by their agent in response to the provided RxR test instructions. In the most difficult setting (reported here and in the paper), all the test environments are previously unseen. However, we also allow for settings in which the agent is either trained in or explores the test environments in advance. For more details and the latest results please visit the challenge website.

PanGEA
We are also releasing the custom web-based annotation tool that we developed to collect the RxR dataset. The Panoramic Graph Environment Annotation toolkit (PanGEA), is a lightweight and customizable codebase for collecting speech and text annotations in panoramic graph environments, such as Matterport3D and StreetLearn. It includes speech recording and virtual pose tracking, as well as tooling to align the resulting pose trace with a manual transcript. For more details please visit the PanGEA github page.

Acknowledgements
The authors would like to thank Roma Patel, Eugene Ie and Jason Baldridge for their contributions to this research. We would also like to thank all the annotators, Sneha Kudugunta for analyzing the Telugu annotations, and Igor Karpov, Ashwin Kakarla and Christina Liu for their tooling and annotation support for this project, Austin Waters and Su Wang for help with image features, and Daphne Luong for executive support for the data collection.

Source: Google AI Blog


Navigating Recorder Transcripts Easily, with Smart Scrolling

Last year we launched Recorder, a new kind of recording app that made audio recording smarter and more useful by leveraging on-device machine learning (ML) to transcribe the recording, highlight audio events, and suggest appropriate tags for titles. Recorder makes editing, sharing and searching through transcripts easier. Yet because Recorder can transcribe very long recordings (up to 18 hours!), it can still be difficult for users to find specific sections, necessitating a new solution to quickly navigate such long transcripts.

To increase the navigability of content, we introduce Smart Scrolling, a new ML-based feature in Recorder that automatically marks important sections in the transcript, chooses the most representative keywords from each section, and then surfaces those keywords on the vertical scrollbar, like chapter headings. The user can then scroll through the keywords or tap on them to quickly navigate to the sections of interest. The models used are lightweight enough to be executed on-device without the need to upload the transcript, thus preserving user privacy.

Smart Scrolling feature UX

Under the hood
The Smart Scrolling feature is composed of two distinct tasks. The first extracts representative keywords from each section and the second picks which sections in the text are the most informative and unique.

For each task, we utilize two different natural language processing (NLP) approaches: a distilled bidirectional transformer (BERT) model pre-trained on data sourced from a Wikipedia dataset, alongside a modified extractive term frequency–inverse document frequency (TF-IDF) model. By using the bidirectional transformer and the TF-IDF-based models in parallel for both the keyword extraction and important section identification tasks, alongside aggregation heuristics, we were able to harness the advantages of each approach and mitigate their respective drawbacks (more on this in the next section).

The bidirectional transformer is a neural network architecture that employs a self-attention mechanism to achieve context-aware processing of the input text in a non-sequential fashion. This enables parallel processing of the input text to identify contextual clues both before and after a given position in the transcript.

Bidirectional Transformer-based model architecture

The extractive TF-IDF approach rates terms based on their frequency in the text compared to their inverse frequency in the trained dataset, and enables the finding of unique representative terms in the text.

Both models were trained on publicly available conversational datasets that were labeled and evaluated by independent raters. The conversational datasets were from the same domains as the expected product use cases, focusing on meetings, lectures, and interviews, thus ensuring the same word frequency distribution (Zipf’s law).

Extracting Representative Keywords
The TF-IDF-based model detects informative keywords by giving each word a score, which corresponds to how representative this keyword is within the text. The model does so, much like a standard TF-IDF model, by utilizing the ratio of the number of occurrences of a given word in the text compared to the whole of the conversational data set, but it also takes into account the specificity of the term, i.e., how broad or specific it is. Furthermore, the model then aggregates these features into a score using a pre-trained function curve. In parallel, the bidirectional transformer model, which was fine tuned on the task of extracting keywords, provides a deep semantic understanding of the text, enabling it to extract precise context-aware keywords.

The TF-IDF approach is conservative in the sense that it is prone to finding uncommon keywords in the text (high bias), while the drawback for the bidirectional transformer model is the high variance of the possible keywords that can be extracted. But when used together, these two models complement each other, forming a balanced bias-variance tradeoff.

Once the keyword scores are retrieved from both models, we normalize and combine them by utilizing NLP heuristics (e.g., the weighted average), removing duplicates across sections, and eliminating stop words and verbs. The output of this process is an ordered list of suggested keywords for each of the sections.

Rating A Section’s Importance
The next task is to determine which sections should be highlighted as informative and unique. To solve this task, we again combine the two models mentioned above, which yield two distinct importance scores for each of the sections. We compute the first score by taking the TF-IDF scores of all the keywords in the section and weighting them by their respective number of appearances in the section, followed by a summation of these individual keyword scores. We compute the second score by running the section text through the bidirectional transformer model, which was also trained on the sections rating task. The scores from both models are normalized and then combined to yield the section score.

Smart Scrolling pipeline architecture

Some Challenges
A significant challenge in the development of Smart Scrolling was how to identify whether a section or keyword is important - what is of great importance to one person can be of less importance to another. The key was to highlight sections only when it is possible to extract helpful keywords from them.

To do this, we configured the solution to select the top scored sections that also have highly rated keywords, with the number of sections highlighted proportional to the length of the recording. In the context of the Smart Scrolling features, a keyword was more highly rated if it better represented the unique information of the section.

To train the model to understand this criteria, we needed to prepare a labeled training dataset tailored to this task. In collaboration with a team of skilled raters, we applied this labeling objective to a small batch of examples to establish an initial dataset in order to evaluate the quality of the labels and instruct the raters in cases where there were deviations from what was intended. Once the labeling process was complete we reviewed the labeled data manually and made corrections to the labels as necessary to align them with our definition of importance.

Using this limited labeled dataset, we ran automated model evaluations to establish initial metrics on model quality, which were used as a less-accurate proxy to the model quality, enabling us to quickly assess the model performance and apply changes in the architecture and heuristics. Once the solution metrics were satisfactory, we utilized a more accurate manual evaluation process over a closed set of carefully chosen examples that represented expected Recorder use cases. Using these examples, we tweaked the model heuristics parameters to reach the desired level of performance using a reliable model quality evaluation.

Runtime Improvements
After the initial release of Recorder, we conducted a series of user studies to learn how to improve the usability and performance of the Smart Scrolling feature. We found that many users expect the navigational keywords and highlighted sections to be available as soon as the recording is finished. Because the computation pipeline described above can take a considerable amount of time to compute on long recordings, we devised a partial processing solution that amortizes this computation over the whole duration of the recording. During recording, each section is processed as soon as it is captured, and then the intermediate results are stored in memory. When the recording is done, Recorder aggregates the intermediate results.

When running on a Pixel 5, this approach reduced the average processing time of an hour long recording (~9K words) from 1 minute 40 seconds to only 9 seconds, while outputting the same results.

Summary
The goal of Recorder is to improve users’ ability to access their recorded content and navigate it with ease. We have already made substantial progress in this direction with the existing ML features that automatically suggest title words for recordings and enable users to search recordings for sounds and text. Smart Scrolling provides additional text navigation abilities that will further improve the utility of Recorder, enabling users to rapidly surface sections of interest, even for long recordings.

Acknowledgments
Bin Zhang, Sherry Lin, Isaac Blankensmith, Henry Liu‎, Vincent Peng‎, Guilherme Santos‎, Tiago Camolesi, Yitong Lin, James Lemieux, Thomas Hall‎, Kelly Tsai‎, Benny Schlesinger, Dror Ayalon, Amit Pitaru, Kelsie Van Deman, Console Chen, Allen Su, Cecile Basnage, Chorong Johnston‎, Shenaz Zack, Mike Tsao, Brian Chen, Abhinav Rastogi, Tracy Wu, Yvonne Yang‎.

Source: Google AI Blog


Measuring Gendered Correlations in Pre-trained NLP Models

Natural language processing (NLP) has seen significant progress over the past several years, with pre-trained models like BERT, ALBERT, ELECTRA, and XLNet achieving remarkable accuracy across a variety of tasks. In pre-training, representations are learned from a large text corpus, e.g., Wikipedia, by repeatedly masking out words and trying to predict them (this is called masked language modeling). The resulting representations encode rich information about language and correlations between concepts, such as surgeons and scalpels. There is then a second training stage, fine-tuning, in which the model uses task-specific training data to learn how to use the general pre-trained representations to do a concrete task, like classification. Given the broad adoption of these representations in many NLP tasks, it is crucial to understand the information encoded in them and how any learned correlations affect performance downstream, to ensure the application of these models aligns with our AI Principles.

In “Measuring and Reducing Gendered Correlations in Pre-trained Models” we perform a case study on BERT and its low-memory counterpart ALBERT, looking at correlations related to gender, and formulate a series of best practices for using pre-trained language models. We present experimental results over public model checkpoints and an academic task dataset to illustrate how the best practices apply, providing a foundation for exploring settings beyond the scope of this case study. We will soon release a series of checkpoints, Zari1, which reduce gendered correlations while maintaining state-of-the-art accuracy on standard NLP task metrics.

Measuring Correlations
To understand how correlations in pre-trained representations can affect downstream task performance, we apply a diverse set of evaluation metrics for studying the representation of gender. Here, we’ll discuss results from one of these tests, based on coreference resolution, which is the capability that allows models to understand the correct antecedent to a given pronoun in a sentence. For example, in the sentence that follows, the model should recognize his refers to the nurse, and not to the patient.

The standard academic formulation of the task is the OntoNotes test (Hovy et al., 2006), and we measure how accurate a model is at coreference resolution in a general setting using an F1 score over this data (as in Tenney et al. 2019). Since OntoNotes represents only one data distribution, we also consider the WinoGender benchmark that provides additional, balanced data designed to identify when model associations between gender and profession incorrectly influence coreference resolution. High values of the WinoGender metric (close to one) indicate a model is basing decisions on normative associations between gender and profession (e.g., associating nurse with the female gender and not male). When model decisions have no consistent association between gender and profession, the score is zero, which suggests that decisions are based on some other information, such as sentence structure or semantics.

BERT and ALBERT metrics on OntoNotes (accuracy) and WinoGender (gendered correlations). Low values on the WinoGender metric indicate that a model does not preferentially use gendered correlations in reasoning.

In this study, we see that neither the (Large) BERT or ALBERT public model achieves zero score on the WinoGender examples, despite achieving impressive accuracy on OntoNotes (close to 100%). At least some of this is due to models preferentially using gendered correlations in reasoning. This isn’t completely surprising: there are a range of cues available to understand text and it is possible for a general model to pick up on any or all of these. However, there is reason for caution, as it is undesirable for a model to make predictions primarily based on gendered correlations learned as priors rather than the evidence available in the input.

Best Practices
Given that it is possible for unintended correlations in pre-trained model representations to affect downstream task reasoning, we now ask: what can one do to mitigate any risk this poses when developing new NLP models?

  • It is important to measure for unintended correlations: Model quality may be assessed using accuracy metrics, but these only measure one dimension of performance, especially if the test data is drawn from the same distribution as the training data. For example, the BERT and ALBERT checkpoints have accuracy within 1% of each other, but differ by 26% (relative) in the degree to which they use gendered correlations for coreference resolution. This difference might be important for some tasks; selecting a model with low WinoGender score could be desirable in an application featuring texts about people in professions that may not conform to historical social norms, e.g., male nurses.
  • Be careful even when making seemingly innocuous configuration changes: Neural network model training is controlled by many hyperparameters that are usually selected to maximize some training objective. While configuration choices often seem innocuous, we find they can cause significant changes for gendered correlations, both for better and for worse. For example, dropout regularization is used to reduce overfitting by large models. When we increase the dropout rate used for pre-training BERT and ALBERT, we see a significant reduction in gendered correlations even after fine-tuning. This is promising since a simple configuration change allows us to train models with reduced risk of harm, but it also shows that we should be mindful and evaluate carefully when making any change in model configuration.
    Impact of increasing dropout regularization in BERT and ALBERT.
  • There are opportunities for general mitigations: A further corollary from the perhaps unexpected impact of dropout on gendered correlations is that it opens the possibility to use general-purpose methods for reducing unintended correlations: by increasing dropout in our study, we improve how the models reason about WinoGender examples without manually specifying anything about the task or changing the fine-tuning stage at all. Unfortunately, OntoNotes accuracy does start to decline as the dropout rate increases (which we can see in the BERT results), but we are excited about the potential to mitigate this in pre-training, where changes can lead to model improvements without the need for task-specific updates. We explore counterfactual data augmentation as another mitigation strategy with different tradeoffs in our paper.

What’s Next
We believe these best practices provide a starting point for developing robust NLP systems that perform well across the broadest possible range of linguistic settings and applications. Of course these techniques on their own are not sufficient to capture and remove all potential issues. Any model deployed in a real-world setting should undergo rigorous testing that considers the many ways it will be used, and implement safeguards to ensure alignment with ethical norms, such as Google's AI Principles. We look forward to developments in evaluation frameworks and data that are more expansive and inclusive to cover the many uses of language models and the breadth of people they aim to serve.

Acknowledgements
This is joint work with Xuezhi Wang, Ian Tenney, Ellie Pavlick, Alex Beutel, Jilin Chen, Emily Pitler, and Slav Petrov. We benefited greatly throughout the project from discussions with Fernando Pereira, Ed Chi, Dipanjan Das, Vera Axelrod, Jacob Eisenstein, Tulsee Doshi, and James Wexler.



1 Zari is an Afghan Muppet designed to show that ‘a little girl could do as much as everybody else’.

Source: Google AI Blog


Measuring Gendered Correlations in Pre-trained NLP Models

Natural language processing (NLP) has seen significant progress over the past several years, with pre-trained models like BERT, ALBERT, ELECTRA, and XLNet achieving remarkable accuracy across a variety of tasks. In pre-training, representations are learned from a large text corpus, e.g., Wikipedia, by repeatedly masking out words and trying to predict them (this is called masked language modeling). The resulting representations encode rich information about language and correlations between concepts, such as surgeons and scalpels. There is then a second training stage, fine-tuning, in which the model uses task-specific training data to learn how to use the general pre-trained representations to do a concrete task, like classification. Given the broad adoption of these representations in many NLP tasks, it is crucial to understand the information encoded in them and how any learned correlations affect performance downstream, to ensure the application of these models aligns with our AI Principles.

In “Measuring and Reducing Gendered Correlations in Pre-trained Models” we perform a case study on BERT and its low-memory counterpart ALBERT, looking at correlations related to gender, and formulate a series of best practices for using pre-trained language models. We present experimental results over public model checkpoints and an academic task dataset to illustrate how the best practices apply, providing a foundation for exploring settings beyond the scope of this case study. We will soon release a series of checkpoints, Zari1, which reduce gendered correlations while maintaining state-of-the-art accuracy on standard NLP task metrics.

Measuring Correlations
To understand how correlations in pre-trained representations can affect downstream task performance, we apply a diverse set of evaluation metrics for studying the representation of gender. Here, we’ll discuss results from one of these tests, based on coreference resolution, which is the capability that allows models to understand the correct antecedent to a given pronoun in a sentence. For example, in the sentence that follows, the model should recognize his refers to the nurse, and not to the patient.

The standard academic formulation of the task is the OntoNotes test (Hovy et al., 2006), and we measure how accurate a model is at coreference resolution in a general setting using an F1 score over this data (as in Tenney et al. 2019). Since OntoNotes represents only one data distribution, we also consider the WinoGender benchmark that provides additional, balanced data designed to identify when model associations between gender and profession incorrectly influence coreference resolution. High values of the WinoGender metric (close to one) indicate a model is basing decisions on normative associations between gender and profession (e.g., associating nurse with the female gender and not male). When model decisions have no consistent association between gender and profession, the score is zero, which suggests that decisions are based on some other information, such as sentence structure or semantics.

BERT and ALBERT metrics on OntoNotes (accuracy) and WinoGender (gendered correlations). Low values on the WinoGender metric indicate that a model does not preferentially use gendered correlations in reasoning.

In this study, we see that neither the (Large) BERT or ALBERT public model achieves zero score on the WinoGender examples, despite achieving impressive accuracy on OntoNotes (close to 100%). At least some of this is due to models preferentially using gendered correlations in reasoning. This isn’t completely surprising: there are a range of cues available to understand text and it is possible for a general model to pick up on any or all of these. However, there is reason for caution, as it is undesirable for a model to make predictions primarily based on gendered correlations learned as priors rather than the evidence available in the input.

Best Practices
Given that it is possible for unintended correlations in pre-trained model representations to affect downstream task reasoning, we now ask: what can one do to mitigate any risk this poses when developing new NLP models?

  • It is important to measure for unintended correlations: Model quality may be assessed using accuracy metrics, but these only measure one dimension of performance, especially if the test data is drawn from the same distribution as the training data. For example, the BERT and ALBERT checkpoints have accuracy within 1% of each other, but differ by 26% (relative) in the degree to which they use gendered correlations for coreference resolution. This difference might be important for some tasks; selecting a model with low WinoGender score could be desirable in an application featuring texts about people in professions that may not conform to historical social norms, e.g., male nurses.
  • Be careful even when making seemingly innocuous configuration changes: Neural network model training is controlled by many hyperparameters that are usually selected to maximize some training objective. While configuration choices often seem innocuous, we find they can cause significant changes for gendered correlations, both for better and for worse. For example, dropout regularization is used to reduce overfitting by large models. When we increase the dropout rate used for pre-training BERT and ALBERT, we see a significant reduction in gendered correlations even after fine-tuning. This is promising since a simple configuration change allows us to train models with reduced risk of harm, but it also shows that we should be mindful and evaluate carefully when making any change in model configuration.
    Impact of increasing dropout regularization in BERT and ALBERT.
  • There are opportunities for general mitigations: A further corollary from the perhaps unexpected impact of dropout on gendered correlations is that it opens the possibility to use general-purpose methods for reducing unintended correlations: by increasing dropout in our study, we improve how the models reason about WinoGender examples without manually specifying anything about the task or changing the fine-tuning stage at all. Unfortunately, OntoNotes accuracy does start to decline as the dropout rate increases (which we can see in the BERT results), but we are excited about the potential to mitigate this in pre-training, where changes can lead to model improvements without the need for task-specific updates. We explore counterfactual data augmentation as another mitigation strategy with different tradeoffs in our paper.

What’s Next
We believe these best practices provide a starting point for developing robust NLP systems that perform well across the broadest possible range of linguistic settings and applications. Of course these techniques on their own are not sufficient to capture and remove all potential issues. Any model deployed in a real-world setting should undergo rigorous testing that considers the many ways it will be used, and implement safeguards to ensure alignment with ethical norms, such as Google's AI Principles. We look forward to developments in evaluation frameworks and data that are more expansive and inclusive to cover the many uses of language models and the breadth of people they aim to serve.

Acknowledgements
This is joint work with Xuezhi Wang, Ian Tenney, Ellie Pavlick, Alex Beutel, Jilin Chen, Emily Pitler, and Slav Petrov. We benefited greatly throughout the project from discussions with Fernando Pereira, Ed Chi, Dipanjan Das, Vera Axelrod, Jacob Eisenstein, Tulsee Doshi, and James Wexler.



1 Zari is an Afghan Muppet designed to show that ‘a little girl could do as much as everybody else’.

Source: Google AI Blog


Measuring Gendered Correlations in Pre-trained NLP Models

Natural language processing (NLP) has seen significant progress over the past several years, with pre-trained models like BERT, ALBERT, ELECTRA, and XLNet achieving remarkable accuracy across a variety of tasks. In pre-training, representations are learned from a large text corpus, e.g., Wikipedia, by repeatedly masking out words and trying to predict them (this is called masked language modeling). The resulting representations encode rich information about language and correlations between concepts, such as surgeons and scalpels. There is then a second training stage, fine-tuning, in which the model uses task-specific training data to learn how to use the general pre-trained representations to do a concrete task, like classification. Given the broad adoption of these representations in many NLP tasks, it is crucial to understand the information encoded in them and how any learned correlations affect performance downstream, to ensure the application of these models aligns with our AI Principles.

In “Measuring and Reducing Gendered Correlations in Pre-trained Models” we perform a case study on BERT and its low-memory counterpart ALBERT, looking at correlations related to gender, and formulate a series of best practices for using pre-trained language models. We present experimental results over public model checkpoints and an academic task dataset to illustrate how the best practices apply, providing a foundation for exploring settings beyond the scope of this case study. We will soon release a series of checkpoints, Zari1, which reduce gendered correlations while maintaining state-of-the-art accuracy on standard NLP task metrics.

Measuring Correlations
To understand how correlations in pre-trained representations can affect downstream task performance, we apply a diverse set of evaluation metrics for studying the representation of gender. Here, we’ll discuss results from one of these tests, based on coreference resolution, which is the capability that allows models to understand the correct antecedent to a given pronoun in a sentence. For example, in the sentence that follows, the model should recognize his refers to the nurse, and not to the patient.

The standard academic formulation of the task is the OntoNotes test (Hovy et al., 2006), and we measure how accurate a model is at coreference resolution in a general setting using an F1 score over this data (as in Tenney et al. 2019). Since OntoNotes represents only one data distribution, we also consider the WinoGender benchmark that provides additional, balanced data designed to identify when model associations between gender and profession incorrectly influence coreference resolution. High values of the WinoGender metric (close to one) indicate a model is basing decisions on normative associations between gender and profession (e.g., associating nurse with the female gender and not male). When model decisions have no consistent association between gender and profession, the score is zero, which suggests that decisions are based on some other information, such as sentence structure or semantics.

BERT and ALBERT metrics on OntoNotes (accuracy) and WinoGender (gendered correlations). Low values on the WinoGender metric indicate that a model does not preferentially use gendered correlations in reasoning.

In this study, we see that neither the (Large) BERT or ALBERT public model achieves zero score on the WinoGender examples, despite achieving impressive accuracy on OntoNotes (close to 100%). At least some of this is due to models preferentially using gendered correlations in reasoning. This isn’t completely surprising: there are a range of cues available to understand text and it is possible for a general model to pick up on any or all of these. However, there is reason for caution, as it is undesirable for a model to make predictions primarily based on gendered correlations learned as priors rather than the evidence available in the input.

Best Practices
Given that it is possible for unintended correlations in pre-trained model representations to affect downstream task reasoning, we now ask: what can one do to mitigate any risk this poses when developing new NLP models?

  • It is important to measure for unintended correlations: Model quality may be assessed using accuracy metrics, but these only measure one dimension of performance, especially if the test data is drawn from the same distribution as the training data. For example, the BERT and ALBERT checkpoints have accuracy within 1% of each other, but differ by 26% (relative) in the degree to which they use gendered correlations for coreference resolution. This difference might be important for some tasks; selecting a model with low WinoGender score could be desirable in an application featuring texts about people in professions that may not conform to historical social norms, e.g., male nurses.
  • Be careful even when making seemingly innocuous configuration changes: Neural network model training is controlled by many hyperparameters that are usually selected to maximize some training objective. While configuration choices often seem innocuous, we find they can cause significant changes for gendered correlations, both for better and for worse. For example, dropout regularization is used to reduce overfitting by large models. When we increase the dropout rate used for pre-training BERT and ALBERT, we see a significant reduction in gendered correlations even after fine-tuning. This is promising since a simple configuration change allows us to train models with reduced risk of harm, but it also shows that we should be mindful and evaluate carefully when making any change in model configuration.
    Impact of increasing dropout regularization in BERT and ALBERT.
  • There are opportunities for general mitigations: A further corollary from the perhaps unexpected impact of dropout on gendered correlations is that it opens the possibility to use general-purpose methods for reducing unintended correlations: by increasing dropout in our study, we improve how the models reason about WinoGender examples without manually specifying anything about the task or changing the fine-tuning stage at all. Unfortunately, OntoNotes accuracy does start to decline as the dropout rate increases (which we can see in the BERT results), but we are excited about the potential to mitigate this in pre-training, where changes can lead to model improvements without the need for task-specific updates. We explore counterfactual data augmentation as another mitigation strategy with different tradeoffs in our paper.

What’s Next
We believe these best practices provide a starting point for developing robust NLP systems that perform well across the broadest possible range of linguistic settings and applications. Of course these techniques on their own are not sufficient to capture and remove all potential issues. Any model deployed in a real-world setting should undergo rigorous testing that considers the many ways it will be used, and implement safeguards to ensure alignment with ethical norms, such as Google's AI Principles. We look forward to developments in evaluation frameworks and data that are more expansive and inclusive to cover the many uses of language models and the breadth of people they aim to serve.

Acknowledgements
This is joint work with Xuezhi Wang, Ian Tenney, Ellie Pavlick, Alex Beutel, Jilin Chen, Emily Pitler, and Slav Petrov. We benefited greatly throughout the project from discussions with Fernando Pereira, Ed Chi, Dipanjan Das, Vera Axelrod, Jacob Eisenstein, Tulsee Doshi, and James Wexler.



1 Zari is an Afghan Muppet designed to show that ‘a little girl could do as much as everybody else’.

Source: Google AI Blog


Language-Agnostic BERT Sentence Embedding

A multilingual embedding model is a powerful tool that encodes text from different languages into a shared embedding space, enabling it to be applied to a range of downstream tasks, like text classification, clustering, and others, while also leveraging semantic information for language understanding. Existing approaches for generating such embeddings, like LASER or m~USE, rely on parallel data, mapping a sentence from one language directly to another language in order to encourage consistency between the sentence embeddings. While these existing multilingual approaches yield good overall performance across a number of languages, they often underperform on high-resource languages compared to dedicated bilingual models, which can leverage approaches like translation ranking tasks with translation pairs as training data to obtain more closely aligned representations. Further, due to limited model capacity and the often poor quality of training data for low-resource languages, it can be difficult to extend multilingual models to support a larger number of languages while maintaining good performance.

Illustration of a multilingual embedding space.

Recent efforts to improve language models include the development of masked language model (MLM) pre-training, such as that used by BERT, ALBERT and RoBERTa. This approach has led to exceptional gains across a wide range of languages and a variety of natural language processing tasks since it only requires monolingual text. In addition, MLM pre-training has been extended to the multilingual setting by modifying MLM training to include concatenated translation pairs, known as translation language modeling (TLM), or by simply introducing pre-training data from multiple languages. However, while the internal model representations learned during MLM and TLM training are helpful when fine-tuning on downstream tasks, without a sentence level objective, they do not directly produce sentence embeddings, which are critical for translation tasks.

In “Language-agnostic BERT Sentence Embedding”, we present a multilingual BERT embedding model, called LaBSE, that produces language-agnostic cross-lingual sentence embeddings for 109 languages. The model is trained on 17 billion monolingual sentences and 6 billion bilingual sentence pairs using MLM and TLM pre-training, resulting in a model that is effective even on low-resource languages for which there is no data available during training. Further, the model establishes a new state of the art on multiple parallel text (a.k.a. bitext) retrieval tasks. We have released the pre-trained model to the community through tfhub, which includes modules that can be used as-is or can be fine-tuned using domain-specific data.

The collection of the training data for 109 supported languages

The Model
In previous work, we proposed the use of a translation ranking task to learn a multilingual sentence embedding space. This approach tasks the model with ranking the true translation over a collection of sentences in the target language, given a sentence in the source language. The translation ranking task is trained using a dual encoder architecture with a shared transformer encoder. The resulting bilingual models achieved state-of-the-art performance on multiple parallel text retrieval tasks (including United Nations and BUCC). However, the model suffered when the bi-lingual models were extended to support multiple languages (16 languages, in our test case) due to limitations in model capacity, vocabulary coverage, training data quality and more.

Translation ranking task. Given a sentence in a given source language, the task is to find the true translation over a collection of sentences in the target language.

For LaBSE, we leverage recent advances on language model pre-training, including MLM and TLM, on a BERT-like architecture and follow this with fine-tuning on a translation ranking task. A 12-layer transformer with a 500k token vocabulary pre-trained using MLM and TLM on 109 languages is used to increase the model and vocabulary coverage. The resulting LaBSE model offers extended support to 109 languages in a single model.

The dual encoder architecture, in which the source and target text are encoded using a shared transformer embedding network separately. The translation ranking task is applied, forcing the text that paraphrases each other to have similar representations. The transformer embedding network is initialized from a BERT checkpoint trained on MLM and TLM tasks.

Performance on Cross-lingual Text Retrieval
We evaluate the proposed model using the Tatoeba corpus, a dataset consisting of up to 1,000 English-aligned sentence pairs for 112 languages. For more than 30 of the languages in the dataset, the model has no training data. The model is tasked with finding the nearest neighbor translation for a given sentence, which it calculates using the cosine distance.

To understand the performance of the model for languages at the head or tail of the training data distribution, we divide the set of languages into several groups and compute the average accuracy for each set. The first 14-language group is selected from the languages supported by m~USE, which cover the languages from the head of the distribution (head languages). We also evaluate a second language group composed of 36 languages from the XTREME benchmark. The third 82-language group, selected from the languages covered by the LASER training data, includes many languages from the tail of the distribution (tail languages). Finally, we compute the average accuracy for all languages.

The table below presents the average accuracy achieved by LaBSE, compared to the m~USE and LASER models, for each language group. As expected, all models perform strongly on the 14-language group that covers most head languages. With more languages included, the averaged accuracy for both LASER and LaBSE declines. However, the reduction in accuracy from the LaBSE model with increasing numbers of languages is much less significant, outperforming LASER significantly, particularly when the full distribution of 112 languages is included (83.7% accuracy vs. 65.5%).

Model 14 Langs 36 Langs 82 Langs All Langs
m~USE* 93.9
LASER 95.3 84.4 75.9 65.5
LaBSE 95.3 95.0 87.3 83.7
Average Accuracy (%) on Tatoeba Datasets. The “14 Langs” group consists of languages supported by m~USE; the “36 Langs” group includes languages selected by XTREME; and the “82 Langs” group represents languages covered by the LASER model. The “All Langs” group includes all languages supported by Taoteba.
* The m~USE model comes in two varieties, one built on a convolutional neural network architecture and the other a Transformer-like architecture. Here, we compare only to the Transformer version.

Support to Unsupported Languages
The average performance of all languages included in Tatoeba is very promising. Interestingly, LaBSE even performs relatively well for many of the 30+ Tatoeba languages for which it has no training data (see below). For one third of these languages the LaBSE accuracy is higher than 75% and only 8 have accuracy lower than 25%, indicating very strong transfer performance to languages without training data. Such positive language transfer is only possible due to the massively multilingual nature of LaBSE.

LaBSE accuracy for the subset of Tatoeba languages (represented with ISO 639-1/639-2 codes) for which there was no training data.

Mining Parallel Text from WebLaBSE can be used for mining parallel text (bi-text) from web-scale data. For example, we applied LaBSE to CommonCrawl, a large-scale monolingual corpus, to process 560 million Chinese and 330 million German sentences for the extraction of parallel text. Each Chinese and German sentence pair is encoded using the LaBSE model and then the encoded embedding is used to find a potential translation from a pool of 7.7 billion English sentences pre-processed and encoded by the model. An approximate nearest neighbor search is employed to quickly search through the high-dimensional sentence embeddings. After a simple filtering, the model returns 261M and 104M potential parallel pairs for English-Chinese and English-German, respectively. The trained NMT model using the mined data reaches BLEU scores of 35.7 and 27.2 on the WMT translation tasks (wmt17 for English-to-Chinese and wmt14 for English-to-German). The performance is only a few points away from current state-of-art-models trained on high quality parallel data.

ConclusionWe're excited to share this research, and the model, with the community. The pre-trained model is released at tfhub to support further research on this direction and possible downstream applications. We also believe that what we're showing here is just the beginning, and there are more important research problems to be addressed, such as building better models to support all languages.

AcknowledgementsThe core team includes Wei Wang, Naveen Arivazhagan, Daniel Cer. We would like to thank the Google Research Language team, along with our partners in other Google groups for their feedback and suggestions. Special thanks goes to Sidharth Mudgal, and Jax Law for help with data processing; as well as Jialu Liu, Tianqi Liu, Chen Chen, and Anosh Raj for help on BERT pre-training.

Source: Google AI Blog


SmartReply for YouTube Creators



It has been more than 4 years since SmartReply was launched, and since then, it has expanded to more users with the Gmail launch and Android Messages and to more devices with Android Wear. Developers now use SmartReply to respond to reviews within the Play Developer Console and can set up their own versions using APIs offered within MLKit and TFLite. With each launch there has been a unique challenge in modeling and serving that required customizing SmartReply for the task requirements.

We are now excited to share an updated SmartReply built for YouTube and implemented in YouTube Studio that helps creators engage more easily with their viewers. This model learns comment and reply representation through a computationally efficient dilated self-attention network, and represents the first cross-lingual and character byte-based SmartReply model. SmartReply for YouTube is currently available for English and Spanish creators, and this approach simplifies the process of extending the SmartReply feature to many more languages in the future.
YouTube creators receive a large volume of responses to their videos. Moreover, the community of creators and viewers on YouTube is diverse, as reflected by the creativity of their comments, discussions and videos. In comparison to emails, which tend to be long and dominated by formal language, YouTube comments reveal complex patterns of language switching, abbreviated words, slang, inconsistent usage of punctuation, and heavy utilization of emoji. Following is a sample of comments that illustrate this challenge:
Deep Retrieval
The initial release of SmartReply for Inbox encoded input emails word-by-word with a recurrent neural network, and then decoded potential replies with yet another word-level recurrent neural network. Despite the expressivity of this approach, it was computationally expensive. Instead, we found that one can achieve the same ends by designing a system that searches through a predefined list of suggestions for the most appropriate response.

This retrieval system encoded the message and its suggestion independently. First, the text was preprocessed to extract words and short phrases. This preprocessing included, but was not limited to, language identification, tokenization, and normalization. Two neural networks then simultaneously and independently encoded the message and the suggestion. This factorization allowed one to pre-compute the suggestion encodings and then search through the set of suggestions using an efficient maximum inner product search data structure. This deep retrieval approach enabled us to expand SmartReply to Gmail and since then, it has been the foundation for several SmartReply systems including the current YouTube system.

Beyond Words
The previous SmartReply systems described above relied on word level preprocessing that is well tuned for a limited number of languages and narrow genres of writing. Such systems face significant challenges in the YouTube case, where a typical comment might include heterogeneous content, like emoji, ASCII art, language switching, etc. In light of this, and taking inspiration from our recent work on byte and character language modeling, we decided to encode the text without any preprocessing. This approach is supported by research demonstrating that a deep Transformer network is able to model words and phrases from the ground up just by feeding it text as a sequence of characters or bytes, with comparable quality to word-based models.

Although initial results were promising, especially for processing comments with emoji or typos, the inference speed was too slow for production due to the fact that character sequences are longer than word equivalents and the computational complexity of self-attention layers grows quadratically as a function of sequence length. We found that shrinking the sequence length by applying temporal reduction layers at each layer of the network, similar to the dilation technique applied in WaveNet, provides a good trade-off between computation and quality.

The figure below presents a dual encoder network that encodes both the comment and the reply to maximize the mutual information between their latent representations by training the network with a contrastive objective. The encoding starts with feeding the transformer a sequence of bytes after they have been embedded. The input for each subsequent layer will be reduced by dropping a percentage of characters at equal offsets. After applying several transformer layers the sequence length is greatly truncated, significantly reducing the computational complexity. This sequence compression scheme could be substituted by other operators such as average pooling, though we did not notice any gains from more sophisticated methods, and therefore, opted to use dilation for simplicity.
A dual encoder network that maximizes the mutual information between the comments and their replies through a contrastive objective. Each encoder is fed a sequence of bytes and is implemented as a computationally efficient dilated transformer network.
A Model to Learn Them All
Instead of training a separate model for each language, we opted to train a single cross-lingual model for all supported languages. This allows the support of mixed-language usage in the comments, and enables the model to utilize the learning of common elements in one language for understanding another, such as emoji and numbers. Moreover, having a single model simplifies the logistics of maintenance and updates. While the model has been rolled out to English and Spanish, the flexibility inherent in this approach will enable it to be expanded to other languages in the future.

Inspecting the encodings of a multilingual set of suggestions produced by the model reveals that the model clusters appropriate replies, regardless of the language to which they belong. This cross-lingual capability emerged without exposing the model during training to any parallel corpus. We demonstrate in the figure below for three languages how the replies are clustered by their meaning when the model is probed with an input comment. For example, the English comment “This is a great video,” is surrounded by appropriate replies, such as “Thanks!” Moreover, inspection of the nearest replies in other languages reveal them also to be appropriate and similar in meaning to the English reply. The 2D projection also shows several other cross-lingual clusters that consist of replies of similar meaning. This clustering demonstrates how the model can support a rich cross-lingual user experience in the supported languages.
A 2D projection of the model encodings when presented with a hypothetical comment and a small list of potential replies. The neighborhood surrounding English comments (black color) consists of appropriate replies in English and their counterparts in Spanish and Arabic. Note that the network learned to align English replies with their translations without access to any parallel corpus.
When to Suggest?
Our goal is to help creators, so we have to make sure that SmartReply only makes suggestions when it is very likely to be useful. Ideally, suggestions would only be displayed when it is likely that the creator would reply to the comment and when the model has a high chance of providing a sensible and specific response. To accomplish this, we trained auxiliary models to identify which comments should trigger the SmartReply feature.

Conclusion
We’ve launched YouTube SmartReply, starting with English and Spanish comments, the first cross-lingual and character byte-based SmartReply. YouTube is a global product with a diverse user base that generates heterogeneous content. Consequently, it is important that we continuously improve comments for this global audience, and SmartReply represents a strong step in this direction.

Acknowledgements
SmartReply for YouTube creators was developed by Golnaz Farhadi, Ezequiel Baril, Cheng Lee, Claire Yuan, Coty Morrison‎, Joe Simunic‎, Rachel Bransom‎, Rajvi Mehta, Jorge Gonzalez‎, Mark Williams, Uma Roy and many more. We are grateful for the leadership support from Nikhil Dandekar, Eileen Long, Siobhan Quinn, Yun-hsuan Sung, Rachel Bernstein, and Ray Kurzweil.

Source: Google AI Blog


Evaluating Natural Language Generation with BLEURT



In the last few years, research in natural language generation (NLG) has made tremendous progress, with models now able to translate text, summarize articles, engage in conversation, and comment on pictures with unprecedented accuracy, using approaches with increasingly high levels of sophistication. Currently, there are two methods to evaluate these NLG systems: human evaluation and automatic metrics. With human evaluation, one runs a large-scale quality survey for each new version of a model using human annotators, but that approach can be prohibitively labor intensive. In contrast, one can use popular automatic metrics (e.g., BLEU), but these are oftentimes unreliable substitutes for human interpretation and judgement. The rapid progress of NLG and the drawbacks of existing evaluation methods calls for the development of novel ways to assess the quality and success of NLG systems.

In “BLEURT: Learning Robust Metrics for Text Generation” (presented during ACL 2020), we introduce a novel automatic metric that delivers ratings that are robust and reach an unprecedented level of quality, much closer to human annotation. BLEURT (Bilingual Evaluation Understudy with Representations from Transformers) builds upon recent advances in transfer learning to capture widespread linguistic phenomena, such as paraphrasing. The metric is available on Github.

Evaluating NLG Systems
In human evaluation, a piece of generated text is presented to annotators, who are tasked with assessing its quality with respect to its fluency and meaning. The text is typically shown side-by-side with a reference, authored by a human or mined from the Web.
An example questionnaire used for human evaluation in machine translation.
The advantage of this method is that it is accurate: people are still unrivaled when it comes to evaluating the quality of a piece of text. However, this method of evaluation can easily take days and involve dozens of people for just a few thousand examples, which disrupts the model development workflow.

In contrast, the idea behind automatic metrics is to provide a cheap, low-latency proxy for human-quality measurements. Automatic metrics often take two sentences as input, a candidate and a reference, and they return a score that indicates to what extent the former resembles the latter, typically using lexical overlap. A popular metric is BLEU, which counts the sequences of words in the candidate that also appear in the reference (the BLEU score is very similar to precision).

The advantages and weaknesses of automatic metrics are the opposite of those that come with human evaluation. Automatic metrics are convenient — they can be computed in real-time throughout the training process (e.g., for plotting with Tensorboard). However, they are often inaccurate due to their focus on surface-level similarities and they fail to capture the diversity of human language. Frequently, there are many perfectly valid sentences that can convey the same meaning. Overlap-based metrics that rely exclusively on lexical matches unfairly reward those that resemble the reference in their surface form, even if they do not accurately capture meaning, and penalize other paraphrases.
BLEU scores for three candidate sentences. Candidate 2 is semantically close to the reference, and yet its score is lower than Candidate 3.
Ideally, an evaluation method for NLG should combine the advantages of both human evaluation and automatic metrics — it should be relatively cheap to compute, but flexible enough to cope with linguistic diversity.

Introducing BLEURT
BLEURT is a novel, machine learning-based automatic metric that can capture non-trivial semantic similarities between sentences. It is trained on a public collection of ratings (the WMT Metrics Shared Task dataset) as well as additional ratings provided by the user.
Three candidate sentences rated by BLEURT. BLEURT captures that candidate 2 is similar to the reference, even though it contains more non-reference words than candidate 3.
Creating a metric based on machine learning poses a fundamental challenge: the metric should do well consistently on a wide range of tasks and domains, and over time. However, there is only a limited amount of training data. Indeed, public data is sparse — the WMT Metrics Task dataset, the largest collection of human ratings at the time of writing, contains ~260K human ratings covering the news domain only. This is too limited to train a metric suited for the evaluation of NLG systems of the future.

To address this problem, we employ transfer learning. First, we use the contextual word representations of BERT, a state-of-the-art unsupervised representation learning method for language understanding that has already been successfully incorporated into NLG metrics (e.g., YiSi or BERTscore).

Second, we introduce a novel pre-training scheme to increase BLEURT's robustness. Our experiments reveal that training a regression model directly over publicly available human ratings is a brittle approach, since we cannot control in what domain and across what time span the metric will be used. The accuracy is likely to drop in the presence of domain drift, i.e., when the text used comes from a different domain than the training sentence pairs. It may also drop when there is a quality drift, when the ratings to be predicted are higher than those used during training — a feature which would normally be good news because it indicates that ML research is making progress.

The success of BLEURT relies on “warming-up” the model using millions of synthetic sentence pairs before fine-tuning on human ratings. We generated training data by applying random perturbations to sentences from Wikipedia. Instead of collecting human ratings, we use a collection of metrics and models from the literature (including BLEU), which allows the number of training examples to be scaled up at very low cost.
BLEURT's data generation process combines random perturbations and scoring with pre-existing metrics and models.
Experiments reveal that pre-training significantly increases BLEURT's accuracy, especially when the test data is out-of-distribution.

We pre-train BLEURT twice, first with a language modelling objective (as explained in the original BERT paper), then with a collection of NLG evaluation objectives. We then fine-tune the model on the WMT Metrics dataset, on a set of ratings provided by the user, or a combination of both.The following figure illustrates BLEURT's training procedure end-to-end.

Results
We benchmark BLEURT against competing approaches and show that it offers superior performance, correlating well with human ratings on the WMT Metrics Shared Task (machine translation) and the WebNLG Challenge (data-to-text). For example, BLEURT is ~48% more accurate than BLEU on the WMT Metrics Shared Task of 2019. We also demonstrate that pre-training helps BLEURT cope with quality drift.
Correlation between different metrics and human ratings on the WMT'19 Metrics Shared Task.
Conclusion
As NLG models have gotten better over time, evaluation metrics have become an important bottleneck for the research in this field. There are good reasons why overlap-based metrics are so popular: they are simple, consistent, and they do not require any training data. In the use cases where multiple reference sentences are available for each candidate, they can be very accurate. While they play a critical part in our infrastructure, they are also very conservative, and only give an incomplete picture of NLG systems' performance. Our view is that ML engineers should enrich their evaluation toolkits with more flexible, semantic-level metrics.

BLEURT is our attempt to capture NLG quality beyond surface overlap. Thanks to BERT's representations and a novel pre-training scheme, our metric yields SOTA performance on two academic benchmarks, and we are currently investigating how it can improve Google products. Future research includes investigating multilinguality and multimodality.

Acknowledgements
This project was co-advised by Dipanjan Das. We thank Slav Petrov, Eunsol Choi, Nicholas FitzGerald, Jacob Devlin, Madhavan Kidambi, Ming-Wei Chang, and all the members of the Google Research Language team.

Source: Google AI Blog