Tag Archives: Publications

Google Research: Looking Back at 2020, and Forward to 2021

When I joined Google over 20 years ago, we were just figuring out how to really start on the journey of making a high quality and comprehensive search service for information on the web, using lots of curiously wired computers. Fast forward to today, and while we’re taking on a much broader array of technical challenges, it’s still with the same overarching goal of organizing the world's information and making it universally accessible and useful. In 2020, as the world has been reshaped by COVID-19, we saw the ways research-developed technologies could help billions of people better communicate, understand the world, and get things done. I’m proud of what we’ve accomplished, and excited about new possibilities on the horizon.

The goal of Google Research is to work on long-term, ambitious problems across a wide range of important topics — from predicting the spread of COVID-19, to designing algorithms, to learning to translate more and more languages automatically, to mitigating bias in ML models. In the spirit of our annual reviews for 2019, 2018, and more narrowly focused reviews of some work in 2017 and 2016, this post covers key Google Research highlights from this unusual year. This is a long post, but grouped into many different sections. Hopefully, there’s something interesting in here for everyone! For a more comprehensive look, please see our >750 research publications in 2020.

COVID-19 and Health
As the impact of COVID-19 took a tremendous toll on people’s lives, researchers and developers around the world rallied together to develop tools and technologies to help public health officials and policymakers understand and respond to the pandemic. Apple and Google partnered in 2020 to develop the Exposure Notifications System (ENS), a Bluetooth-enabled privacy-preserving technology that allows people to be notified if they have been exposed to others who have tested positive for COVID-19. ENS supplements traditional contact tracing efforts and has been deployed by public health authorities in more than 50 countries, states and regions to help curb the spread of infection.

In the early days of the pandemic, public health officials signalled their need for more comprehensive data to combat the virus’ rapid spread. Our Community Mobility Reports, which provide anonymized insights into movement trends, are helping researchers not only understand the impact of policies like stay-at-home directives and social distancing, and also conduct economic forecasting.

Community Mobility Reports: Navigate and download a report for regions of interest.

Our own researchers have also explored using this anonymized data to forecast COVID-19 spread using graph neural networks instead of traditional time series-based models.

Although the research community knew little about this disease and secondary effects initially, we’re learning more every day. Our COVID-19 Search Trends symptoms allows researchers to explore temporal or symptomatic associations, such as anosmia — the loss of smell that is sometimes a symptom of the virus. To further support the broader research community, we launched Google Health Studies app to provide the public ways to participate in research studies.

Our COVID-19 Search Trends are helping researchers study the link between the disease’s spread and symptom-related searches.

Teams across Google are contributing tools and resources to the broader scientific community, which is working to address the health and economic impacts of the virus.

A spatio-temporal graph for modelling COVID-19 Spread.

Accurate information is critical in dealing with public health threats. We collaborated with many product teams at Google in order to improve information quality about COVID-19 in Google News and Search through supporting fact checking efforts, as well as similar efforts in YouTube.

We helped multilingual communities get equal access to critical COVID-19 information by sponsoring localization of Nextstrain.org’s weekly Situation Reports and developing a COVID-19 open source parallel dataset in collaboration with Translators Without Borders.

Modelling a complex global event is particularly challenging and requires more comprehensive epidemiological datasets, the development of novel interpretable models and agent-based simulators to inform the public health response. Machine learning techniques have also helped in other ways from deploying natural language understanding to helping researchers quickly navigate the mountains of COVID-19 scientific literature, applying anonymization technology to protect privacy while making useful datasets available, and exploring whether public health can conduct faster screening with fewer tests via Bayesian group testing.

These are only a sample of the many pieces of work that happened across Google to help users and public health authorities respond to COVID-19. For more, see using technology to help take on COVID-19.

Research in Machine Learning for Medical Diagnostics
We continue to make headway helping clinicians harness the power of ML to deliver better care for more patients. This year we have described notable advances in applying computer vision to aid doctors in the diagnosis and management of cancer, including helping to make sure that doctors don’t miss potentially cancerous polyps during colonoscopies, and showing that an ML system can achieve substantially higher accuracy than pathologists in Gleason grading of prostate tissue, enabling radiologists to achieve significant reductions in both false negative and false positive results when examining X-rays for signs of breast cancer.

To determine the aggressiveness of prostate cancers, pathologists examine a biopsy and assign it a Gleason grade. In published research, our system was able to grade with higher accuracy than a cohort of pathologists who have not had specialist training in prostate cancer. The first stage of the deep learning system assigns a Gleason grade to every region in a biopsy. In this biopsy, green indicates Gleason pattern 3, while yellow indicates Gleason pattern 4.

We’ve also been working on systems to help identify skin disease, help detect age-related macular degeneration (the leading cause of blindness in the U.S. and U.K., and the third-largest cause of blindness worldwide), and on potential novel non-invasive diagnostics (e.g., being able to detect signs of anemia from retinal images).

Our study examines how a deep learning model can quantify hemoglobin levels — a measure doctors use to detect anemia — from retinal images.

This year has also brought exciting demonstrations of how these same technologies can peer into the human genome. Google’s open-source tool, DeepVariant, identifies genomic variants in sequencing data using a convolutional neural network, and this year won the FDA Challenge for best accuracy in 3 out of 4 categories. Using this same tool, a study led by the Dana-Farber Cancer Institute improved diagnostic yield by 14% for genetic variants that lead to prostate cancer and melanoma in a cohort of 2,367 cancer patients.

Research doesn’t end at measurement of experimental accuracy. Ultimately, truly helping patients receive better care requires understanding how ML tools will affect people in the real world. This year we began work with Mayo Clinic to develop a machine learning system to assist in radiotherapy planning and to better understand how this technology could be deployed into clinical practice. With our partners in Thailand, we’ve used diabetic eye disease screening as a test case in how we can build systems with people at the center, and recognize the fundamental role of diversity, equity, and inclusion in building tools for a healthier world.

Weather, Environment and Climate Change
Machine learning can help us better understand the environment and make useful predictions to help people in both their everyday life as well as in disaster situations. For weather and precipitation forecasting, computationally intensive physics-based models like NOAA’s HRRR have long reigned supreme. We have been able to show, though, that ML-based forecasting systems can predict current precipitation with much better spatial resolution (“Is it raining in my local park in Seattle?” and not just “Is it raining in Seattle?”) and can produce short-term forecasts of up to eight hours that are considerably more accurate than HRRR, and can compute the forecast more quickly, yet with higher temporal and spatial resolution.

A visualization of predictions made over the course of roughly one day. Left: The 1-hour HRRR prediction made at the top of each hour, the limit to how often HRRR provides predictions. Center: The ground truth, i.e., what we are trying to predict. Right: The predictions made by our model. Our predictions are every 2 minutes (displayed here every 15 minutes) at roughly 10 times the spatial resolution made by HRRR. Notice that we capture the general motion and general shape of the storm.

We’ve also developed an improved technique called HydroNets, which uses a network of neural networks to model the actual river systems in the world to more accurately understand the interactions of upstream water levels to downstream inundation, resulting in more accurate water-level predictions and flood forecasting. Using these techniques, we've expanded our coverage of flood alerts by 20x in India and Bangladesh, helping to better protect more than 200 million people in 250,000 square kilometers.

An illustration of the HydroNets architecture.

Better analysis of satellite imagery data can also give Google users a better understanding of the impact and extent of wildfires (which caused devastating effects in California and Australia this year). We showed that automated analysis of satellite imagery can help with rapid assessment of damage after natural disasters even with limited prior satellite imagery. It can also aid urban tree-planting efforts by helping cities assess their current tree canopy coverage and where they should focus on planting new trees. We’ve also shown how machine learning techniques that leverage temporal context can help improve ecological and wildlife monitoring.

Based on this work, we’re excited to partner with NOAA on using AI and ML to amplify NOAA’s environmental monitoring, weather forecasting and climate research using Google Cloud’s infrastructure.

Accessibility
Machine learning continues to provide amazing opportunities for improving accessibility, because it can learn to transfer one kind of sensory input into others. As one example, we released Lookout, an Android application that can help visually impaired users by identifying packaged foods, both in a grocery store and also in their kitchen cupboard at home. The machine learning system behind Lookout demonstrates that a powerful-but-compact machine learning model can accomplish this in real-time on a phone for nearly 2 million products.


Similarly, people who communicate with sign language find it difficult to use video conferencing systems because even if they are signing, they are not detected as actively speaking by audio-based speaker detection systems. Developing Real-Time, Automatic Sign Language Detection for Video Conferencing presents a real-time sign language detection model and demonstrates how it can be used to provide video conferencing systems with a mechanism to identify the person signing as the active speaker.

We also enabled useful Android accessibility capabilities such as Voice Access and Sound Notifications for important household sounds.

Live Caption was expanded to support calls on the Pixel phone with the ability to caption phone calls and video calls. This came out of the Live Relay research project, which enables deaf and hard of hearing people to make calls without assistance.

Applications of ML to Other Fields
Machine learning continues to prove vital in helping us make progress across many fields of science. In 2020, in collaboration with the FlyEM team at HHMI Janelia Research Campus, we released the drosophila hemibrain connectome, the large synapse-resolution map of brain connectivity, reconstructed using large-scale machine learning models applied to high-resolution electron microscope imaging of brain tissue. This connectome information will aid neuroscientists in a wide variety of inquiries, helping us all better understand how brains function. Be sure to check out the very fly interactive 3-D UI!

The application of ML to problems in systems biology is also on the rise. Our Google Accelerated Science team, in collaboration with our colleagues at Calico, have been applying machine learning to yeast, to get a better understanding of how genes work together as a whole system. We’ve also been exploring how to use model-based reinforcement learning in order to design biological sequences like DNA or proteins that have desirable properties for medical or industrial uses. Model-based RL is used to improve sample efficiency. At each round of experimentation the policy is trained offline using a simulator fit on functional measurements from prior rounds. On various tasks like designing DNA transcription factor binding sites, designing antimicrobial proteins, and optimizing the energy of Ising models based on protein structures, we find that model-based RL is an attractive alternative to existing methods.

In partnership with X-Chem Pharmaceuticals and ZebiAI, we have also been developing ML techniques to do “virtual screening” of promising molecular compounds computationally. Previous work in this area has tended to focus on relatively small sets of related compounds, but in this work, we are trying to use DNA-encoded small molecule libraries in order to be able to generalize to find “hits” across a wide swath of chemical space, reducing the need for slower, physical-based lab work in order to progress from idea to working pharmaceutical.

We’ve also seen success applying machine learning to core computer science and computer systems problems, a growing trend that is spawning entire new conferences like MLSys. In Learning-based Memory Allocation for C++ Server Workloads, a neural network-based language model predicts context-sensitive per-allocation site object lifetime information, and then uses this to organize the heap so as to reduce fragmentation. It is able to reduce fragmentation by up to 78% while only using huge pages (which are better for TLB behavior). End-to-End, Transferable Deep RL for Graph Optimization described an end-to-end transferable deep reinforcement learning method for computational graph optimization that shows 33%-60% speedup on three graph optimization tasks compared to TensorFlow default optimization, with 15x faster convergence over prior computation graph optimization methods.

Overview of GO: An end-to-end graph policy network that combines graph embedding and sequential attention.

As described in Chip Design with Deep Reinforcement Learning, we have also been applying reinforcement learning to the problem of place-and-route in computer chip design. This is normally a very time-consuming, labor-intensive process, and is a major reason that going from an idea for a chip to actually having a fully designed and fabricated chip takes so long. Unlike prior methods, our approach has the ability to learn from past experience and improve over time. In particular, as we train over a greater number of chip blocks, our method becomes better at rapidly generating optimized placements for previously unseen chip blocks. The system is able to generate placements that usually outperform those of human chip design experts, and we have been using this system (running on TPUs) to do placement and layout for major portions of future generations of TPUs. Menger is a recent infrastructure we’ve built for large-scale distributed reinforcement learning that is yielding promising performance for difficult RL tasks such as chip design.

Macro placements of Ariane, an open-source RISC-V processor, as training progresses. On the left, the policy is being trained from scratch, and on the right, a pre-trained policy is being fine-tuned for this chip. Each rectangle represents an individual macro placement. Notice how the cavity that is occupied by non-macro logic cells that is discovered by the from-scratch policy is already present from the outset in the pre-trained policy’s placement.

Responsible AI
The Google AI Principles guide our development of advanced technologies. We continue to invest in responsible AI research and tools, update our recommended technical practices in this area, and share regular updates — including a 2020 blog post and report — on our progress in implementation.

To help better understand the behavior of language models, we developed the Language Interpretability Tool (LIT), a toolkit for better interpretability of language models, enabling interactive exploration and analysis of their decisions. We developed techniques for measuring gendered correlations in pre-trained language models and scalable techniques for reducing gender bias in Google Translate. We used the kernel trick to propose a simple method to estimate the influence of a training data example on an individual prediction. To help non-specialists interpret machine learning results, we extended the TCAV technique introduced in 2019 to now provide a complete and sufficient set of concepts. With the original TCAV work, we were able to say that ‘fur’ and ‘long ears’ are important concepts for ‘rabbit’ prediction. With this work, we can also say that these two concepts are enough to fully explain the prediction; you don’t need any other concepts. Concept bottleneck models are a technique to make models more interpretable by training them so that one of the layers is aligned with pre-defined expert concepts (e.g., “bone spurs present”, or “wing color”, as shown below) before making a final prediction for a task, so that we can not only interpret but also turn on/off these concepts on the fly.

Aligning predictions to pre-identified concepts can make models more interpretable, as described in Concept Bottleneck Models.

In collaboration with many other institutions, we also looked into memorization effects of language models, showing that training data extraction attacks are realistic threats on state-of-the-art large language models. This finding along with a result that embedding models can leak information can have significant privacy implications (especially for models trained on private data). In Thieves of Sesame Street: Model Extraction on BERT-based APIs, we demonstrated that attackers with only API access to a language model could create models whose outputs had very high correlation with the original model, even with relatively few API queries to the original model. Subsequent work demonstrated that attackers can extract smaller models with arbitrary accuracy. On the AI Principle of safety we demonstrated that thirteen published defenses to adversarial examples can be circumvented despite attempting to perform evaluations using adaptive attacks. Our work focuses on laying out the methodology and the approach necessary to perform an adaptive attack, and thus will allow the community to make further progress in building more robust models.

Examining the way in which machine learning systems themselves are examined is also an important area of exploration. In collaboration with the Partnership on AI, we defined a framework for how to audit the use of machine learning in software product settings, drawing on lessons from the aerospace, medical devices, and finance industries and their best practices. In joint work with University of Toronto and MIT, we identified several ethical concerns that can arise when auditing the performance of facial recognition systems. In joint work with the University of Washington, we identified some important considerations related to diversity and inclusion when choosing subsets for evaluating algorithmic fairness. As an initial step in making responsible AI work for the next billion users and to help understand if notions of fairness were consistent in different parts of the world, we analyzed and created a framework for algorithmic fairness in India, accounting for datasets, fairness optimizations, infrastructures, and ecosystems

The Model Cards work that was introduced in collaboration with the University of Toronto in 2019 has been growing in influence. Indeed, many well-known models like OpenAI’s GPT-2 and GPT-3, many of Google’s MediaPipe models and various Google Cloud APIs have all adopted Model Cards as a way of giving users of a machine learning model more information about the model’s development and the observed behavior of the model under different conditions. To make this easier for others to adopt for their own machine learning models, we also introduced the Model Card Toolkit for easier model transparency reporting. In order to increase transparency in ML development practices, we demonstrate the applicability of a range of best practices throughout the dataset development lifecycle, including data requirements specification and data acceptance testing.

In collaboration with the U.S. National Science Foundation (NSF), we announced and helped to fund a National AI Research Institute for Human-AI Interaction and Collaboration. We also released the MinDiff framework, a new regularization technique available in the TF Model Remediation library for effectively and efficiently mitigating unfair biases when training ML models, along with ML-fairness gym for building simple simulations that explore potential long-run impacts of deploying machine learning-based decision systems in social environments.

In addition to developing frameworks for fairness, we developed approaches for identifying and improving the health and quality of experiences with Recommender Systems, including using reinforcement learning to introduce safer trajectories. We also continue to work on improving the reliability of our machine learning systems, where we’ve seen that approaches such as generating adversarial examples can improve robustness and that robustness approaches can improve fairness.

Differential privacy is a way to formally quantify privacy protections and requires a rethinking of the most basic algorithms to operate in a way that they do not leak information about any particular individual. In particular, differential privacy can help in addressing memorization effects and information leakage of the kinds mentioned above. In 2020 there were a number of exciting developments, from more efficient ways of computing private empirical risk minimizers to private clustering methods with tight approximation guarantees and private sketching algorithms. We also open sourced the differential privacy libraries that lie at the core of our internal tools, taking extra care to protect against leakage caused by the floating point representation of real numbers. These are the exact same tools that we use to produce differentially private COVID-19 mobility reports that have been a valuable source of anonymous data for researchers and policymakers.

To help developers assess the privacy properties of their classification models we released an ML privacy testing library in Tensorflow. We hope this library will be the starting point of a robust privacy testing suite that can be used by any machine learning developer around the world.

Membership inference attack on models for CIFAR10. The x-axis is the test accuracy of the model, and y-axis is vulnerability score (lower means more private). Vulnerability grows while test accuracy remains the same — better generalization could prevent privacy leakage.

In addition to pushing the state of the art in developing private algorithms, I am excited about the advances we made in weaving privacy into the fabric of our products. One of the best examples is Chrome’s Privacy Sandbox, which changes the underpinnings of the advertising ecosystem and helps systematically protect individuals’ privacy. As part of the project, we proposed and evaluated a number of different APIs, including federated learning of cohorts (FLoC) for interest based targeting, and aggregate APIs for differentially private measurement.

Launched in 2017, federated learning is now a complete research field unto itself, with over 3000 publications on federated learning appearing in 2020 alone. Our cross-institutional Advances and Open Problems in Federated Learning survey paper published in 2019 has been cited 367 times in the past year, and an updated version will soon be published in the Foundations & Trends in Machine Learning series. In July, we hosted a Workshop on Federated Learning and Analytics, and made all research talks and a TensorFlow Federated tutorial publicly available.

The lifecycle of an FL-trained model and the various actors in a federated learning system.

We continue to push the state of the art in federated learning, including the development of new federated optimization algorithms including adaptive learning algorithms, posterior averaging algorithms, and techniques for mimicking centralized algorithms in federated settings, substantial improvements in complimentary cryptographic protocols, and more. We announced and deployed federated analytics, enabling data science over raw data that is stored locally on users’ devices. New uses of federated learning in Google products include contextual emoji suggestions in Gboard, and pioneering privacy-preserving medical research with Google Health Studies. Furthermore, in Privacy Amplification via Random Check-Ins we presented the first privacy accounting mechanism for Federated Learning.

Security for our users is also an area of considerable interest for us. In 2020, we continued to improve protections for Gmail users, by deploying a new ML-based document scanner that provides protection against malicious documents, which increased malicious office document detection by 10% on a daily basis. Thanks to its ability to generalize, this tool has been very effective at blocking some adversarial malware campaigns that elude other detection mechanisms and increased our detection rate by 150% in some cases.

On the account protection side, we released a fully open-source security key firmware to help advance state of art in the two factor authentication space, staying focused on security keys as the best way to protect accounts against phishing.

Natural Language Understanding
Better understanding of language is an area where we saw considerable progress this year. Much of the work in this space from Google and elsewhere now relies on Transformers, a particular style of neural network model originally developed for language problems (but with a growing body of evidence that they are also useful for images, videos, speech, protein folding, and a wide variety of other domains).

One area of excitement is in dialog systems that can chat with a user about something of interest, often encompassing multiple turns of interaction. While successful work in this area to date has involved creating systems that are specialized around particular topics (e.g., Duplex) these systems cannot carry on general conversations. In pursuit of the general research goal of creating systems capable of much more open-ended dialog, in 2020 we described Meena, a learned conversational agent that aspirationally can chat about anything. Meena achieves high scores on a dialog system metric called SSA, which measures both sensibility and specificity of responses. We’ve seen that as we scale up the model size of Meena, it is able to achieve lower perplexity and, as shown in the paper, lower perplexity correlates extremely closely with improved SSA.

A chat between Meena (left) and a person (right).

One well-known issue with generative language models and dialog systems is that when discussing factual data, the model’s capacity may not be large enough to remember every specific detail about a topic, so they generate language that is plausible but incorrect. (This is not unique to machines — people can commit these errors too.) To address this in dialog systems, we are exploring ways to augment a conversational agent by giving it access to external information sources (e.g., a large corpus of documents or a search engine API), and developing learning techniques to use this as an additional resource in order to generate language that is consistent with the retrieved text. Work in this area includes integrating retrieval into language representation models (and a key underlying technology for this to work well is something like ScaNN, an efficient vector similarity search, to efficiently match the desired information to information in the corpus of text). Once appropriate content is found, it can be better understood with approaches like using neural networks to find answers in tables and extracting structured data from templatic documents. Our work on PEGASUS, a state-of-the-art model for abstractive text summarization can also help to create automatic summaries from any piece of text, a general technique useful in conversations, retrieval systems, and many other places.

Efficiency of NLP models has also been a significant focus for our work in 2020. Techniques like transfer learning and multi-task learning can dramatically help with making general NLP models usable for new tasks with modest amounts of computation. Work in this vein includes transfer learning explorations in T5, sparse activation of models (as in our GShard work mentioned below), and more efficient model pre-training with ELECTRA. Several threads of work also look to improve on the basic Transformer architecture, including Reformer, which uses locality-sensitive hashing and reversible computation to more efficiently support much larger attention windows, Performers, which use an approach for attention that scales linearly rather than quadratically (and discusses its use in the context of protein modeling), and ETC and BigBird, which utilize global and sparse random connections, to enable linear scaling for larger and structured sequences. We also explored techniques for creating very lightweight NLP models that are 100x smaller than a larger BERT model, but perform nearly as well for some tasks, making them very suitable for on-device NLP. In Encode, Tag and Realize, we also explored new approaches for generative text models that use edit operations rather than fully general text generation, which can have advantages in computation requirements for generation, more control over the generated text, and require less training data.

Language Translation
Effective language translation helps bring the world closer together by enabling us to all communicate, despite speaking different languages. To date, over a billion people around the world use Google Translate, and last year we added support for five new languages (Kinyarwanda, Odia, Tatar, Turkmen and Uyghur, collectively spoken by 75 million people). Translation quality continues to improve, showing an average +5 BLEU point gain across more than 100 languages from May 2019 to May 2020, through a wide variety of techniques like improved model architectures and training, better handling of noise in datasets, multilingual transfer and multi-task learning, and better use of monolingual data to improve low-resource languages (those without much written public content on the web), directly in line with our goals of improving ML fairness of machine learning systems to provide benefits to the greatest number of people possible.

We strongly believe that continued scaling of multilingual translation models will bring further quality improvements, especially to the billions of speakers of low-resource languages around the world. In GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding, Google researchers showed that training sparsely-activated multilingual translation models of up to 600 billion parameters leads to major improvements in translation quality for 100 languages as measured by BLEU score improvement over a baseline of a separate 400M parameter monolingual baseline model for each language. Three trends stood out in this work, illustrated by Figure 6 in the paper, reproduced below (see the paper for complete discussion):

  • The BLEU score improvements from multilingual training are high for all languages but are even higher for low-resource languages (right hand side of graph is higher than the left) whose speakers represent billions of people in some of the world’s most marginalized communities. Each rectangle on the figure represents languages with 1B speakers.
  • The larger and deeper the model, the larger the BLEU score improvements were across all languages (the lines hardly ever cross).
  • Large, sparse models also show a ~10x to 100x improvement in computational efficiency for model training over training a large, dense model, while simultaneously matching or significantly exceeding the BLEU scores of the large, dense model (computational efficiency discussed in paper).
An illustration of the significant gains in translation quality across 100 languages for large, sparsely-activated language models described in GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding.

We’re actively working on bringing the benefits demonstrated in this GShard research work to Google Translate, as well as training single models that cover 1000 languages, including languages like Dhivehi and Sudanese Arabic (while sharing some challenges that needed solving along the way).

We also developed techniques to create language-agnostic representations of sentences for BERT models, which can help with developing better translation models. To more effectively evaluate translation quality, we introduced BLEURT, a new metric for evaluating language generation for tasks like translation that considers the semantics of the generated text, rather than just the amount of word overlap with ground-truth data, illustrated in the table below.

Machine Learning Algorithms
We continue to develop new machine learning algorithms and approaches for training that enable systems to learn more quickly and from less supervised data. By replaying intermediate results during training of neural networks, we find that we can fill idle time on ML accelerators and therefore can train neural networks faster. By changing the connectivity of neurons dynamically during training, we can find better solutions compared with statically-connected neural networks. We also developed SimCLR, a new self-supervised and semi-supervised learning technique that simultaneously maximizes agreement between differently transformed views of the same image and minimizes agreement between transformed views of different images. This approach significantly improves on the best self-supervised learning techniques.

ImageNet top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-50.

We also extended the idea of contrastive learning to the supervised regime, resulting in a loss function that significantly improves over cross-entropy for supervised classification problems.

Reinforcement Learning
Reinforcement learning (RL), which learns to make good long-term decisions from limited experience, has been an important focus area for us. An important challenge in RL is to learn to make decisions from few data points, and we’ve improved RL algorithm efficiency through learning from fixed datasets, learning from other agents, and improving exploration.

A major focus area this year has been around offline RL, which relies solely on fixed, previously collected datasets (for example, from previous experiments or human demonstrations), extending RL to the applications that can’t collect training data on-the-fly. We’ve introduced a duality approach to RL, developed improved algorithms for off-policy evaluation, estimating confidence intervals, and offline policy optimization. In addition, we’re collaborating with the broader community to tackle these problems by releasing open-source benchmark datasets, and DQN dataset for Atari.

Offline RL on Atari games using the DQN Replay Dataset.

Another line of research improved sample efficiency by learning from other agents through apprenticeship learning. We developed methods to learn from informed agents, matching other agent’s distribution, or learning from adversarial examples. To improve the exploration in RL, we explored bonus-based exploration methods including imitation techniques able to mimic structured exploration arising in agents having prior knowledge about their environment.

We’ve also made significant advances in the mathematical theory of reinforcement learning. One of our main areas of research was studying reinforcement learning as an optimization process. We found connections to the Frank-Wolfe algorithm, momentum methods, KL divergence regularization, operator theory, and convergence analysis; some of these insights led to an algorithm that achieves state-of-the-art performance in challenging RL benchmarks and discovery that polynomial transfer functions avoid convergence problems associated with softmax, both in RL and supervised learning. We’ve made some exciting progress on the topic of safe reinforcement learning, where one seeks to discover optimal control rules while respecting important experimental constraints. This includes a framework for safe policy optimization. We studied efficient RL-based algorithms for solving a class of problems known as mean field games, which model systems with a large number of decision-makers, from mobile networks to electric grids.

We’ve made breakthroughs toward generalization to new tasks and environments, an important challenge for scaling up RL to complex real-world problems. A 2020 focus area was population-based learning-to-learn methods, where another RL or evolutionary agent trained a population of RL agents to create a curriculum of emergent complexity, and discover new state-of-the-art RL algorithms. Learning to estimate the importance of data points in the training set and parts of visual input with selective attention resulted in significantly more skillful RL agents.

Overview of our method and illustration of data processing flow in AttentionAgent. Top: Input transformation — A sliding window segments an input image into smaller patches, and then “flattens” them for future processing. Middle: Patch election — The modified self-attention module holds votes between patches to generate a patch importance vector. Bottom: Action generation — AttentionAgent picks the patches of the highest importance, extracts corresponding features and makes decisions based on them.

Further, we made progress in model-based RL by showing that learning predictive behavior models accelerates RL learning, and enables decentralized cooperative multi-agent tasks in diverse teams, and learning long-term behavior models. Observing that skills bring predictable changes in the environment, we discover skills without supervision. Better representations stabilize RL learning, while hierarchical latent spaces and value-improvement paths yield better performance.

We shared open source tools for scaling up and productionizing RL. To expand the scope and problems tackled by users, we’ve introduced SEED, a massively parallel RL agent, released a library for measuring the RL algorithm reliability, and a new version of TF-Agents that includes distributed RL, TPU support, and a full set of bandit algorithms. In addition, we performed a large empirical study of RL algorithms to improve hyperparameter selection and algorithm design.

Finally, in collaboration with Loon, we trained and deployed RL to more efficiently control stratospheric balloons, improving both power usage and their ability to navigate.

AutoML
Using learning algorithms to develop new machine learning techniques and solutions, or meta-learning, is a very active and exciting area of research. In much of our previous work in this area, we’ve created search spaces that look at how to find ways to combine sophisticated hand-designed components together in interesting ways. In AutoML-Zero: Evolving Code that Learns, we took a different approach, by giving an evolutionary algorithm a search space consisting of very primitive operations (like addition, subtraction, variable assignment, and matrix multiplication) in order to see if it was possible to evolve modern ML algorithms from scratch. The presence of useful learning algorithms in this space is incredibly sparse, so it is remarkable that the system was able to progressively evolve more and more sophisticated ML algorithms. As shown in the figure below, the system reinvents many of the most important ML discoveries over the past 30 years, such as linear models, gradient descent, rectified linear units, effective learning rate settings and weight initializations, and gradient normalization.

We also used meta-learning to discover a variety of new efficient architectures for object detection in both still images and videos. Last year’s work on EfficientNet for efficient image classification architectures showed significant accuracy improvements and computational cost reductions for image classification. In follow-on work this year, EfficientDet: Towards Scalable and Efficient Object Detection builds on top of the EfficientNet work to derive new efficient architectures for object detection and localization, showing remarkable improvements in both highest absolute accuracy, as well as computational cost reductions of 13-42x over previous approaches to achieve a given level of accuracy.

EfficientDet achieves state-of-the-art 52.2 mAP, up 1.5 points from the prior state of the art (not shown since it is at 3045B FLOPs) on COCO test-dev under the same setting. Under the same accuracy constraint, EfficientDet models are 4x-9x smaller and use 13x-42x less computation than previous detectors.

Our work on SpineNet describes a meta-learned architecture that can retain spatial information more effectively, allowing detection to be done at finer resolution. We also focused on learning effective architectures for a variety of video classification problems. AssembleNet: Searching for Multi-Stream Neural Connectivity in Video Architectures, AssembleNet++: Assembling Modality Representations via Attention Connections, and AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification demonstrate how to use evolutionary algorithms to create novel state-of-the-art video processing machine learning architectures.

This approach can also be used to develop effective model architectures for time series forecasting. Using AutoML for Time Series Forecasting describes the system that discovers new forecasting models via an automated search over a search space involving many interesting kinds of low-level building blocks, and its effectiveness was demonstrated in the Kaggle M5 Forecasting Competition, by generating an algorithm and system that placed 138th out of 5558 participants (top 2.5%). While many of the competitive forecasting models required months of manual effort to create, our AutoML solution found the model in a short time with only a moderate compute cost (500 CPUs for 2 hours) and no human intervention.

Better Understanding of ML Algorithms and Models
Deeper understanding of machine learning algorithms and models is crucial for designing and training more effective models, as well as understanding when models may fail. Last year, we focused on fundamental questions around representation power, optimization, model generalization, and label noise, among others. As mentioned earlier in this post, Transformer networks have had a huge impact on modeling language, speech and vision problems, but what is the class of functions represented by these models? Recently we showed that transformers are universal approximators for sequence-to-sequence functions. Furthermore, sparse transformers also remain universal approximators even when they use just a linear number of interactions among the tokens. We have been developing new optimization techniques based on layerwise adaptive learning rates to improve the convergence speed of transformers, e.g., Large batch optimization for deep learning (LAMB): Training BERT in 76 minutes.

As neural networks are made wider and deeper, they often train faster and generalize better. This is a core mystery in deep learning since classical learning theory suggests that large networks should overfit more. We are working to understand neural networks in this overparameterized regime. In the limit of infinite width, neural networks take on a surprisingly simple form, and are described by a Neural Network Gaussian Process (NNGP) or Neural Tangent Kernel (NTK). We studied this phenomenon theoretically and experimentally, and released Neural Tangents, an open-source software library written in JAX that allows researchers to build and train infinite-width neural networks.

Left: A schematic showing how deep neural networks induce simple input / output maps as they become infinitely wide. Right: As the width of a neural network increases, we see that the distribution of outputs over different random instantiations of the network becomes Gaussian.

As finite width networks are made larger, they also demonstrate peculiar double descent phenomena — where they generalize better, then worse, then better again with increasing width. We have shown that this phenomenon can be explained by a novel bias-variance decomposition, and further that it can sometimes manifest as triple descent.

Lastly, in real-world problems, one often needs to deal with significant label noise. For instance, in large scale learning scenarios, weakly labeled data is available in abundance with large label noise. We have developed new techniques for distilling effective supervision from severe label noise leading to state-of-the-art results. We have further analyzed the effects of training neural networks with random labels, and shown that it leads to alignment between network parameters and input data, enabling faster downstream training than initializing from scratch. We have also explored questions such as whether label smoothing or gradient clipping can mitigate label noise, leading to new insights for developing robust training techniques with noisy labels.

Algorithmic Foundations and Theory
2020 was a productive year for our work in algorithmic foundations and theory, with several impactful research publications and notable results. On the optimization front, our paper on edge-weighted online bipartite matching develops a new technique for online competitive algorithms and solves a thirty-year old open problem for the edge-weighted variant with applications in efficient online ad allocation. Along with this work in online allocation, we developed dual mirror descent techniques that generalize to a variety of models with additional diversity and fairness constraints, and published a sequence of papers on the topic of online optimization with ML advice in online scheduling, online learning and online linear optimization. Another research result gave the first improvement in 50 years on the classic bipartite matching in dense graphs. Finally, another paper solves a long-standing open problem about chasing convex bodies online — using an algorithm from The Book, no less.

We also continued our work in scalable graph mining and graph-based learning and hosted the Graph Mining & Learning at Scale Workshop at NeurIPS’20, which covered work on scalable graph algorithms including graph clustering, graph embedding, causal inference, and graph neural networks. As part of the workshop, we showed how to solve several fundamental graph problems faster, both in theory and practice, by augmenting standard synchronous computation frameworks like MapReduce with a distributed hash-table similar to a BigTable. Our extensive empirical study validates the practical relevance of the AMPC model inspired by our use of distributed hash tables in massive parallel algorithms for hierarchical clustering and connected components, and our theoretical results show how to solve many of these problems in constant distributed rounds, greatly improving upon our previous results. We also achieved exponential speedup for computing PageRank and random walks. On the graph-based learning side, we presented Grale, our framework for designing graphs for use in machine learning. Furthermore, we presented our work on more scalable graph neural network models, where we show that PageRank can be used to greatly accelerate inference in GNNs.

In market algorithms, an area at the intersection of computer science and economics, we continued our research in designing improved online marketplaces, such as measuring incentive properties of ad auctions, two-sided markets, and optimizing order statistics in ad selection. In the area of repeated auctions, we developed frameworks to make dynamic mechanisms robust against lack of forecasting or estimation errors of the current market and/or the future market, leading to provably tight low-regret dynamic mechanisms. Later, we characterized when it is possible to achieve the asymptotically optimal objective through geometry-based criteria. We also compared the equilibrium outcome of a range of budget management strategies used in practice, showed their impact on the tradeoff between revenue and buyers' utility and shed light on their incentive properties. Additionally, we continued our research in learning optimal auction parameters, and settled the complexity of batch-learning with revenue loss. We designed the optimal regret and studied combinatorial optimization for contextual auction pricing, and developed a new active learning framework for auctions and improved the approximation for posted-price auctions. Finally, motivated by the importance of incentives in ad auctions, and in the hope to help advertisers study the impact of incentives in auctions, we introduce a data-driven metric to quantify how much a mechanism deviates from incentive compatibility.

Machine Perception
Perceiving the world around us — understanding, modeling and acting on visual, auditory and multimodal input — continues to be a research area with tremendous potential to be beneficial in our everyday lives.

In 2020, deep learning powered new approaches that bring 3D computer vision and computer graphics closer together. CvxNet, deep implicit functions for 3D shapes, neural voxel rendering and CoReNet are a few examples of this direction. Furthermore, our research on representing scenes as neural radiance fields (aka NeRF, see also this blog post) is a good example of how Google Research's academic collaborations stimulate rapid progress in the area of neural volume rendering.

In Learning to Factorize and Relight a City, a collaboration with UC Berkeley, we proposed a learning-based framework for disentangling outdoor scenes into temporally-varying illumination and permanent scene factors. This gives the ability to change lighting effects and scene geometry for any Street View panorama, or even turn it into a full-day timelapse video.

Our work on generative human shape and articulated pose models introduces a statistical, articulated 3D human shape modeling pipeline, within a fully trainable, modular, deep learning framework. Such models enable 3D human pose and shape reconstruction of people from a single photo to better understand the scene.

Overview of end-to-end statistical 3D articulated human shape model construction in GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models.

The growing area of media compression using neural networks continued to make strong progress in 2020, not only on learned image compression, but also in deep approaches to video compression, volume compression and nice results in deep distortion-agnostic image watermarking.

Samples of encoded and cover images for Distortion Agnostic Deep Watermarking. First row: Cover image with no embedded message. Second row: Encoded image from HiDDeN combined distortion model. Third row: Encoded images from our model. Fourth row: Normalized difference of the encoded image and cover image for the HiDDeN combined model. Fifth row: Normalized difference for our model

Additional important themes in perceptual research included:

Engaging with the broader research community through open sourcing of solutions and datasets is another important aspect of furthering perceptual research. In 2020, we open sourced multiple new perceptual inference capabilities and solutions in MediaPipe, such as on-device face, hand and pose prediction, real-time body pose tracking, real-time iris tracking and depth estimation, and real-time 3D object detection.

We continued to make strides to improve experiences and promote helpfulness on mobile devices through ML-based solutions. Our ability to run sophisticated natural language processing on-device, enabling more natural conversational features, continues to improve. In 2020, we expanded Call Screen and launched Hold for Me to allow users to save time when performing mundane tasks, and we also launched language-based actions and language navigability of our Recorder app to aid productivity.

We have used Google's Duplex technology to make calls to businesses and confirm things like temporary closures. This has enabled us to make 3 million updates to business information globally, that have been seen over 20 billion times on Maps and Search. We also used text to speech technology for easier access to web pages, by enabling Google Assistant to read it aloud, supporting 42 languages.

We also continued to make meaningful improvements to imaging applications. We made it easier to capture precious moments on Pixel with innovative controls and new ways to relight, edit, enhance and relive them again in Google Photos. For the Pixel camera, beginning with Pixel 4 and 4a, we added Live HDR+, which uses machine learning to approximate the vibrance and balanced exposure and appearance of HDR+ burst photography in real time in the viewfinder. We also created dual exposure controls, which allow the brightness of shadows and highlights in a scene to be adjusted independently — live in the viewfinder.

More recently, we introduced Portrait Light, a new post-capture feature for the Pixel Camera and Google Photos apps that adds a simulated directional light source to portraits. This feature is again one that is powered by machine learning, having been trained on 70 different people, photographed one light at a time, in our pretty cool 331-LED Light Stage computational illumination system.

In the past year, Google researchers were excited to contribute to many new (and timely) ways of using Google products. Here are a few examples

Robotics
In the area of robotics research, we’ve made tremendous progress in our ability to learn more and more complex, safe and robust robot behaviors with less and less data, using many of the RL techniques described earlier in the post.

Transporter Networks are a novel approach to learning how to represent robotic tasks as spatial displacements. Representing relations between objects and the robot end-effectors, as opposed to absolute positions in the environment, makes learning robust transformations of the workspace very efficient.

In Grounding Language in Play, we demonstrated how a robot can be taught to follow natural language instructions (in many languages!). This required a scalable approach to collecting paired data of natural language instructions and robot behaviors. One key insight is that this can be accomplished by asking robot operators to simply play with the robot, and label after-the-fact what instructions would have led to the robot accomplishing the same task.

We also explored doing away with robots altogether (by having humans use a camera-equipped grasping stick) for even more scalable data collection, and how to efficiently transfer visual representations across robotic tasks.

We investigated how to learn very agile strategies for robot locomotion, by taking inspiration from nature, using evolutionary meta-learning strategies, human demonstrations, and various approaches to training data-efficient controllers using deep reinforcement learning.

One increased emphasis this year has been on safety: how do we deploy safe delivery drones in the real world? How do we explore the world in a way that always allows the robot to recover from its mistakes? How do we certify the stability of learned behaviors? This is a critical area of research on which we expect to see increased focus in the future.

Quantum Computing
Our Quantum AI team continued its work to establish practical uses of quantum computing. We ran experimental algorithms on our Sycamore processors to simulate systems relevant to chemistry and physics. These simulations are approaching a scale at which they can not be performed on classical computers anymore, making good on Feynman’s original idea of using quantum computers as an efficient means to simulate systems in which quantum effects are important. We published new quantum algorithms, for instance to perform precise processor calibration, to show an advantage for quantum machine learning or to test quantum enhanced optimization. We also worked on programming models to make it easier to express quantum algorithms. We released qsim, an efficient simulation tool to develop and test quantum algorithms with up to 40 qubits on Google Cloud.

We continued to follow our roadmap towards building a universal error-corrected quantum computer. Our next milestone is the demonstration that quantum error correction can work in practice. To achieve this, we will show that a larger grid of qubits can hold logical information exponentially longer than a smaller grid, even though individual components such as qubits, couplers or I/O devices have imperfections. We are also particularly excited that we now have our own cleanroom which should significantly increase the speed and quality of our processor fabrication.

Supporting the Broader Developer and Researcher Community
This year marked TensorFlow’s 5th birthday, passing 160M downloads. The TensorFlow community continued its impressive growth with new special interest groups, TensorFlow User Groups, TensorFlow Certificates, AI Service partners, and inspiring demos #TFCommunitySpotlight. We significantly improved TF 2.x with seamless TPU support, out of the box performance (and best-in-class performance on MLPerf 0.7), data preprocessing, distribution strategy and a new NumPy API.

We also added many more capabilities to the TensorFlow Ecosystem to help developers and researchers in their workflows: Sounds of India demonstrated going from research to production in under 90 days, using TFX for training and TF.js for deployment in the browser. With Mesh TensorFlow, we pushed the boundaries of model parallelism to provide ultra-high image resolution image analysis. We open-sourced the new TF runtime, TF Profiler for model performance debugging, and tools for Responsible AI, such as the Model Card Toolkit for model transparency and a privacy testing library. With TensorBoard.dev we made it possible to easily host, track, and share your ML experiments for free.

In addition, we redoubled our investment in JAX, an open-source, research-focused ML system that has been actively developed over the past two years. Researchers at Google and beyond are now using JAX in a wide range of fields, including differential privacy, neural rendering, physics-informed networks, fast attention, molecular dynamics, tensor networks, neural tangent kernels, and neural ODEs. JAX accelerates research at DeepMind, powering a growing ecosystem of libraries and work on GANs, meta-gradients, reinforcement learning, and more. We also used JAX and the Flax neural network library to build record-setting MLPerf benchmark submissions, which we demonstrated live at NeurIPS on a large TPU Pod slice with a next-generation Cloud TPU user experience (slides, video, sign-up form). Finally, we’re ensuring that JAX works seamlessly with TF ecosystem tooling, from TF.data for data preprocessing and TensorBoard for experiment visualization to the TF Profiler for performance debugging, with more to come in 2021.

Many recent research breakthroughs have been enabled by increased computing power, and we make more than 500 petaflops of Cloud TPU computing power available for free to researchers around the world via the TFRC program to help broaden access to the machine learning research frontier. More than 120 TFRC-supported papers have been published to date, many of which would not have been possible without the computing resources that the program provides. For example, TFRC researchers have recently developed simulations of wildfire spread, helped analyze COVID-19 content and vaccine sentiment changes on social media networks, and advanced our collective understanding of the lottery ticket hypothesis and neural network pruning. Members of the TFRC community have also published experiments with Persian poetry, won a Kaggle contest on fine-grained fashion image segmentation, and shared tutorials and open-source tools as starting points for others. In 2021, we will change the name of the TFRC program to the TPU Research Cloud program to be more inclusive now that Cloud TPUs support JAX and PyTorch in addition to TensorFlow.

Finally, this was a huge year for Colab. Usage doubled, and we launched productivity features to help people do their work more efficiently, including improved Drive integration and access to the Colab VM via the terminal. And we launched Colab Pro to enable users to access faster GPUs, longer runtimes and more memory.

Open Datasets and Dataset Search
Open datasets with clear and measurable goals are often very helpful in driving forward the field of machine learning. To help the research community find interesting datasets, we continue to index a wide variety of open datasets sourced from many different organizations with Google Dataset Search. We also think it's important to create new datasets for the community to explore and to develop new techniques, while ensuring that we share open data responsibly. This year, in addition to open datasets to help address the COVID crisis, we released a number of open datasets across many different areas:

Research Community Interaction
We are proud to enthusiastically support and participate in the broader research community. In 2020, Google researchers presented over 500 papers at leading research conferences, additionally serving on program committees, organizing workshops, tutorials and numerous other activities aimed at collectively progressing the state of the art in the field. To learn more about our contributions to some of the larger research conferences this year, please see our blog posts for ICLR 2020, CVPR 2020, ACL 2020, ICML 2020, ECCV 2020 and NeurIPS 2020.

In 2020 we supported external research with $37M in funding, including $8.5M in COVID research, $8M in research inclusion and equity, and $2M in responsible AI research. In February, we announced the 2019 Google Faculty Research Award Recipients, funding research proposals from 150 faculty members throughout the world. Among this group, 27% self-identified as members of historically underrepresented groups within technology. We also announced a new Research Scholar Program to support early-career professors who are pursuing research in fields relevant to Google via unrestricted gifts. As we have for more than a decade, we selected a group of incredibly talented PhD student researchers to receive Google PhD Fellowships, which provides funding for graduate studies, as well as mentorship as they pursue their research, and opportunities to interact with other Google PhD Fellows.

We are also expanding the ways that we support inclusion and bring new voices into the field of computer science. In 2020, we created a new Award for Inclusion Research program that supports academic research in computing and technology addressing the needs of underrepresented populations. In the inaugural set of awards, we selected 16 proposals for funding with 25 principal investigators, focused on topics around diversity and inclusion, algorithmic bias, education innovation, health tools, accessibility, gender bias, AI for social good, security, and social justice. We additionally partnered with the Computing Alliance of Hispanic-Serving Institutions (CAHSI) and the CMD-IT Diversifying Future Leadership in the Professoriate Alliance (FLIP) to create an award program for doctoral students from traditionally underrepresented backgrounds to support the last year of the completion of the dissertation requirements.

In 2019, Google’s CS Research Mentorship Program (CSRMP) helped provide mentoring to 37 undergraduate students to introduce them to conducting computer science research. Based on the success of the program in 2019/2020, we’re excited to greatly expand this program in 2020/2021 and will have hundreds of Google researchers mentoring hundreds of undergraduate students in order to encourage more people from underrepresented backgrounds to pursue computer science research careers. Finally, in October we provided exploreCSR awards to 50 institutions around the world for the 2020 academic year. These awards fund faculty to host workshops for undergraduates from underrepresented groups in order to encourage them to pursue CS research.

Looking Forward to 2021 and Beyond
I’m excited about what’s to come, from our technical work on next-generation AI models, to the very human work of growing our community of researchers.

We’ll keep ensuring our research is done responsibly and has a positive impact, using our AI Principles as a guiding framework and applying particular scrutiny to topics that can have broad societal impact. This post covers just a few of the many papers on responsible AI that Google published in the past year. While pursuing our research, we’ll focus on:

  • Promoting research integrity: We’ll make sure Google keeps conducting a wide range of research in an appropriate manner, and provides comprehensive, scientific views on a variety of challenging, interesting topics.
  • Responsible AI development: Tackling tough topics will remain core to our work, and Google will continue creating new ML algorithms to make machine learning more efficient and accessible, developing approaches to combat unfair bias in language models, devising new techniques for ensuring privacy in learning systems, and much more. And importantly, beyond looking at AI development with a suitably critical eye, we’re eager to see what techniques we and others in the community can develop to mitigate risks and make sure new technologies have equitable, positive impacts on society.
  • Advancing diversity, equity, and inclusion: We care deeply that the people who are building influential products and computing systems better reflect the people using these products all around the world. Our efforts here are both within Google Research, as well as within the wider research and academic communities — we’ll be calling upon the academic and industry partners we work with to advance these efforts together. On a personal level, I am deeply committed to improving representation in computer science, having spent hundreds of hours working towards these goals over the last few years, as well as supporting universities like Berkeley, CMU, Cornell, Georgia Tech, Howard, UW, and numerous other organizations that work to advance inclusiveness. This is important to me, to Google, and to the broader computer science community.

Finally, looking ahead to the year, I’m particularly enthusiastic about the possibilities of building more general-purpose machine learning models that can handle a variety of modalities and that can automatically learn to accomplish new tasks with very few training examples. Advances in this area will empower people with dramatically more capable products, bringing better translation, speech recognition, language understanding and creative tools to billions of people all around the world. This kind of exploration and impact is what keeps us excited about our work!

Acknowledgements
Thanks to Martin Abadi, Marc Bellemare, Elie Bursztein, Zhifeng Chen, Ed Chi, Charina Chou, Katherine Chou, Eli Collins, Greg Corrado, Corinna Cortes, Tiffany Deng, Tulsee Doshi, Robin Dua, Kemal El Moujahid, Aleksandra Faust, Orhan Firat, Jen Gennai, Till Hennig, Ben Hutchinson, Alex Ingerman, Tomáš Ižo, Matthew Johnson, Been Kim, Sanjiv Kumar, Yul Kwon, Steve Langdon, James Laudon, Quoc Le, Yossi Matias, Brendan McMahan, Aranyak Mehta, Vahab Mirrokni, Meg Mitchell, Hartmut Neven, Mohammad Norouzi, Timothy Novikoff, Michael Piatek, Florence Poirel, David Salesin, Nithya Sambasivan, Navin Sarma, Tom Small, Jascha Sohl-Dickstein, Zak Stone, Rahul Sukthankar, Mukund Sundararajan, Andreas Terzis, Sergei Vassilvitskii, Vincent Vanhoucke, and Leslie Yeh and others for helpful feedback and for drafting portions of this post, and to the entire Research and Health communities at Google for everyone’s contributions towards this work.

Source: Google AI Blog


Google at ECCV 2020

This week, the 16th European Conference on Computer Vision (ECCV2020) begins, a premier forum for the dissemination of research in computer vision and related fields. Being held virtually for the first time this year, Google is proud to be an ECCV2020 Platinum Partner and is excited to share our research with the community with nearly 50 accepted publications, alongside several tutorials and workshops.

If you are registered for ECCV this year, please visit our virtual booth in the Platinum Exhibition Hall to learn more about the research we’re presenting at ECCV 2020, including some demos and opportunities to connect with our researchers. You can also learn more about our contributions below (Google affiliations in bold).

Organizing Committee
General Chairs: Vittorio Ferrari, Bob Fisher, Cordelia Schmid, Emanuele TrucoAcademic Demonstrations Chair: Thomas Mensink

Accepted Publications
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (Honorable Mention Award)
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti, Leonidas Guibas, Federico Tombari

SoftpoolNet: Shape Descriptor for Point Cloud Completion and Classification
Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari

Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction
Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian Theobalt, Gerard Pons-Moll

CoReNet: Coherent 3D scene reconstruction from a single RGB image
Stefan Popov, Pablo Bauszat, Vittorio Ferrari

Adversarial Generative Grammars for Human Activity Prediction
AJ Piergiovanni, Anelia Angelova, Alexander Toshev, Michael S. Ryoo

Self6D: Self-Supervised Monocular 6D Object Pose Estimation
Gu Wang, Fabian Manhardt, Jianzhun Shao, Xiangyang Ji, Nassir Navab, Federico Tombari

Du2Net: Learning Depth Estimation from Dual-Cameras and Dual-Pixels
Yinda Zhang, Neal Wadhwa, Sergio Orts-Escolano, Christian Häne, Sean Fanello, Rahul Garg

What Matters in Unsupervised Optical Flow
Rico Jonschkowski, Austin Stone, Jonathan T. Barron, Ariel Gordon, Kurt Konolige, Anelia Angelova

Appearance Consensus Driven Self-Supervised Human Mesh Recovery
Jogendra N. Kundu, Mugalodi Rakesh, Varun Jampani, Rahul M. Venkatesh, R. Venkatesh Babu

Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset
Menglin Jia, Mengyun Shi, Mikhail Sirotenko, Yin Cui, Claire Cardie, Bharath Hariharan, Hartwig Adam, Serge Belongie

PointMixup: Augmentation for Point Clouds
Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes1, Pengwan Yang, Cees Snoek

Connecting Vision and Language with Localized Narratives (see our blog post)
Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu Soricut, Vittorio Ferrari

Big Transfer (BiT): General Visual Representation Learning (see our blog post)
Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby

View-Invariant Probabilistic Embedding for Human Pose
Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Ting Liu

Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve
Weicheng Kuo, Anelia Angelova, Tsung-Yi Lin, Angela Dai

A Generalization of Otsu's Method and Minimum Error Thresholding
Jonathan T. Barron

Learning to Factorize and Relight a City
Andrew Liu, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, Noah Snavely

Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows
Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, Bill Freeman, Rahul Sukthankar, Cristian Sminchisescu

Multi-modal Transformer for Video Retrieval
Valentin Gabeur, Chen Sun, Karteek Alahari, Cordelia Schmid

Generative Latent Textured Proxies for Category-Level Object Modeling
Ricardo Martin Brualla, Sofien Bouaziz, Matthew Brown, Rohit Pandey, Dan B Goldman

Neural Design Network: Graphic Layout Generation with Constraints
Hsin-Ying Lee*, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, Weilong Yang

Neural Articulated Shape Approximation
Boyang Deng, Gerard Pons-Moll, Timothy Jeruzalski, JP Lewis, Geoffrey Hinton, Mohammad Norouzi, Andrea Tagliasacchi

Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed Videos
Anurag Arnab, Arsha Nagrani, Chen Sun, Cordelia Schmid

Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes
Johanna Wald, Torsten Sattler, Stuart Golodetz, Tommaso Cavallari, Federico Tombari

Consistency Guided Scene Flow Estimation
Yuhua Chen, Luc Van Gool, Cordelia Schmid, Cristian Sminchisescu

Continuous Adaptation for Interactive Object Segmentation by Learning from Corrections
Theodora Kontogianni*, Michael Gygli, Jasper Uijlings, Vittorio Ferrari

SimPose: Effectively Learning DensePose and Surface Normal of People from Simulated Data
Tyler Lixuan Zhu, Per Karlsson, Christoph Bregler

Learning Data Augmentation Strategies for Object Detection
Barret Zoph, Ekin Dogus Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, Quoc V Le

Streaming Object Detection for 3-D Point Clouds
Wei Han, Zhengdong Zhang, Benjamin Caine, Brandon Yang, Christoph Sprunk, Ouais Alsharif, Jiquan Ngiam, Vijay Vasudevan, Jonathon Shlens, Zhifeng Chen

Improving 3D Object Detection through Progressive Population Based Augmentation
Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret Zoph, Chunyan Bai, Jiquan Ngiam, Yang Song, Benjamin Caine, Vijay Vasudevan, Congcong Li, Quoc V. Le, Jonathon Shlens, Dragomir Anguelov

An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds
Rui Huang, Wanyue Zhang, Abhijit Kundu, Caroline Pantofaru, David A Ross, Thomas Funkhouser, Alireza Fathi

BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models
Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, Quoc Le

Memory-Efficient Incremental Learning Through Feature Adaptation
Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, Cordelia Schmid

Virtual Multi-view Fusion for 3D Semantic Segmentation
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David A Ross, Brian E Brewington, Thomas Funkhouser, Caroline Pantofaru

Efficient Scale-permuted Backbone with Learned Resource Distribution
Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Yin Cui, Mingxing Tan, Quoc V Le, Xiaodan Song

RetrieveGAN: Image Synthesis via Differentiable Patch Retrieval
Hung-Yu Tseng*, Hsin-Ying Lee*, Lu Jiang, Ming-Hsuan Yang, Weilong Yang

Graph convolutional networks for learning with few clean and many noisy labels
Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Ondrej Chum, Cordelia Schmid

Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis
Ruixuan Yu, Xin Wei, Federico Tombari, Jian Sun

Federated Visual Classification with Real-World Data Distribution
Tzu-Ming Harry Hsu, Hang Qi, Matthew Brown

Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer
Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, Jiawen Chen

AssembleNet++: Assembling Modality Representations via Attention Connections
Michael S. Ryoo, AJ Piergiovanni, Juhana Kangaspunta, Anelia Angelova

Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation
Liang-Chieh Chen, Raphael Gontijo-Lopes, Bowen Cheng, Maxwell D. Collins, Ekin D. Cubuk, Barret Zoph, Hartwig Adam, Jonathon Shlens

AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification
Xiaofang Wang, Xuehan Xiong, Maxim Neumann, AJ Piergiovanni, Michael S. Ryoo, Anelia Angelova, Kris M. Kitani, Wei Hua

Unifying Deep Local and Global Features for Image Search
Bingyi Cao, Andre Araujo, Jack Sim

Pillar-based Object Detection for Autonomous Driving
Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caroline Pantofaru, Tom Funkhouser, Justin Solomon

Improving Object Detection with Selective Self-supervised Self-training
Yandong Li, Di Huang, Danfeng Qin, Liqiang Wang, Boqing Gong

Environment-agnostic Multitask Learning for Natural Language Grounded NavigationXin Eric Wang*, Vihan Jain, Eugene Ie, William Yang Wang, Zornitsa Kozareva, Sujith Ravi

SimAug: Learning Robust Representations from Simulation for Trajectory Prediction
Junwei Liang, Lu Jiang, Alex Hauptmann

Tutorials
New Frontiers for Learning with Limited Labels or Data
Organizers: Shalini De Mello, Sifei Liu, Zhiding Yu, Pavlo Molchanov, Varun Jampani, Arash Vahdat, Animashree Anandkumar, Jan Kautz

Weakly Supervised Learning in Computer Vision
Organizers: Seong Joon Oh, Rodrigo Benenson, Hakan Bilen

Workshops
Joint COCO and LVIS Recognition Challenge
Organizers: Alexander Kirillov, Tsung-Yi Lin, Yin Cui, Matteo Ruggero Ronchi, Agrim Gupta, Ross Girshick, Piotr Dollar

4D Vision
Organizers: Anelia Angelova, Vincent Casser, Jürgen Sturm, Noah Snavely, Rahul Sukthankar

GigaVision: When Gigapixel Videography Meets Computer Vision
Organizers: Lu Fang, Shengjin Wang, David J. Brady, Feng Yang

Advances in Image Manipulation Workshop and Challenges
Organizers: Radu Timofte, Andrey Ignatov, Luc Van Gool, Wangmeng Zuo, Ming-Hsuan Yang, Kyoung Mu Lee, Liang Lin, Eli Shechtman, Kai Zhang, Dario Fuoli, Zhiwu Huang, Martin Danelljan, Shuhang Gu, Ming-Yu Liu, Seungjun Nah, Sanghyun Son, Jaerin Lee, Andres Romero, ETH Zurich, Hannan Lu, Ruofan Zhou, Majed El Helou, Sabine Süsstrunk, Roey Mechrez, BeyondMinds & Technion, Pengxu Wei, Evangelos Ntavelis, Siavash Bigdeli

Robust Vision Challenge 2020
Organizers:Oliver Zendel, Hassan Abu Alhaija, Rodrigo Benenson, Marius Cordts, Angela Dai, Xavier Puig Fernandez, Andreas Geiger, Niklas Hanselmann, Nicolas Jourdan, Vladlen Koltun, Peter Kontschider, Alina Kuznetsova, Yubin Kang, Tsung-Yi Lin, Claudio Michaelis, Gerhard Neuhold, Matthias Niessner, Marc Pollefeys, Rene Ranftl, Carsten Rother, Torsten Sattler, Daniel Scharstein, Hendrik Schilling, Nick Schneider, Jonas Uhrig, Xiu-Shen Wei, Jonas Wulff, Bolei Zhou

“Deep Internal Learning”: Training with no prior examples
Organizers: Michal Irani,Tomer Michaeli, Tali Dekel, Assaf Shocher, Tamar Rott Shaham

Instance-Level Recognition
Organizers: Andre Araujo, Cam Askew, Bingyi Cao, Ondrej Chum, Bohyung Han, Torsten Sattler, Jack Sim, Giorgos Tolias, Tobias Weyand, Xu Zhang

Women in Computer Vision Workshop (WiCV) (Platinum Sponsor)
Panel Participation: Dina Damen, Sanja Fiddler, Zeynep Akata, Grady Booch, Rahul Sukthankar

*Work performed while at Google

Source: Google AI Blog


Google at ECCV 2020

This week, the 16th European Conference on Computer Vision (ECCV2020) begins, a premier forum for the dissemination of research in computer vision and related fields. Being held virtually for the first time this year, Google is proud to be an ECCV2020 Platinum Partner and is excited to share our research with the community with nearly 50 accepted publications, alongside several tutorials and workshops.

If you are registered for ECCV this year, please visit our virtual booth in the Platinum Exhibition Hall to learn more about the research we’re presenting at ECCV 2020, including some demos and opportunities to connect with our researchers. You can also learn more about our contributions below (Google affiliations in bold).

Organizing Committee
General Chairs: Vittorio Ferrari, Bob Fisher, Cordelia Schmid, Emanuele TrucoAcademic Demonstrations Chair: Thomas Mensink

Accepted Publications
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (Honorable Mention Award)
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti, Leonidas Guibas, Federico Tombari

SoftpoolNet: Shape Descriptor for Point Cloud Completion and Classification
Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari

Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction
Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian Theobalt, Gerard Pons-Moll

CoReNet: Coherent 3D scene reconstruction from a single RGB image
Stefan Popov, Pablo Bauszat, Vittorio Ferrari

Adversarial Generative Grammars for Human Activity Prediction
AJ Piergiovanni, Anelia Angelova, Alexander Toshev, Michael S. Ryoo

Self6D: Self-Supervised Monocular 6D Object Pose Estimation
Gu Wang, Fabian Manhardt, Jianzhun Shao, Xiangyang Ji, Nassir Navab, Federico Tombari

Du2Net: Learning Depth Estimation from Dual-Cameras and Dual-Pixels
Yinda Zhang, Neal Wadhwa, Sergio Orts-Escolano, Christian Häne, Sean Fanello, Rahul Garg

What Matters in Unsupervised Optical Flow
Rico Jonschkowski, Austin Stone, Jonathan T. Barron, Ariel Gordon, Kurt Konolige, Anelia Angelova

Appearance Consensus Driven Self-Supervised Human Mesh Recovery
Jogendra N. Kundu, Mugalodi Rakesh, Varun Jampani, Rahul M. Venkatesh, R. Venkatesh Babu

Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset
Menglin Jia, Mengyun Shi, Mikhail Sirotenko, Yin Cui, Claire Cardie, Bharath Hariharan, Hartwig Adam, Serge Belongie

PointMixup: Augmentation for Point Clouds
Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes1, Pengwan Yang, Cees Snoek

Connecting Vision and Language with Localized Narratives (see our blog post)
Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu Soricut, Vittorio Ferrari

Big Transfer (BiT): General Visual Representation Learning (see our blog post)
Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby

View-Invariant Probabilistic Embedding for Human Pose
Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Ting Liu

Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve
Weicheng Kuo, Anelia Angelova, Tsung-Yi Lin, Angela Dai

A Generalization of Otsu's Method and Minimum Error Thresholding
Jonathan T. Barron

Learning to Factorize and Relight a City
Andrew Liu, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, Noah Snavely

Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows
Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, Bill Freeman, Rahul Sukthankar, Cristian Sminchisescu

Multi-modal Transformer for Video Retrieval
Valentin Gabeur, Chen Sun, Karteek Alahari, Cordelia Schmid

Generative Latent Textured Proxies for Category-Level Object Modeling
Ricardo Martin Brualla, Sofien Bouaziz, Matthew Brown, Rohit Pandey, Dan B Goldman

Neural Design Network: Graphic Layout Generation with Constraints
Hsin-Ying Lee*, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, Weilong Yang

Neural Articulated Shape Approximation
Boyang Deng, Gerard Pons-Moll, Timothy Jeruzalski, JP Lewis, Geoffrey Hinton, Mohammad Norouzi, Andrea Tagliasacchi

Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed Videos
Anurag Arnab, Arsha Nagrani, Chen Sun, Cordelia Schmid

Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes
Johanna Wald, Torsten Sattler, Stuart Golodetz, Tommaso Cavallari, Federico Tombari

Consistency Guided Scene Flow Estimation
Yuhua Chen, Luc Van Gool, Cordelia Schmid, Cristian Sminchisescu

Continuous Adaptation for Interactive Object Segmentation by Learning from Corrections
Theodora Kontogianni*, Michael Gygli, Jasper Uijlings, Vittorio Ferrari

SimPose: Effectively Learning DensePose and Surface Normal of People from Simulated Data
Tyler Lixuan Zhu, Per Karlsson, Christoph Bregler

Learning Data Augmentation Strategies for Object Detection
Barret Zoph, Ekin Dogus Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, Quoc V Le

Streaming Object Detection for 3-D Point Clouds
Wei Han, Zhengdong Zhang, Benjamin Caine, Brandon Yang, Christoph Sprunk, Ouais Alsharif, Jiquan Ngiam, Vijay Vasudevan, Jonathon Shlens, Zhifeng Chen

Improving 3D Object Detection through Progressive Population Based Augmentation
Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret Zoph, Chunyan Bai, Jiquan Ngiam, Yang Song, Benjamin Caine, Vijay Vasudevan, Congcong Li, Quoc V. Le, Jonathon Shlens, Dragomir Anguelov

An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds
Rui Huang, Wanyue Zhang, Abhijit Kundu, Caroline Pantofaru, David A Ross, Thomas Funkhouser, Alireza Fathi

BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models
Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, Quoc Le

Memory-Efficient Incremental Learning Through Feature Adaptation
Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, Cordelia Schmid

Virtual Multi-view Fusion for 3D Semantic Segmentation
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David A Ross, Brian E Brewington, Thomas Funkhouser, Caroline Pantofaru

Efficient Scale-permuted Backbone with Learned Resource Distribution
Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Yin Cui, Mingxing Tan, Quoc V Le, Xiaodan Song

RetrieveGAN: Image Synthesis via Differentiable Patch Retrieval
Hung-Yu Tseng*, Hsin-Ying Lee*, Lu Jiang, Ming-Hsuan Yang, Weilong Yang

Graph convolutional networks for learning with few clean and many noisy labels
Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Ondrej Chum, Cordelia Schmid

Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis
Ruixuan Yu, Xin Wei, Federico Tombari, Jian Sun

Federated Visual Classification with Real-World Data Distribution
Tzu-Ming Harry Hsu, Hang Qi, Matthew Brown

Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer
Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, Jiawen Chen

AssembleNet++: Assembling Modality Representations via Attention Connections
Michael S. Ryoo, AJ Piergiovanni, Juhana Kangaspunta, Anelia Angelova

Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation
Liang-Chieh Chen, Raphael Gontijo-Lopes, Bowen Cheng, Maxwell D. Collins, Ekin D. Cubuk, Barret Zoph, Hartwig Adam, Jonathon Shlens

AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification
Xiaofang Wang, Xuehan Xiong, Maxim Neumann, AJ Piergiovanni, Michael S. Ryoo, Anelia Angelova, Kris M. Kitani, Wei Hua

Unifying Deep Local and Global Features for Image Search
Bingyi Cao, Andre Araujo, Jack Sim

Pillar-based Object Detection for Autonomous Driving
Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caroline Pantofaru, Tom Funkhouser, Justin Solomon

Improving Object Detection with Selective Self-supervised Self-training
Yandong Li, Di Huang, Danfeng Qin, Liqiang Wang, Boqing Gong

Environment-agnostic Multitask Learning for Natural Language Grounded NavigationXin Eric Wang*, Vihan Jain, Eugene Ie, William Yang Wang, Zornitsa Kozareva, Sujith Ravi

SimAug: Learning Robust Representations from Simulation for Trajectory Prediction
Junwei Liang, Lu Jiang, Alex Hauptmann

Tutorials
New Frontiers for Learning with Limited Labels or Data
Organizers: Shalini De Mello, Sifei Liu, Zhiding Yu, Pavlo Molchanov, Varun Jampani, Arash Vahdat, Animashree Anandkumar, Jan Kautz

Weakly Supervised Learning in Computer Vision
Organizers: Seong Joon Oh, Rodrigo Benenson, Hakan Bilen

Workshops
Joint COCO and LVIS Recognition Challenge
Organizers: Alexander Kirillov, Tsung-Yi Lin, Yin Cui, Matteo Ruggero Ronchi, Agrim Gupta, Ross Girshick, Piotr Dollar

4D Vision
Organizers: Anelia Angelova, Vincent Casser, Jürgen Sturm, Noah Snavely, Rahul Sukthankar

GigaVision: When Gigapixel Videography Meets Computer Vision
Organizers: Lu Fang, Shengjin Wang, David J. Brady, Feng Yang

Advances in Image Manipulation Workshop and Challenges
Organizers: Radu Timofte, Andrey Ignatov, Luc Van Gool, Wangmeng Zuo, Ming-Hsuan Yang, Kyoung Mu Lee, Liang Lin, Eli Shechtman, Kai Zhang, Dario Fuoli, Zhiwu Huang, Martin Danelljan, Shuhang Gu, Ming-Yu Liu, Seungjun Nah, Sanghyun Son, Jaerin Lee, Andres Romero, ETH Zurich, Hannan Lu, Ruofan Zhou, Majed El Helou, Sabine Süsstrunk, Roey Mechrez, BeyondMinds & Technion, Pengxu Wei, Evangelos Ntavelis, Siavash Bigdeli

Robust Vision Challenge 2020
Organizers:Oliver Zendel, Hassan Abu Alhaija, Rodrigo Benenson, Marius Cordts, Angela Dai, Xavier Puig Fernandez, Andreas Geiger, Niklas Hanselmann, Nicolas Jourdan, Vladlen Koltun, Peter Kontschider, Alina Kuznetsova, Yubin Kang, Tsung-Yi Lin, Claudio Michaelis, Gerhard Neuhold, Matthias Niessner, Marc Pollefeys, Rene Ranftl, Carsten Rother, Torsten Sattler, Daniel Scharstein, Hendrik Schilling, Nick Schneider, Jonas Uhrig, Xiu-Shen Wei, Jonas Wulff, Bolei Zhou

“Deep Internal Learning”: Training with no prior examples
Organizers: Michal Irani,Tomer Michaeli, Tali Dekel, Assaf Shocher, Tamar Rott Shaham

Instance-Level Recognition
Organizers: Andre Araujo, Cam Askew, Bingyi Cao, Ondrej Chum, Bohyung Han, Torsten Sattler, Jack Sim, Giorgos Tolias, Tobias Weyand, Xu Zhang

Women in Computer Vision Workshop (WiCV) (Platinum Sponsor)
Panel Participation: Dina Damen, Sanja Fiddler, Zeynep Akata, Grady Booch, Rahul Sukthankar

*Work performed while at Google

Source: Google AI Blog


Google at ICML 2020



Machine learning is a key strategic focus at Google, with highly active groups pursuing research in virtually all aspects of the field, including deep learning and more classical algorithms, exploring theory as well as application. We utilize scalable tools and architectures to build machine learning systems that enable us to solve deep scientific and engineering challenges in areas of language, speech, translation, music, visual processing and more.

As a leader in machine learning research, Google is proud to be a Platinum Sponsor of the thirty-seventh International Conference on Machine Learning (ICML 2020), a premier annual event taking place virtually this week. With over 100 accepted publications and Googlers participating in workshops, we look forward to our continued collaboration with the larger machine learning research community.

If you're registered for ICML 2020, we hope you'll visit the Google virtual booth to learn more about the exciting work, creativity and fun that goes into solving some of the field's most interesting challenges. You can also learn more about the Google research being presented at ICML 2020 in the list below (Google affiliations bolded).

ICML Expo
Google Dataset Search: Building an Open Ecosystem for Dataset Discovery
Natasha Noy

End-to-end Bayesian inference workflows in TensorFlow Probability
Colin Carroll

Publications
Population-Based Black-Box Optimization for Biological Sequence Design
Christof Angermueller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin Murphy, Lucy Colwell, D Sculley

Predictive Coding for Locally-Linear Control
Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano Ermon, Hung Bui

FedBoost: A Communication-Efficient Algorithm for Federated Learning
Jenny Hamer, Mehryar Mohri, Ananda Theertha Suresh

Faster Graph Embeddings via Coarsening
Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, Chi Wang

Revisiting Fundamentals of Experience Replay
William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland, Will Dabney

Boosting for Control of Dynamical Systems
Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu

Neural Clustering Processes
Ari Pakman, Yueqi Wang, Catalin Mitelut, JinHyung Lee, Liam Paninski

The Tree Ensemble Layer: Differentiability Meets Conditional Computation
Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul Mazumder

Representations for Stable Off-Policy Reinforcement Learning
Dibya Ghosh, Marc Bellemare

REALM: Retrieval-Augmented Language Model Pre-Training
Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, Ming-Wei Chang

Context Aware Local Differential Privacy
Jayadev Acharya, Keith Bonawitz, Peter Kairouz, Daniel Ramage, Ziteng Sun

Scalable Deep Generative Modeling for Sparse Graphs
Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans

Deep k-NN for Noisy Labels
Dara Bahri, Heinrich Jiang, Maya Gupta

Revisiting Spatial Invariance with Low-Rank Local Connectivity
Gamaleldin F. Elsayed, Prajit Ramachandran, Jonathon Shlens, Simon Kornblith

SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, Ananda Theertha Suresh

Incremental Sampling Without Replacement for Sequence Models
Kensen Shi, David Bieber, Charles Sutton

SoftSort: A Continuous Relaxation for the argsort Operator
Sebastian Prillo, Julian Martin Eisenschlos

XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalisation (see blog post)
Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, Melvin Johnson

Learning to Stop While Learning to Predict
Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, Le Song

Bandits with Adversarial Scaling
Thodoris Lykouris, Vahab Mirrokni, Renato Paes Leme

SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification
Tomer Golany, Daniel Freedman, Kira Radinsky

Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar, Gideon Dresdner, Alicia Yi-Ting Tsai, Laurent El Ghaoui, Francesco Locatello, Robert M. Freund, Fabian Pedregosa

Implicit differentiation of Lasso-type models for hyperparameter optimization
Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon

Infinite attention: NNGP and NTK for deep attention networks
Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, Roman Novak

Logarithmic Regret for Learning Linear Quadratic Regulators Efficiently
Asaf Cassel, Alon Cohen, Tomer Koren

Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi, Natalie Frank, Mehryar Mohri

Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization
Daniel Golovin, Qiuyi (Richard) Zhang

Generating Programmatic Referring Expressions via Program Synthesis
Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, Mayur Naik

Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach
Martin Mladenov, Elliot Creager, Omer Ben-Porat, Kevin Swersky, Richard Zemel, Craig Boutilier

AutoML-Zero: Evolving Machine Learning Algorithms From Scratch (see blog post)
Esteban Real, Chen Liang, David R. So, Quoc V. Le

How Good is the Bayes Posterior in Deep Neural Networks Really?
Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin

Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, Silvio Savarese

Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit Problems
Tong Yu, Branislav Kveton, Zheng Wen, Ruiyi Zhang, Ole J. Mengshoel

Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao, Jeffrey Pennington, Samuel S. Schoenholz

The Many Shapley Values for Model Explanation
Mukund Sundararajan, Amir Najmi

Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou, Lihong Li, Quanquan Gu

Automatic Shortcut Removal for Self-Supervised Representation Learning
Matthias Minderer, Olivier Bachem, Neil Houlsby, Michael Tschannen

Federated Learning with Only Positive Labels
Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar

How Recurrent Networks Implement Contextual Processing in Sentiment Analysis
Niru Maheswaranathan, David Sussillo

Supervised Learning: No Loss No Cry
Richard Nock, Aditya Krishna Menon

Ready Policy One: World Building Through Active Learning
Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, Stephen Roberts

Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello, Ben Poole, Gunnar Raetsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen

Fast Differentiable Sorting and Ranking
Mathieu Blondel, Olivier Teboul, Quentin Berthet, Josip Djolonga

Debiased Sinkhorn barycenters
Hicham Janati, Marco Cuturi, Alexandre Gramfort

Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure
John Sipple

Accelerating Large-Scale Inference with Anisotropic Vector Quantization
Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, Sanjiv Kumar

An Optimistic Perspective on Offline Reinforcement Learning (see blog post)
Rishabh Agarwal, Dale Schuurmans, Mohammad Norouzi

The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam, Jeffrey Pennington

Private Query Release Assisted by Public Data
Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan Ullman, Zhiwei Steven Wu

Learning and Evaluating Contextual Embedding of Source Code
Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, Kensen Shi

Evaluating Machine Accuracy on ImageNet
Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, Ludwig Schmidt

Imputer: Sequence Modelling via Imputation and Dynamic Programming
William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, Navdeep Jaitly

Domain Aggregation Networks for Multi-Source Domain Adaptation
Junfeng Wen, Russell Greiner, Dale Schuurmans

Planning to Explore via Self-Supervised World Models
Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, Deepak Pathak

Context-Aware Dynamics Model for Generalization in Model-Based Reinforcement Learning
Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, Jinwoo Shin

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search
Binghong Chen, Chengtao Li, Hanjun Dai, Le Song

On the Consistency of Top-k Surrogate Losses
Forest Yang, Sanmi Koyejo

Dual Mirror Descent for Online Allocation Problems
Haihao Lu, Santiago Balseiro, Vahab Mirrokni

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-An Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, Dustin Tran

Batch Stationary Distribution Estimation
Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans

Small-GAN: Speeding Up GAN Training Using Core-Sets
Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Augustus Odena

Data Valuation Using Reinforcement Learning
Jinsung Yoon, Sercan ‎Ö. Arik, Tomas Pfister

A Game Theoretic Perspective on Model-Based Reinforcement Learning
Aravind Rajeswaran, Igor Mordatch, Vikash Kumar

Encoding Musical Style with Transformer Autoencoders
Kristy Choi, Curtis Hawthorne, Ian Simon, Monica Dinculescu, Jesse Engel

The Shapley Taylor Interaction Index
Kedar Dhamdhere, Mukund Sundararajan, Ashish Agarwal

Multidimensional Shape Constraints
Maya Gupta, Erez Louidor, Olexander Mangylov, Nobu Morioka, Taman Narayan, Sen Zhao

Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead
Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh

Learning to Score Behaviors for Guided Policy Optimization
Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Anna Choromanska, Krzysztof Choromanski, Michael I. Jordan

Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations
Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, Jörn-Henrik Jacobsen

Optimizing Black-Box Metrics with Adaptive Surrogates
Qijia Jiang, Olaoluwa Adigun, Harikrishna Narasimhan, Mahdi Milani Fard, Maya Gupta

Circuit-Based Intrinsic Methods to Detect Overfitting
Sat Chatterjee, Alan Mishchenko

Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova, Dave Moore, Matthew D. Hoffman

Stochastic Flows and Geometric Optimization on the Orthogonal Group
Krzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Bahamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano, Tamas Sarlos, Adrian Weller, Vikas Sindhwani

Black-Box Variational Inference as a Parametric Approximation to Langevin Dynamics
Matthew Hoffman, Yi-An Ma

Concise Explanations of Neural Networks Using Adversarial Training
Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury, Somesh Jha, Xi Wu

p-Norm Flow Diffusion for Local Graph Clustering
Shenghao Yang, Di Wang, Kimon Fountoulakis

Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models
Rares-Darius Buhai, Yoni Halpern, Yoon Kim, Andrej Risteski, David Sontag

Robust Pricing in Dynamic Mechanism Design
Yuan Deng, Sébastien Lahaie, Vahab Mirrokni

Differentiable Product Quantization for Learning Compact Embedding Layers
Ting Chen, Lala Li, Yizhou Sun

Adaptive Region-Based Active Learning
Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang

Countering Language Drift with Seeded Iterated Learning
Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron Courville

Does Label Smoothing Mitigate Label Noise?
Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar

Acceleration Through Spectral Density Estimation
Fabian Pedregosa, Damien Scieur

Momentum Improves Normalized SGD
Ashok Cutkosky, Harsh Mehta

ConQUR: Mitigating Delusional Bias in Deep Q-Learning
Andy Su, Jayden Ooi, Tyler Lu, Dale Schuurmans, Craig Boutilier

Online Learning with Imperfect Hints
Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit

Go Wide, Then Narrow: Efficient Training of Deep Thin Networks
Denny Zhou, Mao Ye, Chen Chen, Tianjian Meng, Mingxing Tan, Xiaodan Song, Quoc Le, Qiang Liu, Dale Schuurmans

On Implicit Regularization in β-VAEs
Abhishek Kumar, Ben Poole

Is Local SGD Better than Minibatch SGD?
Blake Woodworth, Kumar Kshitij Patel, Sebastian U. Stich, Zhen Dai, Brian Bullins, H. Brendan McMahan, Ohad Shamir, Nathan Sreb

A Simple Framework for Contrastive Learning of Visual Representations
Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton

Universal Average-Case Optimality of Polyak Momentum
Damien Scieur, Fabian Pedregosa

An Imitation Learning Approach for Cache Replacement
Evan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, Junwhan Ahn

Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical Systems
Zhe Dong, Bryan A. Seybold, Kevin P. Murphy, Hung H. Bui

Beyond Synthetic Noise: Deep Learning on Controlled Noisy Labels
Lu Jiang, Di Huang, Mason Liu, Weilong Yang

Optimizing Data Usage via Differentiable Rewards
Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anastasopoulos, Jaime Carbonell, Graham Neubig

Sparse Sinkhorn Attention
Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, Da-Cheng Juan

One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control
Wenlong Huang, Igor Mordatch, Deepak Pathak

On Thompson Sampling with Langevin Algorithms
Eric Mazumdar, Aldo Pacchiano, Yi-An Ma, Peter L. Bartlett, Michael I. Jordan

Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection
Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, Qiang Liu

On the Global Convergence Rates of Softmax Policy Gradient Methods
Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, Dale Schuurmans

Concept Bottleneck Models
Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, Percy Liang

Supervised Quantile Normalization for Low-Rank Matrix Approximation
Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert

Missing Data Imputation Using Optimal Transport
Boris Muzellec, Julie Josse, Claire Boyer, Marco Cuturi

Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention Over Modules
Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio

Stochastic Optimization for Regularized Wasserstein Estimators
Marin Ballu, Quentin Berthet, Francis Bach

Low-Rank Bottleneck in Multi-head Attention Models
Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Jakkam Reddi, Sanjiv Kumar

Rigging the Lottery: Making All Tickets Winners
Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen

Online Learning with Dependent Stochastic Feedback Graphs
Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang

Calibration, Entropy Rates, and Memory in Language Models
Mark Braverman, Xinyi Chen, Sham Kakade, Karthik Narasimhan, Cyril Zhang, Yi Zhang

Composable Sketches for Functions of Frequencies: Beyond the Worst Case
Edith Cohen, Ofir Geri, Rasmus Pagh

Energy-Based Processes for Exchangeable Data
Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans

Near-Optimal Regret Bounds for Stochastic Shortest Path
Alon Cohen, Haim Kaplan, Yishay Mansour, Aviv Rosenberg

PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization (see blog post)
Jingqing Zhang, Yao Zhao, Mohammad Saleh, Peter J. Liu

The Complexity of Finding Stationary Points with Stochastic Gradient Descent
Yoel Drori, Ohad Shamir

The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
Jakub Swiatkowski, Kevin Roth, Bas Veeling, Linh Tran, Josh Dillon, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin

Regularized Optimal Transport is Ground Cost Adversarial
François-Pierre Paty, Marco Cuturi

Workshops
New In ML
Invited Speaker: Nicolas Le Roux
Organizers: Zhen Xu, Sparkle Russell-Puleri, Zhengying Liu, Sinead A Williamson, Matthias W Seeger, Wei-Wei Tu, Samy Bengio, Isabelle Guyon

LatinX in AI
Workshop Advisor: Pablo Samuel Castro

Women in Machine Learning Un-Workshop
Invited Speaker: Doina Precup
Sponsor Expo Speaker: Jennifer Wei

Queer in AI
Invited Speaker: Shakir Mohamed

Workshop on Continual Learning
Organizers: Haytham Fayek, Arslan Chaudhry, David Lopez-Paz, Eugene Belilovsky, Jonathan Schwarz, Marc Pickett, Rahaf Aljundi, Sayna Ebrahimi, Razvan Pascanu, Puneet Dokania

5th ICML Workshop on Human Interpretability in Machine Learning (WHI)
Organizers: Kush Varshney, Adrian Weller, Alice Xiang, Amit Dhurandhar, Been Kim, Dennis Wei, Umang Bhatt

Self-supervision in Audio and Speech
Organizers: Mirco Ravanelli, Dmitriy Serdyuk, R Devon Hjelm, Bhuvana Ramabhadran, Titouan Parcollet

Workshop on eXtreme Classification: Theory and Applications
Invited Speakers: Sanjiv Kumar

Healthcare Systems, Population Health, and the Role of Health-tech
Organizers: Krzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Bahamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano, Tamas Sarlos, Adrian Weller, Vikas Sindhwani

Theoretical Foundations of Reinforcement Learning
Program Committee: Alon Cohen, Chris Dann

Uncertainty and Robustness in Deep Learning Workshop (UDL)
Invited Speaker: Justin Gilmer

Organizers: Sharon Li, Balaji Lakshminarayanan, Dan Hendrycks, Thomas Dietterich, Jasper Snoek
Program Committee: Jeremiah Liu, Jie Ren, Rodolphe Jenatton, Zack Nado, Alexander Alemi, Florian Wenzel, Mike Dusenberry, Raphael Lopes

Beyond First Order Methods in Machine Learning Systems
Industry Panel: Jonathan Hseu

Object-Oriented Learning: Perception, Representation, and Reasoning
Invited Speakers: Thomas Kipf, Igor Mordatch

Graph Representation Learning and Beyond (GRL+)
Organizers: Michael Bronstein, Andreea Deac, William L. Hamilton, Jessica B. Hamrick, Milad Hashemi, Stefanie Jegelka, Jure Leskovec, Renjie Liao, Federico Monti, Yizhou Sun, Kevin Swersky, Petar Veličković, Rex Ying, Marinka Žitnik
Speakers: Thomas Kipf
Program Committee: Bryan Perozzi, Kevin Swersky, Milad Hashemi, Thomas Kipf, Ting Cheng

ML Interpretability for Scientific Discovery
Organizers: Subhashini Venugopalan, Michael Brenner, Scott Linderman, Been Kim
Program Committee: Akinori Mitani, Arunachalam Narayanaswamy, Avinash Varadarajan, Awa Dieng, Benjamin Sanchez-Lengeling, Bo Dai, Stephan Hoyer, Subham Sekhar Sahoo, Suhani Vora
Steering Committee: John Platt, Mukund Sundararajan, Jon Kleinberg

Negative Dependence and Submodularity for Machine Learning
Organizers: Zelda Mariet, Mike Gartrell, Michal Derezinski

7th ICML Workshop on Automated Machine Learning (AutoML)
Organizers: Charles Weill, Katharina Eggensperger, Matthias Feurer, Frank Hutter, Marius Lindauer, Joaquin Vanschoren

Federated Learning for User Privacy and Data Confidentiality
Keynote: Brendan McMahan
Program Committee: Peter Kairouz, Jakub Konecný

MLRetrospectives: A Venue for Self-Reflection in ML Research
Speaker: Margaret Mitchell

Machine Learning for Media Discovery
Speaker: Ed Chi

INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models
Organizers: Chin-Wei Huang, David Krueger, Rianne van den Berg, George Papamakarios, Chris Cremer, Ricky Chen, Danilo Rezende

4th Lifelong Learning Workshop
Program Committee: George Tucker, Marlos C. Machado

2nd ICML Workshop on Human in the Loop Learning (HILL)
Organizers: Shanghang Zhang, Xin Wang, Fisher Yu, Jiajun Wu, Trevor Darrell

Machine Learning for Global Health
Organizers: Danielle Belgrave, Danielle Belgrave, Stephanie Hyland, Charles Onu, Nicholas Furnham, Ernest Mwebaze, Neil Lawrence

Committee
Social Chair: Adam White

Work performed while at Google

Source: Google AI Blog


Google at ACL 2020



This week, the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020), a premier conference covering a broad spectrum of research areas that are concerned with computational approaches to natural language, takes place online.

As a leader in natural language processing and understanding, and a Diamond Level sponsor of ACL 2020, Google will showcase the latest research in the field with over 30 publications, and the organization of and participation in a variety of workshops and tutorials.

If you’re registered for ACL 2020, we hope that you’ll visit the Google virtual booth to learn more about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about the Google research being presented at ACL 2020 below (Google affiliations bolded).

Committees
Diversity & Inclusion (D&I) Chair: Vinodkumar Prabhakaran
Accessibility Chair: Sushant Kafle
Local Sponsorship Chair: Kristina Toutanova
Virtual Infrastructure Committee: Yi Luan
Area Chairs: Anders Søgaard, Ankur Parikh, Annie Louis, Bhuvana Ramabhadran, Christo Kirov, Daniel Cer, Dipanjan Das, Diyi Yang, Emily Pitler, Eunsol Choi, George Foster, Idan Szpektor, Jacob Eisenstein, Jason Baldridge, Jun Suzuki, Kenton Lee, Luheng He, Marius Pasca, Ming-Wei Chang, Sebastian Gehrmann, Shashi Narayan, Slav Petrov, Vinodkumar Prabhakaran, Waleed Ammar, William Cohen

Long Papers
Cross-modal Language Generation using Pivot Stabilization for Web-scale Language Coverage
Ashish V. Thapliyal, Radu Soricut

Automatic Detection of Generated Text is Easiest when Humans are Fooled
Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, Douglas Eck

On Faithfulness and Factuality in Abstractive Summarization
Joshua Maynez, Shashi Narayan, Bernd Bohnet, Ryan McDonald

MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, Denny Zhou

BabyWalk: Going Farther in Vision-and-Language Navigation by Taking Baby Steps
Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng, Vihan Jain, Eugene Ie, Fei Sha

Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation
Xuanli He, Gholamreza Haffari, Mohammad Norouzi

GoEmotions: A Dataset of Fine-Grained Emotions
Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, Sujith Ravi

TaPas: Weakly Supervised Table Parsing via Pre-training (see blog post)
Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, Julian Eisenschlos

Toxicity Detection: Does Context Really Matter?
John Pavlopoulos, Jeffrey Sorensen, Lucas Dixon, Nithum Thain, Ion Androutsopoulos

(Re)construing Meaning in NLP
Sean Trott, Tiago Timponi Torrent, Nancy Chang, Nathan Schneider

Pretraining with Contrastive Sentence Objectives Improves Discourse Performance of Language Models
Dan Iter, Kelvin Guu, Larry Lansing, Dan Jurafsky

Probabilistic Assumptions Matter: Improved Models for Distantly-Supervised Document-Level Question Answering
Hao Cheng, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

AdvAug: Robust Adversarial Augmentation for Neural Machine Translation
Yong Cheng, Lu Jiang, Wolfgang Macherey, Jacob Eisenstein

Named Entity Recognition as Dependency Parsing
Juntao Yu, Bernd Bohnet, Massimo Poesio

Cross-modal Coherence Modeling for Caption Generation
Malihe Alikhani, Piyush Sharma, Shengjie Li, Radu Soricut, Matthew Stone

Representation Learning for Information Extraction from Form-like Documents (see blog post)
Bodhisattwa Prasad Majumder, Navneet Potti, Sandeep Tata, James Bradley Wendt, Qi Zhao, Marc Najork

Low-Dimensional Hyperbolic Knowledge Graph Embeddings
Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, Christopher Ré

What Question Answering can Learn from Trivia Nerds
Jordan Boyd-Graber, Benjamin Börschinger

Learning a Multi-Domain Curriculum for Neural Machine Translation
Wei Wang, Ye Tian, Jiquan Ngiam, Yinfei Yang, Isaac Caswell, Zarana Parekh

Translationese as a Language in "Multilingual" NMT
Parker Riley, Isaac Caswell, Markus Freitag, David Grangier

Mapping Natural Language Instructions to Mobile UI Action Sequences
Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, Jason Baldridge

BLEURT: Learning Robust Metrics for Text Generation (see blog post)
Thibault Sellam, Dipanjan Das, Ankur Parikh

Exploring Unexplored Generalization Challenges for Cross-Database Semantic Parsing
Alane Suhr, Ming-Wei Chang, Peter Shaw, Kenton Lee

Frugal Paradigm Completion
Alexander Erdmann, Tom Kenter, Markus Becker, Christian Schallhart

Short Papers
Reverse Engineering Configurations of Neural Text Generation Models
Yi Tay, Dara Bahri, Che Zheng, Clifford Brunk, Donald Metzler, Andrew Tomkins

Syntactic Data Augmentation Increases Robustness to Inference Heuristics
Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Pitler, Tal Linzen

Leveraging Monolingual Data with Self-Supervision for Multilingual Neural Machine Translation
Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Firat, Mia Chen, Sneha Kudugunta, Naveen Arivazhagan, Yonghui Wu

Social Biases in NLP Models as Barriers for Persons with Disabilities
Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, Stephen Denuyl

Toward Better Storylines with Sentence-Level Language Models
Daphne Ippolito, David Grangier, Douglas Eck, Chris Callison-Burch

TACL Papers
TYDI QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages (see blog post)
Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, Jennimaria Palomaki

Phonotactic Complexity and Its Trade-offs
Tiago Pimentel, Brian Roark, Ryan Cotterell

Demos
Multilingual Universal Sentence Encoder for Semantic Retrieval (see blog post)
Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant, Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, Ray Kurzweil

Workshops
IWPT - The 16th International Conference on Parsing Technologies
Yuji Matsumoto, Stephan Oepen, Kenji Sagae, Anders Søgaard, Weiwei Sun and Reut Tsarfaty

ALVR - Workshop on Advances in Language and Vision Research
Xin Wang, Jesse Thomason, Ronghang Hu, Xinlei Chen, Peter Anderson, Qi Wu, Asli Celikyilmaz, Jason Baldridge and William Yang Wang

WNGT - The 4th Workshop on Neural Generation and Translation
Alexandra Birch, Graham Neubig, Andrew Finch, Hiroaki Hayashi, Kenneth Heafield, Ioannis Konstas, Yusuke Oda and Xian Li

NLPMC - NLP for Medical Conversations
Parminder Bhatia, Chaitanya Shivade, Mona Diab, Byron Wallace, Rashmi Gangadharaiah, Nan Du, Izhak Shafran and Steven Lin

AutoSimTrans - The 1st Workshop on Automatic Simultaneous Translation
Hua Wu, Colin Cherry, James Cross, Liang Huang, Zhongjun He, Mark Liberman and Yang Liu

Tutorials
Interpretability and Analysis in Neural NLP (cutting-edge)
Yonatan Belinkov, Sebastian Gehrmann, Ellie Pavlick

Commonsense Reasoning for Natural Language Processing (Introductory)
Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin Choi, Dan Roth

Source: Google AI Blog


Google at CVPR 2020



This week marks the start of the fully virtual 2020 Conference on Computer Vision and Pattern Recognition (CVPR 2020), the premier annual computer vision event consisting of the main conference, workshops and tutorials. As a leader in computer vision research and a Supporter Level Virtual Sponsor, Google will have a strong presence at CVPR 2020, with nearly 70 publications accepted, along with the organization of, and participation in, multiple workshops/tutorials.

If you are participating in CVPR this year, please visit our virtual booth to learn about what Google is actively pursuing for the next generation of intelligent systems that utilize the latest machine learning techniques applied to various areas of machine perception.

You can also learn more about our research being presented at CVPR 2020 in the list below (Google affiliations are bolded).

Organizing Committee

General Chairs: Terry Boult, Gerard Medioni, Ramin Zabih
Program Chairs: Ce Liu, Greg Mori, Kate Saenko, Silvio Savarese
Workshop Chairs: Tal Hassner, Tali Dekel
Website Chairs: Tianfan Xue, Tian Lan
Technical Chair: Daniel Vlasic
Area Chairs include: Alexander Toshev, Alexey Dosovitskiy, Boqing Gong, Caroline Pantofaru, Chen Sun, Deqing Sun, Dilip Krishnan, Feng Yang, Liang-Chieh Chen, Michael Rubinstein, Rodrigo Benenson, Timnit Gebru, Thomas Funkhouser, Varun Jampani, Vittorio Ferrari, William Freeman

Oral Presentations

Evolving Losses for Unsupervised Video Representation Learning
AJ Piergiovanni, Anelia Angelova, Michael Ryoo

CvxNet: Learnable Convex Decomposition
Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, Andrea Tagliasacchi

Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh

Scalability in Perception for Autonomous Driving: Waymo Open Dataset
Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla‎, Aurélien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev‎, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi‎, Sheng Zhao, Shuyang Chen, Yu Zhang, Jon Shlens, Zhifeng Chen, Dragomir Anguelov

Deep Implicit Volume Compression
Saurabh Singh, Danhang Tang, Cem Keskin, Philip Chou, Christian Haene, Mingsong Dou, Sean Fanello, Jonathan Taylor, Andrea Tagliasacchi, Philip Davidson, Yinda Zhang, Onur Guleryuz, Shahram Izadi, Sofien Bouaziz

Neural Networks Are More Productive Teachers Than Human Raters: Active Mixup for Data-Efficient Knowledge Distillation from a Blackbox Model
Dongdong Wan, Yandong Li, Liqiang Wang, and Boqing Gong

Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval (see the blog post)
Tobias Weyand, Andre Araujo, Jack Sim, Bingyi Cao

CycleISP: Real Image Restoration via Improved Data Synthesis
Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao

Dynamic Graph Message Passing Networks
Li Zhang, Dan Xu, Anurag Arnab, Philip Torr

Local Deep Implicit Functions for 3D Shape
Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, Thomas Funkhouser

GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William Freeman, Rahul Sukthankar, Cristian Sminchisescu

Search to Distill: Pearls are Everywhere but not the Eyes
Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli, Yukun Zhu, Bradley Green, Xiaogang Wang

Semantic Pyramid for Image Generation
Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani, William Freeman, Tali Dekel

Flow Contrastive Estimation of Energy-Based Models
Ruiqi Gao, Erik Nijkamp, Diederik Kingma, Zhen Xu, Andrew Dai, Ying Nian Wu

Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from A Domain Adaptation Perspective
Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang Wang, Boqing Gong

Category-Level Articulated Object Pose Estimation
Xiaolong Li, He Wang, Li Yi, Leonidas Guibas, Amos Abbott, Shuran Song

AdaCoSeg: Adaptive Shape Co-Segmentation with Group Consistency Loss
Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Li Yi, Leonidas Guibas, Hao Zhang

SpeedNet: Learning the Speediness in Videos
Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William Freeman, Michael Rubinstein, Michal Irani, Tali Dekel

BSP-Net: Generating Compact Meshes via Binary Space Partitioning
Zhiqin Chen, Andrea Tagliasacchi, Hao Zhang

SAPIEN: A SimulAted Part-based Interactive ENvironment
Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel Chang, Leonidas Guibas, Hao Su

SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving
Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou, Pei Sun, Dumitru Erhan, Sean Rafferty, Henrik Kretzschmar

Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks
Saurabh Singh, Shankar Krishnan

RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, Mohi Khansari

Open Compound Domain Adaptation
Ziwei Liu, Zhongqi Miao, Xingang Pan, Xiaohang Zhan, Dahua Lin, Stella X.Yu, and Boqing Gong

Posters
Single-view view synthesis with multiplane images
Richard Tucker, Noah Snavely

Adversarial Examples Improve Image Recognition
Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille, Quoc V. Le

Adversarial Texture Optimization from RGB-D Scans
Jingwei Huang, Justus Thies, Angela Dai, Abhijit Kundu, Chiyu “Max” Jiang,Leonidas Guibas, Matthias Niessner, Thomas Funkhouser

Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline
Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao, Ming-Hsuan Yang,Yung-Yu Chuang, Jia-Bin Huang

Collaborative Distillation for Ultra-Resolution Universal Style Transfer
Huan Wang, Yijun Li, Yuehai Wang, Haoji Hu, Ming-Hsuan Yang

Learning to Autofocus
Charles Herrmann, Richard Strong Bowen, Neal Wadhwa, Rahul Garg, Qiurui He, Jonathan T. Barron, Ramin Zabih

Multi-Scale Boosted Dehazing Network with Dense Feature Fusion
Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, Ming-Hsuan Yang

Composing Good Shots by Exploiting Mutual Relations
Debang Li, Junge Zhang, Kaiqi Huang, Ming-Hsuan Yang

PatchVAE: Learning Local Latent Codes for Recognition
Kamal Gupta, Saurabh Singh, Abhinav Shrivastava

Neural Voxel Renderer: Learning an Accurate and Controllable Rendering Tool
Konstantinos Rematas, Vittorio Ferrari

Local Implicit Grid Representations for 3D Scenes
Chiyu “Max” Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Niessner, Thomas Funkhouser

Large Scale Video Representation Learning via Relational Graph Clustering
Hyodong Lee, Joonseok Lee, Joe Yue-Hei Ng, Apostol (Paul) Natsev

Deep Homography Estimation for Dynamic Scenes
Hoang Le, Feng Liu, Shu Zhang, Aseem Agarwala

C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds
Albert Pumarola, Stefan Popov, Francesc Moreno-Noguer, Vittorio Ferrari

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination
Pratul Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely

Scale-space flow for end-to-end optimized video compression
Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Ballé, Sung Jin Hwang, George Toderici

StructEdit: Learning Structural Shape Variations
Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, Leonidas Guibas

3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Niessner

Sequential mastery of multiple tasks: Networks naturally learn to learn and forget to forget
Guy Davidson, Michael C. Mozer

Distilling Effective Supervision from Severe Label Noise
Zizhao Zhang, Han Zhang, Sercan Ö. Arik, Honglak Lee, Tomas Pfister

ViewAL: Active Learning With Viewpoint Entropy for Semantic Segmentation
Yawar Siddiqui, Julien Valentin, Matthias Niessner

Attribution in Scale and Space
Shawn Xu, Subhashini Venugopalan, Mukund Sundararajan

Weakly-Supervised Semantic Segmentation via Sub-category Exploration
Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu, Yi-Hsuan Tsai, Ming-Hsuan Yang

Speech2Action: Cross-modal Supervision for Action Recognition
Arsha Nagrani, Chen Sun, David Ross, Rahul Sukthankar, Cordelia Schmid, Andrew Zisserman

Counting Out Time: Class Agnostic Video Repetition Counting in the Wild
Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, Andrew Zisserman

The Garden of Forking Paths: Towards Multi-Future Trajectory Prediction
Junwei Liang, Lu Jiang, Kevin Murphy, Ting Yu, Alexander Hauptmann

Self-training with Noisy Student improves ImageNet classification
Qizhe Xie, Minh-Thang Luong, Eduard Hovy, Quoc V. Le

EfficientDet: Scalable and Efficient Object Detection (see the blog post)
Mingxing Tan, Ruoming Pang, Quoc Le

ACNe: Attentive Context Normalization for Robust Permutation-Equivariant Learning
Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi, Kwang Moo Yi

VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation
Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Cordelia Schmid, Congcong Li

SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization
Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan, Yin Cui, Quoc Le, Xiaodan Song

KeyPose: Multi-View 3D Labeling and Keypoint Estimation for Transparent Objects
Xingyu Liu, Rico Jonschkowski, Anelia Angelova, Kurt Konolige

Structured Multi-Hashing for Model Compression
Elad Eban, Yair Movshovitz-Attias, Hao Wu, Mark Sandler, Andrew Poon, Yerlan Idelbayev, Miguel A. Carreira-Perpinan

DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes
Mahyar Najibi, Guangda Lai, Abhijit Kundu, Zhichao Lu, Vivek Rathod, Tom Funkhouser, Caroline Pantofaru, David Ross, Larry Davis, Alireza Fathi

Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
Bowen Cheng, Maxwell Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, Liang-Chieh Chen

Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection
Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, Jonathan Huang

Distortion Agnostic Deep Watermarking
Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, Peyman Milanfar

Can weight sharing outperform random architecture search? An investigation with TuNAS
Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, Quoc Le

GIFnets: Differentiable GIF Encoding Framework
Innfarn Yoo, Xiyang Luo, Yilin Wang, Feng Yang, Peyman Milanfar

Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models
Giannis Daras, Augustus Odena, Han Zhang, Alex Dimakis

Fast Sparse ConvNets
Erich Elsen, Marat Dukhan, Trevor Gale, Karen Simonyan

RetinaTrack: Online Single Stage Joint Detection and Tracking
Zhichao Lu, Vivek Rathod, Ronny Votel, Jonathan Huang

Learning to See Through Obstructions
Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang,Yung-Yu Chuang, Jia-Bin Huang

Self-Supervised Learning of Video-Induced Visual Invariances
Michael Tschannen, Josip Djolonga, Marvin Ritter, Aravindh Mahendran, Neil Houlsby, Sylvain Gelly, Mario Lucic

Workshops

3rd Workshop and Challenge on Learned Image Compression
Organizers include: George Toderici, Eirikur Agustsson, Lucas Theis, Johannes Ballé, Nick Johnston

CLVISION 1st Workshop on Continual Learning in Computer Vision
Organizers include: Zhiyuan (Brett) Chen, Marc Pickett

Embodied AI
Organizers include: Alexander Toshev, Jie Tan, Aleksandra Faust, Anelia Angelova

The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture
Organizers include: Zhen Li, Jim Yuan

Embodied AI
Organizers include: Alexander Toshev, Jie Tan, Aleksandra Faust, Anelia Angelova

New Trends in Image Restoration and Enhancement workshop and challenges on image and video restoration and enhancement (NTIRE)
Talk: “Sky Optimization: Semantically aware image processing of skies in low-light photography”
Orly Liba, Longqi Cai, Yun-Ta Tsai, Elad Eban, Yair Movshovitz-Attias, Yael Pritch, Huizhong Chen, Jonathan Barron

The End-of-End-to-End A Video Understanding Pentathlon
Organizers include: Rahul Sukthankar

4th Workshop on Media Forensics
Organizers include: Christoph Bregler

4th Workshop on Visual Understanding by Learning from Web Data
Organizers include: Jesse Berent, Rahul Sukthankar

AI for Content Creation
Organizers include: Deqing Sun, Lu Jiang, Weilong Yang

Fourth Workshop on Computer Vision for AR/VR
Organizers include: Sofien Bouaziz

Low-Power Computer Vision Competition (LPCVC)
Organizers include: Bo Chen, Andrew Howard, Jaeyoun Kim

Sight and Sound
Organizers include: William Freeman

Workshop on Efficient Deep Learning for Computer Vision
Organizers include: Pete Warden

Extreme classification in computer vision
Organizers include: Ramin Zabih, Zhen Li

Image Matching: Local Features and Beyond (see the blog post)
Organizers include: Eduard Trulls

The DAVIS Challenge on Video Object Segmentation
Organizers include: Alberto Montes, Jordi Pont-Tuset, Kevis-Kokitsi Maninis

2nd Workshop on Precognition: Seeing through the Future
Organizers include: Utsav Prabhu

Computational Cameras and Displays (CCD)
Talk: Orly Liba

2nd Workshop on Learning from Unlabeled Videos (LUV)
Organizers include:Honglak Lee, Rahul Sukthankar

7th Workshop on Fine Grained Visual Categorization (FGVC7) (see the blog post)
Organizers include: Christine Kaeser-Chen, Serge Belongie

Language & Vision with applications to Video Understanding
Organizers include: Lu Jiang

Neural Architecture Search and Beyond for Representation Learning
Organizers include: Barret Zoph

Tutorials

Disentangled 3D Representations for Relightable Performance Capture of Humans
Organizers include: Sean Fanello, Christoph Rhemann, Jonathan Taylor, Sofien Bouaziz, Adarsh Kowdle, Rohit Pandey, Sergio Orts-Escolano, Paul Debevec, Shahram Izadi

Learning Representations via Graph-Structured Networks
Organizers include:Chen Sun, Ming-Hsuan Yang

Novel View Synthesis: From Depth-Based Warping to Multi-Plane Images and Beyond
Organizers include:Varun Jampani

How to Write a Good Review
Talks by:Vittorio Ferrari, Bill Freeman, Jordi Pont-Tuset

Neural Rendering
Organizers include:Ricardo Martin-Brualla, Rohit K. Pandey, Sean Fanello,Maneesh Agrawala, Dan B. Goldman

Fairness Accountability Transparency and Ethics and Computer Vision
Organizers: Timnit Gebru, Emily Denton

Source: Google AI Blog


Google at ICLR 2020



This week marks the beginning of the 8th International Conference on Learning Representations (ICLR 2020), a fully virtual conference focused on how one can learn meaningful and useful representations of data for machine learning. ICLR offers conference and workshop tracks, both of which include invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction and issues regarding non-convex optimization.

As a Diamond Sponsor of ICLR 2020, Google will have a strong virtual presence with over 80 publications accepted, in addition to participating on organizing committees and in workshops. If you have registered for ICLR 20202, we hope you'll watch our talks and learn about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2020 in the list below (Googlers highlighted in blue).

Officers and Board Members
Includes: Hugo LaRochelle, Samy Bengio, Tara Sainath

Organizing Committee
Includes: Kevin Swersky, Timnit Gebru

Area Chairs
Includes: Balaji Lakshminarayanan, Been Kim, Chelsea Finn, Dale Schuurmans, George Tucker, Honglak Lee, Hossein Mobahi, Jasper Snoek, Justin Gilmer, Katherine Heller, Manaal Faruqui, Michael Ryoo, Nicolas Le Roux, Sanmi Koyejo, Sergey Levine, Tara Sainath, Yann Dauphin, Anders Søgaard, David Duvenaud, Jamie Morgenstern, Qiang Liu

Publications
SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference (see the blog post)
Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, Marcin Michalski‎

Differentiable Reasoning Over a Virtual Knowledge Base
Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan Salakhutdinov, William W. Cohen

Dynamics-Aware Unsupervised Discovery of Skills
Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, Karol Hausman

GenDICE: Generalized Offline Estimation of Stationary Values
Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans

Mathematical Reasoning in Latent Space
Dennis Lee, Christian Szegedy, Markus N. Rabe, Kshitij Bansal, Sarah M. Loos

Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl, Kuan-Chieh Wang, Jorn-Henrik Jacobsen, David Duvenaud, Kevin Swersky, Mohammad Norouzi

Adjustable Real-time Style Transfer
Mohammad Babaeizadeh, Golnaz Ghiasi

Are Transformers Universal Approximators of Sequence-to-sequence Functions?
Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashankc J. Reddi, Sanjiv Kumar

AssembleNet: Searching for Multi-Stream Neural Connectivity in Video Architectures
Michael S. Ryoo, AJ Piergiovanni, Mingxing Tan, Anelia Angelova

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan

BatchEnsemble: an Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen, Dustin Tran, Jimmy Ba

Black-box Off-policy Estimation for Infinite-Horizon Reinforcement Learning (see the blog post)
Ali Mousavi, Lihong Li, Qiang Liu, Dengyong Zhou

Can Gradient Clipping Mitigate Label Noise?
Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar

CAQL: Continuous Action Q-Learning
Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja, Craig Boutilier

Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network Compilation
Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, Hadi Esmaeilzadeh

Coherent Gradients: An Approach to Understanding Generalization in Gradient Descent-based Optimization
Satrajit Chatterjee

Consistency Regularization for Generative Adversarial Networks
Han Zhang, Zizhao Zhang, Augustus Odena, Honglak Lee

Contrastive Representation Distillation
Yonglong Tian, Dilip Krishnan, Phillip Isola

Deep Audio Priors Emerge from Harmonic Convolutional Networks
Zhoutong Zhang, Yunyun Wang, Chuang Gan, Jiajun Wu, Joshua B. Tenenbaum, Antonio Torralba, William T. Freeman

Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, Geoffrey Hinton

Detecting Extrapolation with Local Ensembles
David Madras, James Atwood, Alexander D'Amour

Disentangling Factors of Variations Using Few Labels
Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem

Distance-Based Learning from Errors for Confidence Calibration
Chen Xing, Sercan Ö. Arik, Zizhao Zhang, Tomas Pfister

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators (see the blog post)
Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning

ES-MAML: Simple Hessian-Free Meta Learning (see the blog post)
Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, Wenbo Gao, Yunhao Tang

Exploration in Reinforcement Learning with Deep Covering Options
Yuu Jinnai, Jee Won Park, Marlos C. Machado, George Konidaris

Extreme Tensoring for Low-Memory Preconditioning
Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, Yi Zhang

Fantastic Generalization Measures and Where to Find Them
Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, Samy Bengio

Generalization Bounds for Deep Convolutional Neural Networks
Philip M. Long, Hanie Sedghi

Generalized Convolutional Forest Networks for Domain Generalization and Visual Recognition
Jongbin Ryu, GiTaek Kwon, Ming-Hsuan Yang, Jongwoo Lim

Generative Models for Effective ML on Private, Decentralized Datasets
Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Rajiv Mathews, Blaise Aguera y Arcas

Generative Ratio Matching Networks
Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton

Global Relational Models of Source Code
Vincent J. Hellendoorn, Petros Maniatis, Rishabh Singh, Charles Sutton, David Bieber

Hierarchical Foresight: Self-Supervised Learning of Long-Horizon Tasks via Visual Subgoal Generation
Suraj Nair, Chelsea Finn

Identity Crisis: Memorization and Generalization Under Extreme Overparameterization
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C. Mozer, Yoram Singer

Imitation Learning via Off-Policy Distribution Matching
Ilya Kostrikov, Ofir Nachum, Jonathan Tompson

Language GANs Falling Short
Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joëlle Pineau, Laurent Charlin

Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes
Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, Cho-Jui Hsieh

Learning Execution through Neural Code Fusion
Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, Milad Hashemi

Learning Heuristics for Quantified Boolean Formulas through Reinforcement Learning
Gil Lederman, Markus N. Rabe, Edward A. Lee, Sanjit A. Seshia

Learning to Learn by Zeroth-Order Oracle
Yangjun Ruan, Yuanhao Xiong, Sashank Reddi, Sanjiv Kumar, Cho-Jui Hsieh

Learning to Represent Programs with Property Signatures
Augustus Odena, Charles Sutton

MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, Liwei Wang

Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, Olivier Bousquet

Meta Reinforcement Learning with Autonomous Inference of Subtask Dependencies
Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Honglak Lee

Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle

Model-based Reinforcement Learning for Biological Sequence Design
Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, Lucy Colwell

Network Randomization: A Simple Technique for Generalization in Deep Reinforcement Learning
Kimin Lee, Kibok Lee, Jinwoo Shin, Honglak Lee

Observational Overfitting in Reinforcement Learning
Xingyou Song, Yiding Jiang, Stephen Tu, Behnam Neyshabur, Yilun Du

On Bonus-based Exploration Methods In The Arcade Learning Environment
Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, Marc G. Bellemare

On Identifiability in Transformers
Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano Ciaramita, Roger Wattenhofer

On Mutual Information Maximization for Representation Learning
Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, Mario Lucic

On the Global Convergence of Training Deep Linear ResNets
Difan Zou, Philip M. Long, Quanquan Gu

Phase Transitions for the Information Bottleneck in Representation Learning
Tailin Wu, Ian Fischer

Pre-training Tasks for Embedding-based Large-scale Retrieval
Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, Sanjiv Kumar

Prediction, Consistency, Curvature: Representation Learning for Locally-Linear Control
Nir Levine, Yinlam Chow, Rui Shu, Ang Li, Mohammad Ghavamzadeh, Hung Bui

Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear Networks
Wei Hu, Lechao Xiao, Jeffrey Pennington

Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu, Maithra Raghu, Samy Bengio, Oriol Vinyals

Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs
Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, Oriol Vinyals

ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, Colin Raffel, Kihyuk Sohn

Scalable Model Compression by Entropy Penalized Reparameterization
Deniz Oktay, Johannes Ballé, Saurabh Singh, Abhinav Shrivastava

Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base
William W. Cohen, Haitian Sun, R. Alex Hofer, Matthew Siegler

Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Raza Habib, Soroosh Mariooryad, Matt Shannon, Eric Battenberg, RJ Skerry-Ryan, Daisy Stanton, David Kao, Tom Bagby

Span Recovery for Deep Neural Networks with Applications to Input Obfuscation
Rajesh Jayaram, David Woodruff, Qiuyi Zhang

Thieves on Sesame Street! Model Extraction of BERT-based APIs
Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, Mohit Iyyer

Thinking While Moving: Deep Reinforcement Learning with Concurrent Control
Ted Xiao, Eric Jang, Dmitry Kalashnikov, Sergey Levine, Julian Ibarz, Karol Hausman, Alexander Herzog

VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, Durk Kingma

Watch, Try, Learn: Meta-Learning from Demonstrations and Rewards
Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn

Weakly Supervised Disentanglement with Guarantees
Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, Ben Poole

You Only Train Once: Loss-Conditional Training of Deep Networks
Alexey Dosovitskiy, Josip Djolonga

A Mutual Information Maximization Perspective of Language Representation Learning
Lingpeng Kong, Cyprien de Masson d’Autume, Wang Ling, Lei Yu, Zihang Dai, Dani Yogatama

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations (see the blog post)
Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut

Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer, Guy Gur-Ari

DDSP: Differentiable Digital Signal Processing
Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, Adam Roberts

Doubly Robust Bias Reduction in Infinite Horizon Off-Policy Estimation
Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, Qiang Liu

Dream to Control: Learning Behaviors by Latent Imagination (see the blog post)
Danijar Hafner, Timothy Lillicrap, Jimmy Ba, Mohammad Norouzi

Emergent Tool Use From Multi-Agent Autocurricula
Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, Igor Mordatch

Gradientless Descent: High-Dimensional Zeroth-Order Optimization
Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, Qiuyi (Richard) Zhang

HOPPITY: Learning Graph Transformations to Detect and Fix Bugs in Programs
Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, Ke Wang

Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees
Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song

Model Based Reinforcement Learning for Atari (see the blog post)
Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błazej Osinski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, Henryk Michalewski

Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension
Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou, Dawn Song, Quoc V. Le

SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models
Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P. Adams, Ricky T. Q. Chen

Measuring the Reliability of Reinforcement Learning Algorithms
Stephanie C.Y. Chan, Samuel Fishman, John Canny, Anoop Korattikara, Sergio Guadarrama

Meta-Learning without Memorization
Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, Chelsea Finn

Neural Tangents: Fast and Easy Infinite Neural Networks in Python (see the blog post)
Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, Samuel S. Schoenholz

Scaling Autoregressive Video Models
Dirk Weissenborn, Oscar Täckström, Jakob Uszkoreit

The Intriguing Role of Module Criticality in the Generalization of Deep Networks
Niladri Chatterji, Behnam Neyshabur, Hanie Sedghi

Reformer: The Efficient Transformer (see the blog post)
Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya

Workshops
Computer Vision for Global Challenges
Organizing Committee: Ernest Mwebaze
Advisory Committee: Timnit Gebru, John Quinn

Practical ML for Developing Countries: Learning under limited/low resource scenarios
Organizing Committee: Nyalleng Moorosi, Timnit Gebru
Program Committee: Pablo Samuel Castro, Samy Bengio
Keynote Speaker: Karmel Allison

Tackling Climate Change with Machine Learning
Organizing Committee: Moustapha Cisse
Co-Organizer: Natasha Jaques
Program Committee: John C. Platt, Kevin McCloskey, Natasha Jaques
Advisor and Panel: John C. Platt

Towards Trustworthy ML: Rethinking Security and Privacy for ML
Organizing Committee: Nicholas Carlini, Nicolas Papernot
Program Committee: Shuang Song

Source: Google AI Blog


Google Research: Looking Back at 2019, and Forward to 2020 and Beyond



The goal of Google Research is to work on long-term, ambitious problems, with an emphasis on solving ones that will dramatically help people throughout their daily lives. In pursuit of that goal in 2019, we made advances in a broad set of fundamental research areas, applied our research to new and emerging areas such as healthcare and robotics, open sourced a wide variety of code and continued collaborations with Google product teams to build tools and services that are dramatically more helpful for our users.

As we start 2020, it’s useful to take a step back and assess the research work we’ve done over the past year, and also to look forward to what sorts of problems we want to tackle in the upcoming years. In that spirit, this blog post is a survey of some of the research-focused work done by Google researchers and engineers during 2019 (in the spirit of similar reviews for 2018, and more narrowly focused reviews of some work in 2017 and 2016). For a more comprehensive look, please see our research publications in 2019.

Ethical Use of AI
In 2018, we published a set of AI Principles that provide a framework by which we evaluate our own research and applications of technologies such as machine learning in our products. In June 2019, we published a one-year update about how these principles are being put into practice in many different aspects of our research and product development life cycles. Since many of the areas touched on by the principles are active areas of research in the broader AI and machine learning research community (such as bias, safety, fairness, accountability, transparency and privacy in machine learning systems), our goals are to apply the best currently-known techniques in these areas to our work, and also to do research to continue to advance the state of the art in these important areas.

For example, this year we:
  • Published a research paper about a new transparency tool, which enabled the launch of Model Cards for several of our Cloud AI products. You can see an example model card for the Cloud AI Vision API Object Detection feature.
  • Showed how Activation Atlases can help explore neural network behavior and can aid with interpretability of machine learning models.
  • Introduced TensorFlow Privacy, an open-source library to enable training machine learning models with differential privacy guarantees.
  • Released a beta version of Fairness Indicators, to help ML practitioners identify unjust or unintended impacts of machine learning models.
    Clicking on a slice in Fairness Indicators will load all the data points in that slice inside the What-If Tool widget. In this case, all data points with the “female” label are shown.
  • Published a KDD'19 paper on how pairwise comparisons and regularization is incorporated into a large-scale production recommender system to improve ML Fairness. 
  • Published an AIES'19 paper about a case study on the application of fairness in machine learning research to a production classification system, and described our fairness metric, conditional equality, that takes into account distributional differences in implementing equality of opportunity. 
  • Published an AIES'19 paper about counterfactual fairness in text classification problems that asks the question: "How would the prediction change if the sensitive attribute referenced in the example were different?" and used this approach to improve our production systems that assess the toxicity of online content. 
  • Released a new dataset to help with research to identify deepfakes.
    A sample of videos from Google’s contribution to the FaceForensics benchmark. To generate these, pairs of actors were selected randomly, and deep neural networks swapped the face of one actor onto the head of another.
AI for Social Good
There is enormous potential for machine learning to help with many important societal issues. We have been doing work in several such areas, as well as working to enable others to apply their creativity and skills to solving such problems. Floods are the most common and the most deadly natural disaster on the planet, affecting approximately 250 million people each year. We have been using machine learning, computation and better sources of data to make significantly more accurate flood forecasts, and then to deliver actionable alerts to the phones of millions of people in the affected regions. We also hosted a workshop that brought together researchers with expertise in flood forecasting, hydrology and machine learning from Google and the broader research community to discuss ways to collaborate further on this important problem.

In addition to our flood forecasting efforts, we’ve been developing techniques to better understand the world’s wildlife, collaborating with seven wildlife conservation organizations to use machine learning to help analyze wildlife camera data and collaborating with the U.S. NOAA to identify whale species and locations from sounds in underwater recordings. We’ve also created and released a set of tools for enabling new kinds of machine-learning-oriented biodiversity research. As part of helping to organize the 6th Fine-Grained Visual Categorization Workshop, Google researchers in our Accra, Ghana office collaborated with researchers at Makerere University AI & Data Science research group to create and run a Kaggle competition on the classification of cassava plant diseases. As cassava is the second largest source of carbohydrates in Africa, plant health is an important food security issue, and it was great to see more than 100 participants across 87 teams participate in the contest.

In 2019 we updated Google Earth Timelapse, enabling people to effectively and intuitively visualize how the planet has changed over the past 35 years. Further, we’ve been collaborating with academic researchers on new privacy-preserving ways to aggregate data on human mobility, to give urban planners better information about how to design efficient environments with lower levels of carbon emissions.
We’ve also applied machine learning to support childhood learning. According to the United Nations, 617 million children do not have basic literacy, a critical determinant of their quality of life. To help more children learn to read, our Bolo app uses speech-recognition technology that tutors students in real-time. And to increase access, the app works completely offline on low-cost phones. In India, Bolo has already helped 800,000 children read stories and speak half a billion words. Early results are encouraging; a three-month pilot among 200 villages in India showed an improvement in reading proficiency among 64% of pilot participants.

For older students, the Socratic app can help high schoolers with complex problems in math, physics and over 1,000 higher education topics. Based on a photo or verbal question, the app automatically identifies the question’s underlying concepts and links to the most helpful online resources. Like the Socratic method, the app doesn’t directly answer questions, but instead leads students to discover the answer themselves. We’re excited about the broad possibilities of improving educational outcomes around the world through things like Bolo and Socratic.

To expand the reach of our AI for Social Good efforts, in May we announced the grantees of our AI Impact Challenge with $25 million in grants from Google.org. The response was huge: we received over 2,600 thoughtful proposals from 119 countries. Twenty impressive organizations stood out for their potential to solve big social and environmental problems and were our initial set of grantees. A few examples of the work of these organizations:
Applications of AI to Other Fields
The application of computer science and machine learning to other scientific fields is an area that we are especially excited about and have published a number of papers in, often in multi-organization collaborations. Some highlights from this year include:
  • In An Interactive, Automated 3D Reconstruction of a Fly Brain, we reported on a collaborative effort that achieved a milestone of mapping the structure of an entire fly brain, using machine learning models that were able to painstakingly trace each individual neuron.
  • In Learning Better Simulation Methods for Partial Differential Equations (PDEs), we showed how machine learning can be used to accelerate PDE computations, which are at the heart of many fundamental computational problems in climate science, fluid dynamics, electromagnetism, heat conduction and general relativity.
    Simulations of Burgers’ equation, a model for shock waves in fluids, solved with either a standard finite volume method (left) or our neural network based method (right). The orange squares represent simulations with each method on low resolution grids. These points are fed back into the model at each time step, which then predicts how they should change. Blue lines show the exact simulations used for training. The neural network solution is much better, even on a 4x coarser grid, as indicated by the orange squares smoothly tracing the blue line.
  • We gave machine learning models better scents of the world with Learning to Smell: Using Deep Learning to Predict the Olfactory Properties of Molecules. We showed how to leverage graph neural networks (GNNs) to directly predict the odor descriptors for individual molecules, without using any handcrafted rules.
  • 2D snapshot of our embedding space with some example odors highlighted. Left: Each odor is clustered in its own space. Right: The hierarchical nature of the odor descriptor. Shaded and contoured areas are computed with a kernel-density estimate of the embeddings.
  • In work that combines chemistry and reinforcement learning techniques, we presented a framework for molecule optimization.
  • Machine learning can also help us in our artistic and creative endeavors. Artists have found ways to collaborate with AI and AR and create interesting new forms, from dancing with a machine to reimagine choreography, to creating new melodies with machine learning tools. ML can be used by novices, too. To honor the birthday of J.S. Bach, we featured a ML-powered Doodle: just create your melody, and the ML tool can create accompanying harmonizations in Bach’s style.
Assistive Technology
On a more personal scale, ML can help us in our daily lives. It’s easy to take for granted our ability to see a beautiful image, to hear a favorite song, or to speak with a loved one. Yet over one billion people aren’t able to access the world in these ways. ML technology can help by turning these signals—vision, hearing, speech—into other signals that can be well-managed by people with accessibility needs, enabling better access to the world around them. A few examples of our assistive technology:
  • Lookout helps people who are blind or have low vision identify information about their surroundings. It draws upon similar underlying technology as Google Lens, which lets you search and take action on the objects around you, simply by pointing your phone.
  • Live Transcribe has the potential to give people who are deaf or hard of hearing greater independence in their everyday interactions. You can get real-time transcriptions of conversations that the user is engaged in, even if the speech is in another language.
  • Project Euphonia performs personalized speech-to-text transcription. For people with ALS and other conditions that produce slurred or non-standard speech, this research improves automatic speech recognition (ASR) over other state-of-the-art ASR models.
  • Like Project Euphonia, Parrotron uses end-to-end neural networks to help improve communication, but the research focuses on automatic speech-to-speech conversion rather than transcription, presenting a speech interface that may be easier for some to access.
  • Millions of images online don’t have any text description. Get Image Descriptions from Google helps blind or low vision users understand unlabelled images. When a screen reader encounters an image or graphic without a description, Chrome can now create one automatically.
  • We developed tools that can read visual text in audio form in Lens for Google Go, greatly helping users who are not fully literate navigate the word-rich world around them.
Making Your Phone More Intelligent
Much of our work serves to enable intelligent, personal devices by giving mobile phones new capabilities through the use of on-device machine learning. By making powerful models that can run on-device, we can ensure that these phone features are highly responsive and always available even in airplane mode or otherwise off the network. We’ve made progress in getting highly accurate speech recognition models, vision models and handwriting recognition models all running on-device, paving the way for powerful new features. Some of this year’s highlights include:
Federated learning (check out the online comic description!) is a powerful machine learning approach invented by Google researchers in 2015, whereby many clients (such as mobile devices or whole organizations) collaboratively train a model, while keeping the training data decentralized. This enables approaches that have superior privacy properties in large-scale learning systems. We are using federated learning in more and more of our products and features, while also working to advance the state of the art in many research problems in this space. In 2019, Google researchers collaborated with authors from 24 (!) academic institutions to produce a survey article on Federated Learning, highlighting advances over the past few years as well describing a number of open research problems in the field.

The field of computational photography has led to great advances in the image quality of phone cameras over the past few years, and this year was no exception. This year, we made it easier to take great selfies, to take professional-looking shallow depth of field images and portraits and to use the Night Sight feature on Pixel Phones to take some stunning astrophotography pictures. More technical details about this work can be found in papers on multi-frame super resolution and mobile photography in very low-light conditions. All of this work helps enable you to take great pictures to remember life’s magical moments as they happen.

Health
In late 2018, we combined the Google Research health team, Deepmind Health and a team from Google’s Hardware division focused on health-related applications to form Google Health. In 2019 we continued the research we’ve been pursuing in this space, publishing research papers and building tools in collaboration with a variety of healthcare partners. Here are a few of the highlights from 2019:
Quantum Computing
In 2019, our quantum computing team demonstrated for the first time a computational task that can be executed exponentially faster on a quantum processor than on the world’s fastest classical computer — just 200 seconds compared to 10,000 years.
Left: Artist's rendition of the Sycamore processor mounted in the cryostat. (Full Res Version; Forest Stearns, Google AI Quantum Artist in Residence) Right: Photograph of the Sycamore processor. (Full Res Version; Erik Lucero, Research Scientist and Lead Production Quantum Hardware)
Using quantum computers may make important problems in domains like materials science, quantum chemistry (early example) and large-scale optimization tractable, but in order to make this a reality, we’ll have to continue to push the field forward. We are now focusing on implementing quantum error correction so that we will be able to run computations for longer. We are also working on making quantum algorithms easier to express, the hardware easier to control and we have found ways to use classical machine learning techniques like deep reinforcement learning to build more reliable quantum processors. The achievements this year are encouraging and are early steps along the way to making practical quantum computing a reality for a wider variety of problems.

You can also read Sundar’s thoughts on what our quantum computing milestone means.

General Algorithms and Theory
In the general areas of algorithms and theory, we continued our research from algorithmic foundations to applications, and also did work in graph mining and market algorithms.  A blog post summarizing some of our work in graph learning algorithms gives more details about that work.

We published a paper at VLDB’19 titled "Cache-aware load balancing of data center applications," although an alternative title could be "Increase the serving capacity of your data center by 40% with this one cool trick!". The paper describes how we used balanced partitioning of graphs to specialize the caches in our web search backend serving system, thereby increasing the query throughput of our flash drives by 48%, and helping to enable a 40% increase in the throughput of the entire search backend.
Heatmap of flash IO requests (resulting from cache misses) across web search serving leaves. The three humps represent random leaf selection, load balancing, and cache-aware load balancing (left to right). Lines indicate the 50th, 90th, 95th and 99.9th percentiles. From VLDB’19 paper, "Cache-aware load balancing of data center applications."
In an ICLR’2019 paper titled "A new dog learns old tricks: RL finds classic optimization algorithms," we discovered a new connection between algorithms and machine learning, showing how Reinforcement Learning can effectively find optimal (worst-case, uniform) algorithms for several classic online optimization combinatorial problems such as online matching and allocation.

Our work in scalable algorithms spans both parallel, online and distributed algorithms for big data sets. In a recent FOCS’19 paper, we provided a near-optimal massively parallel computation algorithm for connected components. Another set of our papers improved parallel algorithms for matching (in theory and practice) and for density clustering. And a third line of  work concerned adaptively optimizing submodular functions in the black-box model, which has several applications in feature selection and vocabulary compression. In a SODA’19 paper, we presented a submodular maximization algorithm that is nearly optimal in three aspects: approximation factor, round complexity, and query complexity. Also, in another FOCS 2019 paper, we provide the first online multiplicative approximation algorithm for PCA and Column Subset selection.

In other work, we introduce the semi-online model of computation that postulates that the unknown future has a predictable part and an adversarial part. For classical combinatorial problems such as bipartite matching (ITCS’19) and caching (SODA’20), we obtained semi-online algorithms to provide guarantees that smoothly interpolate between the best possible online and offline algorithms.

Our recent research in the area of market algorithms includes new understanding of the interaction between learning and markets, and innovations in experimental design. For example, this NeurIPS’19 oral paper reveals the surprising competitive advantage that a strategic agent has when competing with a learning agent in a general repeated 2-player game. Recent focus on advertising automation has produced increased interest in automated bidding and understanding response behavior of advertisers. In a pair of WINE 2019 papers, we study optimal strategy to maximize conversions on behalf of advertisers and further learn advertiser response behavior for any changes in the auction.  Finally, we studied experimental design in the presence of interference where the treatment of one group may affect the outcomes of others. In a KDD'19 paper and a NeurIPS'19 paper, we show how to define units or clusters of units to limit interference while maintaining experimental power.
The clustering algorithm from the KDD’19 paper “Randomized Experimental Design via Geographic Clustering“ applied to user queries from the United States. The algorithm automatically identifies metropolitan areas, correctly predicting, for example, that the Bay Area includes San Francisco, Berkeley, and Palo Alto, but not Sacramento.
Machine Learning Algorithms
In 2019, we conducted research in many different areas of machine learning algorithms and approaches. One major focus was in understanding the properties of training dynamics in neural networks. In the blog post Measuring the Limits of Data Parallel Training for Neural Networks highlighting this paper, Google researchers presented a careful set of experimental results showing when scaling the amount of data parallelism (by making larger batches) is effective for allowing the model to converge faster (using data parallelism).
For all workloads we tested, we observed a universal relationship between batch size and training speed with three distinct regimes: perfect scaling with small batch sizes (following the dashed line), eventually seeing diminishing returns as batch sizes grow (diverging from the dashed line), and maximal data parallelism at the largest batch sizes (where the trend plateaus). The transition points between the regimes vary dramatically between different workloads.
Model parallelism, in contrast to data parallelism, where a model is spread out across multiple computational devices, can be an effective way of scaling models. GPipe is a library that enables model parallelism to be more effective, in an approach similar to that used by pipelined CPU processors: when one part of the whole model is working on some of the data, other parts can be working on their part of the computation on different data. The results of this pipeline approach can be combined together to simulate a larger effective batch size.

Machine learning models are effective when they’re able to take raw input data and learn “disentangled” higher-level representations that separate different kinds of examples by properties that we want the model to be able to distinguish (cat vs. truck vs. wildebeest, cancerous tissue vs. normal tissue, etc.). Much of the focus on advancing machine learning algorithms is to encourage the learning of better representations that generalize better to new examples, problems or domains. This year, we looked at this problem in a number of different contexts:
  • In Evaluating the Unsupervised Learning of Disentangled Representations, we examined what properties affect the representations that are learned from unsupervised data, in order to better understand what makes for good representations and effective learning.
  • In Predicting the Generalization Gap in Deep Neural Networks, we showed that it is possible to predict the generalization gap (the gap between a model’s performance on data from the training distribution versus data drawn from a different distribution) using statistics of the margin distribution, helping us better understand which models generalize most effectively. We also did some research on Improving Out-of-Distribution Detection in Machine Learning Models, to better understand when a model is starting to encounter kinds of data it has never seen before. We also looked at Off-Policy Classification in the context of reinforcement learning, to better understand which models are likely to generalize the best.
  • In Learning to Generalize from Sparse and Underspecified Rewards, we also examined ways of specifying reward functions for reinforcement learning that enable learning systems to more directly learn from true objectives and be less distracted with longer, less-desirable sequences of actions that happen to achieve desired goals by accident.
    In this instruction-following task, the action trajectories a1, a2 and a3 reach the goal, but the sequences a2 and a3 do not follow the instructions. This illustrates the issue of underspecified rewards.
AutoML
We continued our work on AutoML this year, an approach whereby algorithms that learn how to learn can automate many aspects of machine learning and often can achieve substantially better results than the best human machine learning experts for certain kinds of machine learning meta-decisions. In particular:
  • In EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling, we showed how to use neural architecture search techniques to achieve substantially better results on computer vision problems, including a new state-of-the-art result of 84.4% top-1 accuracy on ImageNet while having 8X fewer parameters than the previous best model.
    Model Size vs. Accuracy Comparison. EfficientNet-B0 is the baseline network developed by AutoML MNAS, while Efficient-B1 to B7 are obtained by scaling up the baseline network. In particular, our EfficientNet-B7 achieves new state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy, while being 8.4x smaller than the best existing CNN.
  • In EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML, we showed how a neural architecture search approach can find efficient models that are tailored to particular hardware accelerators, resulting in high accuracy, low-computational models for running on mobile devices.
  • In Video Architecture Search, we describe how we extended our AutoML work to the domain of video models, finding architectures that achieve state-of-the-art results, and also lightweight architectures that match the performance of hand-crafted models while using 50x less computation.
    TinyVideoNet (TVN) architectures evolved to maximize the recognition performance while keeping its computation time within the desired limit. For instance, TVN-1 (top) runs at 37 ms on a CPU and 10ms on a GPU. TVN-2 (bottom) runs at 65ms on a CPU and 13ms on a GPU.
  • We developed AutoML techniques for tabular data, unlocking an important domain where many companies and organizations have interesting data in relational databases, and often want to develop machine learning models on this data. We collaborated to release this technology as a new Google Cloud AutoML Tables product, and also discussed how well this system did in a new Kaggle competition in An End-to-End AutoML Solution for Tabular Data at KaggleDays (spoiler: AutoML Tables finished second out of 74 teams of expert data scientists).
  • In Exploring Weight Agnostic Neural Networks, we showed how it is possible to find interesting neural network architectures without any training steps to update the weights of the evaluated models. This can make architecture search much more computationally efficient.
    A weight-agnostic neural network performing a Cartpole Swing-up task at various different weight parameters, and also using fine-tuned weight parameters.
  • Applying AutoML to Transformer Architectures explored finding architectures for natural language processing tasks that significantly outperform vanilla Transformer models at substantially reduced computational costs.
    Comparison between the Evolved Transformer and the original Transformer on WMT’14 En-De at varying sizes. The biggest gains in performance occur at smaller sizes, while ET also shows strength at larger sizes, outperforming the largest Transformer with 37.6% less parameters (models to compare are circled in green). See Table 3 in our paper for the exact numbers.
  • In SpecAugment: A New Data Augmentation Method for Automatic Speech Recognition, we showed that the approach of automatically learning data augmentation methods can be extended to speech recognition models, with the learned augmentation approaches achieving significantly higher accuracy with less data than existing human ML-expert driven data augmentation approaches.
  • We launched our first speech application for keyword spotting and spoken language identification using AutoML. In our experiments we found better models (both more efficient and better performance) than the human designed models that have been in this setting for some time.
Natural Language Understanding
The past few years have seen remarkable advances in models for natural language understanding, translation, natural dialog, speech recognition and related tasks. This year, one theme in our work was advancing the state of the art by combining modalities or tasks, to train more powerful and capable models. A few examples:
  • In Exploring Massively Multilingual, Massive Neural Machine Translation, we showed significant gains in translation quality by training a single model to translate between 100 languages, rather than having 100 separate models.
    Left: Language pairs with larger amounts of training data generally have higher translation quality. Right: Multilingual training, where we train a single model for all language pairs rather than separate models for each language pair, results in substantial improvements in BLEU score (a measure of translation quality) for language pairs without much data.
  • In Large-Scale Multilingual Speech Recognition with a Streaming End-to-End Model, we showed how combining speech recognition and language models together and training the system on many languages, can significantly improve speech recognition accuracy.
    Left: A traditional monolingual speech recognizer comprised of Acoustic, Pronunciation and Language Models for each language. Middle: A traditional multilingual speech recognizer where the Acoustic and Pronunciation model is multilingual, while the Language model is language-specific. Right: An E2E multilingual speech recognizer where the Acoustic, Pronunciation and Language Model is combined into a single multilingual model.
  • In Translatotron: An End-to-End Speech-to-Speech Translation Model, we showed that it is possible to train a joint model to accomplish the (normally separate) tasks of speech recognition, translation and text-to-speech generation with nice benefits, like preserving the sound of the speaker’s voice in the generated translated audio, as well as a simpler overall learning system.
  • In Multilingual Universal Sentence Encoder for Semantic Retrieval, we showed how to combine many different objectives to yield models that are significantly better at semantic retrieval (versus simpler word matching techniques). For example, in Google Talk to Books, the query “What fragrance brings back memories?” yields the result, “And for me, the smell of jasmine along with the pan bagnat, it brings back my entire carefree childhood.
  • In Robust Neural Machine Translation, we showed how to use an adversarial training procedure to significantly improve the quality and robustness of language translations.
    Left: The Transformer model is applied to an input sentence (lower left) and, in conjunction with the target output sentence (above right) and target input sentence (middle right; beginning with the placeholder “<sos>”), the translation loss is calculated. The AdvGen function then takes the source sentence, word selection distribution, word candidates and the translation loss as inputs to construct an adversarial source example. Right: In the defense stage, the adversarial source example serves as input to the Transformer model and the translation loss is calculated. AdvGen then uses the same method as above to generate an adversarial target example from the target input.
As our language understanding capabilities have improved, based on fundamental research advances like seq2seq, Transformer, BERT, Transformer-XL and ALBERT models, we have seen increased use of these sorts of models in many of our core products and features like Google Translate, Gmail’s Smart Compose, and Google Search. This year, the launch of BERT in our core search and ranking algorithms led to the biggest improvement in search quality in the last five years (and one of the biggest ever), through better understanding of the subtle meanings of query and document words and phrases.

Machine Perception
Models for better understanding of still images have made remarkable progress in the last decade. Among the next major frontiers are models and approaches for understanding the dynamic world in fine-grained detail. This includes deeper and more nuanced understanding of images and video, as well as live and situated perception: understanding the audiovisual world at interactive rates and with a shared spatial grounding with the user. This year, we explored many aspects of advances in this area, including:
We’re quite excited about the prospects of continued improvements in the understanding of the sensory world around us.

Robotics
The application of machine learning to robotic control is a significant research area for us. We believe this is a vital tool for enabling robots to operate effectively in complex, real-world environments like everyday homes and businesses. Some of the work we did this year includes:
Helping Advance the Broader Developer and Researcher Community
Open source is about more than code: it's about the community of contributors. It’s been an exciting year to be part of the open source community. We launched TensorFlow 2.0—the biggest TensorFlow release to date—which makes building ML systems and applications easier than ever. We added support for fast mobile GPU inference to TensorFlow Lite. We also launched Teachable Machine 2.0, a fast, easy web-based tool which can train a machine learning model with the click of a button, no coding required. We announced MLIR, open source machine learning compiler infrastructure that addresses the complexity of growing software and hardware fragmentation and makes it easier to build AI applications.

We saw the first year of JAX, a new system for high-performance machine learning research. At NeurIPS 2019, Googlers and the broader open-source community presented work using JAX ranging from neural tangent kernels to Bayesian inference to molecular dynamics, and we launched a preview of JAX on Cloud TPUs.

We open-sourced MediaPipe, a framework for building perceptual and multimodal applied ML pipelines, and XNNPACK, a library of efficient floating-point neural network inference operators. As of the end of 2019, we had enabled more than 1,500 researchers around the world to access Cloud TPUs for free via the TensorFlow Research Cloud. Our Intro To TensorFlow at Coursera crossed 100,000 students. And we engaged with thousands of users while taking TensorFlow on the road to 11 different countries, hosted our first ever TensorFlow World and more.

With the help of TensorFlow, one college student discovered two new planets and built a method to help others find more. A data scientist originally from Nigeria trained a GAN to generate images reminiscent of African masks. A developer in Uganda used TensorFlow to create the Farmers Companion, an app that local farmers can use to fight a crop-destroying caterpillar. In snowy Iowa, researchers and state officials used TensorFlow to determine safe road conditions based on traffic behavior, visuals and other data. In sunny California, college students used TensorFlow to identify pot holes and dangerous road cracks in Los Angeles. And in France, a coder used TensorFlow to build a simple algorithm that learns how to add color to black-and-white photos.

Open Datasets
Open datasets with clear and measurable goals are often very helpful in driving forward the field of machine learning. To help the research community find interesting datasets, we continue to index a wide variety of open datasets sourced from many different organizations with Google Dataset Search. We also think it's important to create new datasets for the community to explore and to develop new techniques, and to ensure we share open data responsibly. This year, we additionally released a number of open datasets across many different areas:
  • Open Images V5: An update to the popular Open Images dataset that includes segmentation masks for 2.8 million objects in 350 categories (so that it now has ~9M images annotated with image-level labels, object bounding boxes, object segmentation masks, and visual relationships).
  • Natural questions: the first dataset to use naturally occurring queries and find answers by reading an entire page, rather than extracting answers from a short paragraph.
  • Data for deepfake detection: we contributed a large dataset of visual deepfakes to the FaceForensics benchmark (mentioned above).
  • Google Research Football: a novel reinforcement learning environment where agents aim to master the world’s most popular sport—football (or, if you’re American, soccer). It’s important for reinforcement learning agents to have GOOOAAALLLSS!
  • Google-Landmarks-v2: over 5 million images (2x that of the first release) of more than 200 thousand different landmarks.
  • YouTube-8M Segments: A large-scale classification and temporal localization dataset that includes human-verified labels at the 5-second segment level of YouTube-8M videos.
  • Atomic Visual Actions (AVA) Spoken Activity: A multimodal audio+visual video dataset for perception of conversations. In addition, academic challenges were run for AVA action recognition and AVA: Spoken Activity
  • PAWS and PAWS-X: To help with paraphrase identification, both datasets contain well-formed sentence pairs with high lexical overlap, in which around half of pairs are paraphrase and half are not.
  • Natural language dialog datasets: CCPE and Taskmaster-1 both use a Wizard-of-Oz platform that pairs two people who engage in spoken conversations, to mimic a human-level conversation with a digital assistant.
  • The Visual Task Adaptation Benchmark: VTAB follows similar guidelines to ImageNet and GLUE but is based on one principle—a better representation is one that yields better performance on unseen tasks, with limited in-domain data.
  • Schema-Guided Dialogue Dataset: the largest publicly available corpus of task-oriented dialogues, with over 18,000 dialogues spanning 17 domains.
Research Community Interaction
Finally, we’ve been busy within the broader academic and research community. In 2019 Google researchers presented hundreds of papers, participated in numerous conferences and received many awards and other accolades. We had a strong presence at:
  • CVPR: ~250 Googlers presented 40+ papers, talks, posters, workshops and more.
  • ICML: ~200 Googlers presented 100+ papers, talks, posters, workshops and more.
  • ICLR: ~200 Googlers presented 60+ papers, talks, posters, workshops and more.
  • ACL: ~100 Googlers presented 40+ papers, workshops and tutorials.
  • Interspeech: Over 100 Googlers presented 30+ papers.
  • ICCV: ~200 Googlers presented 40+ papers, and several Googlers also won three prestigious ICCV awards.
  • NeurIPS: ~500 Googlers co-authored more than 120 accepted papers and engaged in various workshops and more.
We also brought together hundreds of Google researchers and faculty from across the globe to 15 separate research workshops hosted at Google locations. These workshops were on topics ranging from improving flood forecasting globally, to how to use machine learning to build systems that can better serve people with disabilities, to accelerating the development of algorithms, applications and tools for noisy-intermediate scale quantum (NISQ) processors.

Supporting academia and research communities outside of Google, we supported over 50 PhD students globally through our annual PhD Fellowship Program, we funded 158 projects as part of our Google Faculty Research Awards 2018, and we held our third cohort of the Google AI Residency Program. We also mentored AI-focused startups.

New Places, New Faces
We’ve made lots of headway in 2019, but there’s so much more we can do. To continue growing our impact around the world, we opened a Research office in Bangalore, and we’re expanding in other offices. If you’re excited about working on these sorts of problems, we’re hiring!

Looking Forward to 2020 and Beyond
The past decade has seen remarkable advances in the fields of machine learning and computer science, where we now have given computers the ability to see, hear and understand language better than ever before (see a nice overview of important advances of the last decade). In our pockets, we now have sophisticated computing devices that can use these capabilities to better help us accomplish a multitude of tasks in our daily lives. We have substantially redesigned our computing platforms around these machine learning approaches by developing specialized hardware, giving us the ability to tackle ever larger problems. This has changed how we think about computing devices both in data centers (such as the inference-focused TPUv1 and the training-and-inference focused TPUv2 and TPUv3), as well as in low-power mobile environments (such as Edge TPUs). The deep learning revolution will continue to reshape how we think about computing and computers.

At the same time, there are a huge number of unanswered questions and unsolved problems. Some directions and questions that we are excited about tackling in 2020 and beyond are:
  • How can we build machine learning systems that can handle millions of tasks, and that can learn to successfully accomplish new tasks automatically? Currently, we’re mostly training separate machine models for each new task, starting from scratch, or at best, from a model trained on one or a few highly related tasks. As such, the models we train are really good at one or a few things, but not good at anything else. However, what we truly want are models that are good at leveraging their expertise at doing many things, so that they are able to learn to do a new thing with relatively little training data and computation. This is a true grand challenge which will require expertise and advances in many areas spanning solid-state circuit design, computer architecture, ML-focused compilers, distributed systems, machine learning algorithms and domain experts across many other fields in order to build systems that can generalize to solve new tasks independently across a full range of application areas.
  • How can we advance the state-of-the-art in important areas of artificial intelligence research like avoiding bias, increasing interpretability & understandability, improving privacy and ensuring safety? Advances in these areas are going to be critical as we use machine learning in more and more ways in society.
  • How can we apply computation and machine learning to make advances in important new areas of science? There are important advances to be had by collaborating with experts in other fields in areas like climate science, healthcare, bioinformatics and many other areas.
  • How can we ensure that the ideas and directions pursued by the machine learning and computer science research communities are put forth and explored by a diverse group of researchers? The work that the computer science and machine learning research communities are pursuing has broad implications for billions of people, and we want the set of researchers doing this work to represent the experiences, perspectives, concerns and creative enthusiasm of all the people of the world. How can we best support new researchers from diverse backgrounds entering the field?
Overall, 2019 was a very exciting year for research at Google and in the broader research community. We’re excited about tackling the research challenges ahead of us in 2020 and beyond, and we look forward to sharing our progress with you!

Source: Google AI Blog


Google Research: Looking Back at 2019, and Forward to 2020 and Beyond



The goal of Google Research is to work on long-term, ambitious problems, with an emphasis on solving ones that will dramatically help people throughout their daily lives. In pursuit of that goal in 2019, we made advances in a broad set of fundamental research areas, applied our research to new and emerging areas such as healthcare and robotics, open sourced a wide variety of code and continued collaborations with Google product teams to build tools and services that are dramatically more helpful for our users.

As we start 2020, it’s useful to take a step back and assess the research work we’ve done over the past year, and also to look forward to what sorts of problems we want to tackle in the upcoming years. In that spirit, this blog post is a survey of some of the research-focused work done by Google researchers and engineers during 2019 (in the spirit of similar reviews for 2018, and more narrowly focused reviews of some work in 2017 and 2016). For a more comprehensive look, please see our research publications in 2019.

Ethical Use of AI
In 2018, we published a set of AI Principles that provide a framework by which we evaluate our own research and applications of technologies such as machine learning in our products. In June 2019, we published a one-year update about how these principles are being put into practice in many different aspects of our research and product development life cycles. Since many of the areas touched on by the principles are active areas of research in the broader AI and machine learning research community (such as bias, safety, fairness, accountability, transparency and privacy in machine learning systems), our goals are to apply the best currently-known techniques in these areas to our work, and also to do research to continue to advance the state of the art in these important areas.

For example, this year we:
  • Published a research paper about a new transparency tool, which enabled the launch of Model Cards for several of our Cloud AI products. You can see an example model card for the Cloud AI Vision API Object Detection feature.
  • Showed how Activation Atlases can help explore neural network behavior and can aid with interpretability of machine learning models.
  • Introduced TensorFlow Privacy, an open-source library to enable training machine learning models with differential privacy guarantees.
  • Released a beta version of Fairness Indicators, to help ML practitioners identify unjust or unintended impacts of machine learning models.
    Clicking on a slice in Fairness Indicators will load all the data points in that slice inside the What-If Tool widget. In this case, all data points with the “female” label are shown.
  • Published a KDD'19 paper on how pairwise comparisons and regularization is incorporated into a large-scale production recommender system to improve ML Fairness. 
  • Published an AIES'19 paper about a case study on the application of fairness in machine learning research to a production classification system, and described our fairness metric, conditional equality, that takes into account distributional differences in implementing equality of opportunity. 
  • Published an AIES'19 paper about counterfactual fairness in text classification problems that asks the question: "How would the prediction change if the sensitive attribute referenced in the example were different?" and used this approach to improve our production systems that assess the toxicity of online content. 
  • Released a new dataset to help with research to identify deepfakes.
    A sample of videos from Google’s contribution to the FaceForensics benchmark. To generate these, pairs of actors were selected randomly, and deep neural networks swapped the face of one actor onto the head of another.
AI for Social Good
There is enormous potential for machine learning to help with many important societal issues. We have been doing work in several such areas, as well as working to enable others to apply their creativity and skills to solving such problems. Floods are the most common and the most deadly natural disaster on the planet, affecting approximately 250 million people each year. We have been using machine learning, computation and better sources of data to make significantly more accurate flood forecasts, and then to deliver actionable alerts to the phones of millions of people in the affected regions. We also hosted a workshop that brought together researchers with expertise in flood forecasting, hydrology and machine learning from Google and the broader research community to discuss ways to collaborate further on this important problem.

In addition to our flood forecasting efforts, we’ve been developing techniques to better understand the world’s wildlife, collaborating with seven wildlife conservation organizations to use machine learning to help analyze wildlife camera data and collaborating with the U.S. NOAA to identify whale species and locations from sounds in underwater recordings. We’ve also created and released a set of tools for enabling new kinds of machine-learning-oriented biodiversity research. As part of helping to organize the 6th Fine-Grained Visual Categorization Workshop, Google researchers in our Accra, Ghana office collaborated with researchers at Makerere University AI & Data Science research group to create and run a Kaggle competition on the classification of cassava plant diseases. As cassava is the second largest source of carbohydrates in Africa, plant health is an important food security issue, and it was great to see more than 100 participants across 87 teams participate in the contest.

In 2019 we updated Google Earth Timelapse, enabling people to effectively and intuitively visualize how the planet has changed over the past 35 years. Further, we’ve been collaborating with academic researchers on new privacy-preserving ways to aggregate data on human mobility, to give urban planners better information about how to design efficient environments with lower levels of carbon emissions.
We’ve also applied machine learning to support childhood learning. According to the United Nations, 617 million children do not have basic literacy, a critical determinant of their quality of life. To help more children learn to read, our Bolo app uses speech-recognition technology that tutors students in real-time. And to increase access, the app works completely offline on low-cost phones. In India, Bolo has already helped 800,000 children read stories and speak half a billion words. Early results are encouraging; a three-month pilot among 200 villages in India showed an improvement in reading proficiency among 64% of pilot participants.

For older students, the Socratic app can help high schoolers with complex problems in math, physics and over 1,000 higher education topics. Based on a photo or verbal question, the app automatically identifies the question’s underlying concepts and links to the most helpful online resources. Like the Socratic method, the app doesn’t directly answer questions, but instead leads students to discover the answer themselves. We’re excited about the broad possibilities of improving educational outcomes around the world through things like Bolo and Socratic.

To expand the reach of our AI for Social Good efforts, in May we announced the grantees of our AI Impact Challenge with $25 million in grants from Google.org. The response was huge: we received over 2,600 thoughtful proposals from 119 countries. Twenty impressive organizations stood out for their potential to solve big social and environmental problems and were our initial set of grantees. A few examples of the work of these organizations:
Applications of AI to Other Fields
The application of computer science and machine learning to other scientific fields is an area that we are especially excited about and have published a number of papers in, often in multi-organization collaborations. Some highlights from this year include:
  • In An Interactive, Automated 3D Reconstruction of a Fly Brain, we reported on a collaborative effort that achieved a milestone of mapping the structure of an entire fly brain, using machine learning models that were able to painstakingly trace each individual neuron.
  • In Learning Better Simulation Methods for Partial Differential Equations (PDEs), we showed how machine learning can be used to accelerate PDE computations, which are at the heart of many fundamental computational problems in climate science, fluid dynamics, electromagnetism, heat conduction and general relativity.
    Simulations of Burgers’ equation, a model for shock waves in fluids, solved with either a standard finite volume method (left) or our neural network based method (right). The orange squares represent simulations with each method on low resolution grids. These points are fed back into the model at each time step, which then predicts how they should change. Blue lines show the exact simulations used for training. The neural network solution is much better, even on a 4x coarser grid, as indicated by the orange squares smoothly tracing the blue line.
  • We gave machine learning models better scents of the world with Learning to Smell: Using Deep Learning to Predict the Olfactory Properties of Molecules. We showed how to leverage graph neural networks (GNNs) to directly predict the odor descriptors for individual molecules, without using any handcrafted rules.
  • 2D snapshot of our embedding space with some example odors highlighted. Left: Each odor is clustered in its own space. Right: The hierarchical nature of the odor descriptor. Shaded and contoured areas are computed with a kernel-density estimate of the embeddings.
  • In work that combines chemistry and reinforcement learning techniques, we presented a framework for molecule optimization.
  • Machine learning can also help us in our artistic and creative endeavors. Artists have found ways to collaborate with AI and AR and create interesting new forms, from dancing with a machine to reimagine choreography, to creating new melodies with machine learning tools. ML can be used by novices, too. To honor the birthday of J.S. Bach, we featured a ML-powered Doodle: just create your melody, and the ML tool can create accompanying harmonizations in Bach’s style.
Assistive Technology
On a more personal scale, ML can help us in our daily lives. It’s easy to take for granted our ability to see a beautiful image, to hear a favorite song, or to speak with a loved one. Yet over one billion people aren’t able to access the world in these ways. ML technology can help by turning these signals—vision, hearing, speech—into other signals that can be well-managed by people with accessibility needs, enabling better access to the world around them. A few examples of our assistive technology:
  • Lookout helps people who are blind or have low vision identify information about their surroundings. It draws upon similar underlying technology as Google Lens, which lets you search and take action on the objects around you, simply by pointing your phone.
  • Live Transcribe has the potential to give people who are deaf or hard of hearing greater independence in their everyday interactions. You can get real-time transcriptions of conversations that the user is engaged in, even if the speech is in another language.
  • Project Euphonia performs personalized speech-to-text transcription. For people with ALS and other conditions that produce slurred or non-standard speech, this research improves automatic speech recognition (ASR) over other state-of-the-art ASR models.
  • Like Project Euphonia, Parrotron uses end-to-end neural networks to help improve communication, but the research focuses on automatic speech-to-speech conversion rather than transcription, presenting a speech interface that may be easier for some to access.
  • Millions of images online don’t have any text description. Get Image Descriptions from Google helps blind or low vision users understand unlabelled images. When a screen reader encounters an image or graphic without a description, Chrome can now create one automatically.
  • We developed tools that can read visual text in audio form in Lens for Google Go, greatly helping users who are not fully literate navigate the word-rich world around them.
Making Your Phone More Intelligent
Much of our work serves to enable intelligent, personal devices by giving mobile phones new capabilities through the use of on-device machine learning. By making powerful models that can run on-device, we can ensure that these phone features are highly responsive and always available even in airplane mode or otherwise off the network. We’ve made progress in getting highly accurate speech recognition models, vision models and handwriting recognition models all running on-device, paving the way for powerful new features. Some of this year’s highlights include:
Federated learning (check out the online comic description!) is a powerful machine learning approach invented by Google researchers in 2015, whereby many clients (such as mobile devices or whole organizations) collaboratively train a model, while keeping the training data decentralized. This enables approaches that have superior privacy properties in large-scale learning systems. We are using federated learning in more and more of our products and features, while also working to advance the state of the art in many research problems in this space. In 2019, Google researchers collaborated with authors from 24 (!) academic institutions to produce a survey article on Federated Learning, highlighting advances over the past few years as well describing a number of open research problems in the field.

The field of computational photography has led to great advances in the image quality of phone cameras over the past few years, and this year was no exception. This year, we made it easier to take great selfies, to take professional-looking shallow depth of field images and portraits and to use the Night Sight feature on Pixel Phones to take some stunning astrophotography pictures. More technical details about this work can be found in papers on multi-frame super resolution and mobile photography in very low-light conditions. All of this work helps enable you to take great pictures to remember life’s magical moments as they happen.

Health
In late 2018, we combined the Google Research health team, Deepmind Health and a team from Google’s Hardware division focused on health-related applications to form Google Health. In 2019 we continued the research we’ve been pursuing in this space, publishing research papers and building tools in collaboration with a variety of healthcare partners. Here are a few of the highlights from 2019:
Quantum Computing
In 2019, our quantum computing team demonstrated for the first time a computational task that can be executed exponentially faster on a quantum processor than on the world’s fastest classical computer — just 200 seconds compared to 10,000 years.
Left: Artist's rendition of the Sycamore processor mounted in the cryostat. (Full Res Version; Forest Stearns, Google AI Quantum Artist in Residence) Right: Photograph of the Sycamore processor. (Full Res Version; Erik Lucero, Research Scientist and Lead Production Quantum Hardware)
Using quantum computers may make important problems in domains like materials science, quantum chemistry (early example) and large-scale optimization tractable, but in order to make this a reality, we’ll have to continue to push the field forward. We are now focusing on implementing quantum error correction so that we will be able to run computations for longer. We are also working on making quantum algorithms easier to express, the hardware easier to control and we have found ways to use classical machine learning techniques like deep reinforcement learning to build more reliable quantum processors. The achievements this year are encouraging and are early steps along the way to making practical quantum computing a reality for a wider variety of problems.

You can also read Sundar’s thoughts on what our quantum computing milestone means.

General Algorithms and Theory
In the general areas of algorithms and theory, we continued our research from algorithmic foundations to applications, and also did work in graph mining and market algorithms.  A blog post summarizing some of our work in graph learning algorithms gives more details about that work.

We published a paper at VLDB’19 titled "Cache-aware load balancing of data center applications," although an alternative title could be "Increase the serving capacity of your data center by 40% with this one cool trick!". The paper describes how we used balanced partitioning of graphs to specialize the caches in our web search backend serving system, thereby increasing the query throughput of our flash drives by 48%, and helping to enable a 40% increase in the throughput of the entire search backend.
Heatmap of flash IO requests (resulting from cache misses) across web search serving leaves. The three humps represent random leaf selection, load balancing, and cache-aware load balancing (left to right). Lines indicate the 50th, 90th, 95th and 99.9th percentiles. From VLDB’19 paper, "Cache-aware load balancing of data center applications."
In an ICLR’2019 paper titled "A new dog learns old tricks: RL finds classic optimization algorithms," we discovered a new connection between algorithms and machine learning, showing how Reinforcement Learning can effectively find optimal (worst-case, uniform) algorithms for several classic online optimization combinatorial problems such as online matching and allocation.

Our work in scalable algorithms spans both parallel, online and distributed algorithms for big data sets. In a recent FOCS’19 paper, we provided a near-optimal massively parallel computation algorithm for connected components. Another set of our papers improved parallel algorithms for matching (in theory and practice) and for density clustering. And a third line of  work concerned adaptively optimizing submodular functions in the black-box model, which has several applications in feature selection and vocabulary compression. In a SODA’19 paper, we presented a submodular maximization algorithm that is nearly optimal in three aspects: approximation factor, round complexity, and query complexity. Also, in another FOCS 2019 paper, we provide the first online multiplicative approximation algorithm for PCA and Column Subset selection.

In other work, we introduce the semi-online model of computation that postulates that the unknown future has a predictable part and an adversarial part. For classical combinatorial problems such as bipartite matching (ITCS’19) and caching (SODA’20), we obtained semi-online algorithms to provide guarantees that smoothly interpolate between the best possible online and offline algorithms.

Our recent research in the area of market algorithms includes new understanding of the interaction between learning and markets, and innovations in experimental design. For example, this NeurIPS’19 oral paper reveals the surprising competitive advantage that a strategic agent has when competing with a learning agent in a general repeated 2-player game. Recent focus on advertising automation has produced increased interest in automated bidding and understanding response behavior of advertisers. In a pair of WINE 2019 papers, we study optimal strategy to maximize conversions on behalf of advertisers and further learn advertiser response behavior for any changes in the auction.  Finally, we studied experimental design in the presence of interference where the treatment of one group may affect the outcomes of others. In a KDD'19 paper and a NeurIPS'19 paper, we show how to define units or clusters of units to limit interference while maintaining experimental power.
The clustering algorithm from the KDD’19 paper “Randomized Experimental Design via Geographic Clustering“ applied to user queries from the United States. The algorithm automatically identifies metropolitan areas, correctly predicting, for example, that the Bay Area includes San Francisco, Berkeley, and Palo Alto, but not Sacramento.
Machine Learning Algorithms
In 2019, we conducted research in many different areas of machine learning algorithms and approaches. One major focus was in understanding the properties of training dynamics in neural networks. In the blog post Measuring the Limits of Data Parallel Training for Neural Networks highlighting this paper, Google researchers presented a careful set of experimental results showing when scaling the amount of data parallelism (by making larger batches) is effective for allowing the model to converge faster (using data parallelism).
For all workloads we tested, we observed a universal relationship between batch size and training speed with three distinct regimes: perfect scaling with small batch sizes (following the dashed line), eventually seeing diminishing returns as batch sizes grow (diverging from the dashed line), and maximal data parallelism at the largest batch sizes (where the trend plateaus). The transition points between the regimes vary dramatically between different workloads.
Model parallelism, in contrast to data parallelism, where a model is spread out across multiple computational devices, can be an effective way of scaling models. GPipe is a library that enables model parallelism to be more effective, in an approach similar to that used by pipelined CPU processors: when one part of the whole model is working on some of the data, other parts can be working on their part of the computation on different data. The results of this pipeline approach can be combined together to simulate a larger effective batch size.

Machine learning models are effective when they’re able to take raw input data and learn “disentangled” higher-level representations that separate different kinds of examples by properties that we want the model to be able to distinguish (cat vs. truck vs. wildebeest, cancerous tissue vs. normal tissue, etc.). Much of the focus on advancing machine learning algorithms is to encourage the learning of better representations that generalize better to new examples, problems or domains. This year, we looked at this problem in a number of different contexts:
  • In Evaluating the Unsupervised Learning of Disentangled Representations, we examined what properties affect the representations that are learned from unsupervised data, in order to better understand what makes for good representations and effective learning.
  • In Predicting the Generalization Gap in Deep Neural Networks, we showed that it is possible to predict the generalization gap (the gap between a model’s performance on data from the training distribution versus data drawn from a different distribution) using statistics of the margin distribution, helping us better understand which models generalize most effectively. We also did some research on Improving Out-of-Distribution Detection in Machine Learning Models, to better understand when a model is starting to encounter kinds of data it has never seen before. We also looked at Off-Policy Classification in the context of reinforcement learning, to better understand which models are likely to generalize the best.
  • In Learning to Generalize from Sparse and Underspecified Rewards, we also examined ways of specifying reward functions for reinforcement learning that enable learning systems to more directly learn from true objectives and be less distracted with longer, less-desirable sequences of actions that happen to achieve desired goals by accident.
    In this instruction-following task, the action trajectories a1, a2 and a3 reach the goal, but the sequences a2 and a3 do not follow the instructions. This illustrates the issue of underspecified rewards.
AutoML
We continued our work on AutoML this year, an approach whereby algorithms that learn how to learn can automate many aspects of machine learning and often can achieve substantially better results than the best human machine learning experts for certain kinds of machine learning meta-decisions. In particular:
  • In EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling, we showed how to use neural architecture search techniques to achieve substantially better results on computer vision problems, including a new state-of-the-art result of 84.4% top-1 accuracy on ImageNet while having 8X fewer parameters than the previous best model.
    Model Size vs. Accuracy Comparison. EfficientNet-B0 is the baseline network developed by AutoML MNAS, while Efficient-B1 to B7 are obtained by scaling up the baseline network. In particular, our EfficientNet-B7 achieves new state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy, while being 8.4x smaller than the best existing CNN.
  • In EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML, we showed how a neural architecture search approach can find efficient models that are tailored to particular hardware accelerators, resulting in high accuracy, low-computational models for running on mobile devices.
  • In Video Architecture Search, we describe how we extended our AutoML work to the domain of video models, finding architectures that achieve state-of-the-art results, and also lightweight architectures that match the performance of hand-crafted models while using 50x less computation.
    TinyVideoNet (TVN) architectures evolved to maximize the recognition performance while keeping its computation time within the desired limit. For instance, TVN-1 (top) runs at 37 ms on a CPU and 10ms on a GPU. TVN-2 (bottom) runs at 65ms on a CPU and 13ms on a GPU.
  • We developed AutoML techniques for tabular data, unlocking an important domain where many companies and organizations have interesting data in relational databases, and often want to develop machine learning models on this data. We collaborated to release this technology as a new Google Cloud AutoML Tables product, and also discussed how well this system did in a new Kaggle competition in An End-to-End AutoML Solution for Tabular Data at KaggleDays (spoiler: AutoML Tables finished second out of 74 teams of expert data scientists).
  • In Exploring Weight Agnostic Neural Networks, we showed how it is possible to find interesting neural network architectures without any training steps to update the weights of the evaluated models. This can make architecture search much more computationally efficient.
    A weight-agnostic neural network performing a Cartpole Swing-up task at various different weight parameters, and also using fine-tuned weight parameters.
  • Applying AutoML to Transformer Architectures explored finding architectures for natural language processing tasks that significantly outperform vanilla Transformer models at substantially reduced computational costs.
    Comparison between the Evolved Transformer and the original Transformer on WMT’14 En-De at varying sizes. The biggest gains in performance occur at smaller sizes, while ET also shows strength at larger sizes, outperforming the largest Transformer with 37.6% less parameters (models to compare are circled in green). See Table 3 in our paper for the exact numbers.
  • In SpecAugment: A New Data Augmentation Method for Automatic Speech Recognition, we showed that the approach of automatically learning data augmentation methods can be extended to speech recognition models, with the learned augmentation approaches achieving significantly higher accuracy with less data than existing human ML-expert driven data augmentation approaches.
  • We launched our first speech application for keyword spotting and spoken language identification using AutoML. In our experiments we found better models (both more efficient and better performance) than the human designed models that have been in this setting for some time.
Natural Language Understanding
The past few years have seen remarkable advances in models for natural language understanding, translation, natural dialog, speech recognition and related tasks. This year, one theme in our work was advancing the state of the art by combining modalities or tasks, to train more powerful and capable models. A few examples:
  • In Exploring Massively Multilingual, Massive Neural Machine Translation, we showed significant gains in translation quality by training a single model to translate between 100 languages, rather than having 100 separate models.
    Left: Language pairs with larger amounts of training data generally have higher translation quality. Right: Multilingual training, where we train a single model for all language pairs rather than separate models for each language pair, results in substantial improvements in BLEU score (a measure of translation quality) for language pairs without much data.
  • In Large-Scale Multilingual Speech Recognition with a Streaming End-to-End Model, we showed how combining speech recognition and language models together and training the system on many languages, can significantly improve speech recognition accuracy.
    Left: A traditional monolingual speech recognizer comprised of Acoustic, Pronunciation and Language Models for each language. Middle: A traditional multilingual speech recognizer where the Acoustic and Pronunciation model is multilingual, while the Language model is language-specific. Right: An E2E multilingual speech recognizer where the Acoustic, Pronunciation and Language Model is combined into a single multilingual model.
  • In Translatotron: An End-to-End Speech-to-Speech Translation Model, we showed that it is possible to train a joint model to accomplish the (normally separate) tasks of speech recognition, translation and text-to-speech generation with nice benefits, like preserving the sound of the speaker’s voice in the generated translated audio, as well as a simpler overall learning system.
  • In Multilingual Universal Sentence Encoder for Semantic Retrieval, we showed how to combine many different objectives to yield models that are significantly better at semantic retrieval (versus simpler word matching techniques). For example, in Google Talk to Books, the query “What fragrance brings back memories?” yields the result, “And for me, the smell of jasmine along with the pan bagnat, it brings back my entire carefree childhood.
  • In Robust Neural Machine Translation, we showed how to use an adversarial training procedure to significantly improve the quality and robustness of language translations.
    Left: The Transformer model is applied to an input sentence (lower left) and, in conjunction with the target output sentence (above right) and target input sentence (middle right; beginning with the placeholder “<sos>”), the translation loss is calculated. The AdvGen function then takes the source sentence, word selection distribution, word candidates and the translation loss as inputs to construct an adversarial source example. Right: In the defense stage, the adversarial source example serves as input to the Transformer model and the translation loss is calculated. AdvGen then uses the same method as above to generate an adversarial target example from the target input.
As our language understanding capabilities have improved, based on fundamental research advances like seq2seq, Transformer, BERT, Transformer-XL and ALBERT models, we have seen increased use of these sorts of models in many of our core products and features like Google Translate, Gmail’s Smart Compose, and Google Search. This year, the launch of BERT in our core search and ranking algorithms led to the biggest improvement in search quality in the last five years (and one of the biggest ever), through better understanding of the subtle meanings of query and document words and phrases.

Machine Perception
Models for better understanding of still images have made remarkable progress in the last decade. Among the next major frontiers are models and approaches for understanding the dynamic world in fine-grained detail. This includes deeper and more nuanced understanding of images and video, as well as live and situated perception: understanding the audiovisual world at interactive rates and with a shared spatial grounding with the user. This year, we explored many aspects of advances in this area, including:
We’re quite excited about the prospects of continued improvements in the understanding of the sensory world around us.

Robotics
The application of machine learning to robotic control is a significant research area for us. We believe this is a vital tool for enabling robots to operate effectively in complex, real-world environments like everyday homes and businesses. Some of the work we did this year includes:
Helping Advance the Broader Developer and Researcher Community
Open source is about more than code: it's about the community of contributors. It’s been an exciting year to be part of the open source community. We launched TensorFlow 2.0—the biggest TensorFlow release to date—which makes building ML systems and applications easier than ever. We added support for fast mobile GPU inference to TensorFlow Lite. We also launched Teachable Machine 2.0, a fast, easy web-based tool which can train a machine learning model with the click of a button, no coding required. We announced MLIR, open source machine learning compiler infrastructure that addresses the complexity of growing software and hardware fragmentation and makes it easier to build AI applications.

We saw the first year of JAX, a new system for high-performance machine learning research. At NeurIPS 2019, Googlers and the broader open-source community presented work using JAX ranging from neural tangent kernels to Bayesian inference to molecular dynamics, and we launched a preview of JAX on Cloud TPUs.

We open-sourced MediaPipe, a framework for building perceptual and multimodal applied ML pipelines, and XNNPACK, a library of efficient floating-point neural network inference operators. As of the end of 2019, we had enabled more than 1,500 researchers around the world to access Cloud TPUs for free via the TensorFlow Research Cloud. Our Intro To TensorFlow at Coursera crossed 100,000 students. And we engaged with thousands of users while taking TensorFlow on the road to 11 different countries, hosted our first ever TensorFlow World and more.

With the help of TensorFlow, one college student discovered two new planets and built a method to help others find more. A data scientist originally from Nigeria trained a GAN to generate images reminiscent of African masks. A developer in Uganda used TensorFlow to create the Farmers Companion, an app that local farmers can use to fight a crop-destroying caterpillar. In snowy Iowa, researchers and state officials used TensorFlow to determine safe road conditions based on traffic behavior, visuals and other data. In sunny California, college students used TensorFlow to identify pot holes and dangerous road cracks in Los Angeles. And in France, a coder used TensorFlow to build a simple algorithm that learns how to add color to black-and-white photos.

Open Datasets
Open datasets with clear and measurable goals are often very helpful in driving forward the field of machine learning. To help the research community find interesting datasets, we continue to index a wide variety of open datasets sourced from many different organizations with Google Dataset Search. We also think it's important to create new datasets for the community to explore and to develop new techniques, and to ensure we share open data responsibly. This year, we additionally released a number of open datasets across many different areas:
  • Open Images V5: An update to the popular Open Images dataset that includes segmentation masks for 2.8 million objects in 350 categories (so that it now has ~9M images annotated with image-level labels, object bounding boxes, object segmentation masks, and visual relationships).
  • Natural questions: the first dataset to use naturally occurring queries and find answers by reading an entire page, rather than extracting answers from a short paragraph.
  • Data for deepfake detection: we contributed a large dataset of visual deepfakes to the FaceForensics benchmark (mentioned above).
  • Google Research Football: a novel reinforcement learning environment where agents aim to master the world’s most popular sport—football (or, if you’re American, soccer). It’s important for reinforcement learning agents to have GOOOAAALLLSS!
  • Google-Landmarks-v2: over 5 million images (2x that of the first release) of more than 200 thousand different landmarks.
  • YouTube-8M Segments: A large-scale classification and temporal localization dataset that includes human-verified labels at the 5-second segment level of YouTube-8M videos.
  • Atomic Visual Actions (AVA) Spoken Activity: A multimodal audio+visual video dataset for perception of conversations. In addition, academic challenges were run for AVA action recognition and AVA: Spoken Activity
  • PAWS and PAWS-X: To help with paraphrase identification, both datasets contain well-formed sentence pairs with high lexical overlap, in which around half of pairs are paraphrase and half are not.
  • Natural language dialog datasets: CCPE and Taskmaster-1 both use a Wizard-of-Oz platform that pairs two people who engage in spoken conversations, to mimic a human-level conversation with a digital assistant.
  • The Visual Task Adaptation Benchmark: VTAB follows similar guidelines to ImageNet and GLUE but is based on one principle—a better representation is one that yields better performance on unseen tasks, with limited in-domain data.
  • Schema-Guided Dialogue Dataset: the largest publicly available corpus of task-oriented dialogues, with over 18,000 dialogues spanning 17 domains.
Research Community Interaction
Finally, we’ve been busy within the broader academic and research community. In 2019 Google researchers presented hundreds of papers, participated in numerous conferences and received many awards and other accolades. We had a strong presence at:
  • CVPR: ~250 Googlers presented 40+ papers, talks, posters, workshops and more.
  • ICML: ~200 Googlers presented 100+ papers, talks, posters, workshops and more.
  • ICLR: ~200 Googlers presented 60+ papers, talks, posters, workshops and more.
  • ACL: ~100 Googlers presented 40+ papers, workshops and tutorials.
  • Interspeech: Over 100 Googlers presented 30+ papers.
  • ICCV: ~200 Googlers presented 40+ papers, and several Googlers also won three prestigious ICCV awards.
  • NeurIPS: ~500 Googlers co-authored more than 120 accepted papers and engaged in various workshops and more.
We also brought together hundreds of Google researchers and faculty from across the globe to 15 separate research workshops hosted at Google locations. These workshops were on topics ranging from improving flood forecasting globally, to how to use machine learning to build systems that can better serve people with disabilities, to accelerating the development of algorithms, applications and tools for noisy-intermediate scale quantum (NISQ) processors.

Supporting academia and research communities outside of Google, we supported over 50 PhD students globally through our annual PhD Fellowship Program, we funded 158 projects as part of our Google Faculty Research Awards 2018, and we held our third cohort of the Google AI Residency Program. We also mentored AI-focused startups.

New Places, New Faces
We’ve made lots of headway in 2019, but there’s so much more we can do. To continue growing our impact around the world, we opened a Research office in Bangalore, and we’re expanding in other offices. If you’re excited about working on these sorts of problems, we’re hiring!

Looking Forward to 2020 and Beyond
The past decade has seen remarkable advances in the fields of machine learning and computer science, where we now have given computers the ability to see, hear and understand language better than ever before (see a nice overview of important advances of the last decade). In our pockets, we now have sophisticated computing devices that can use these capabilities to better help us accomplish a multitude of tasks in our daily lives. We have substantially redesigned our computing platforms around these machine learning approaches by developing specialized hardware, giving us the ability to tackle ever larger problems. This has changed how we think about computing devices both in data centers (such as the inference-focused TPUv1 and the training-and-inference focused TPUv2 and TPUv3), as well as in low-power mobile environments (such as Edge TPUs). The deep learning revolution will continue to reshape how we think about computing and computers.

At the same time, there are a huge number of unanswered questions and unsolved problems. Some directions and questions that we are excited about tackling in 2020 and beyond are:
  • How can we build machine learning systems that can handle millions of tasks, and that can learn to successfully accomplish new tasks automatically? Currently, we’re mostly training separate machine models for each new task, starting from scratch, or at best, from a model trained on one or a few highly related tasks. As such, the models we train are really good at one or a few things, but not good at anything else. However, what we truly want are models that are good at leveraging their expertise at doing many things, so that they are able to learn to do a new thing with relatively little training data and computation. This is a true grand challenge which will require expertise and advances in many areas spanning solid-state circuit design, computer architecture, ML-focused compilers, distributed systems, machine learning algorithms and domain experts across many other fields in order to build systems that can generalize to solve new tasks independently across a full range of application areas.
  • How can we advance the state-of-the-art in important areas of artificial intelligence research like avoiding bias, increasing interpretability & understandability, improving privacy and ensuring safety? Advances in these areas are going to be critical as we use machine learning in more and more ways in society.
  • How can we apply computation and machine learning to make advances in important new areas of science? There are important advances to be had by collaborating with experts in other fields in areas like climate science, healthcare, bioinformatics and many other areas.
  • How can we ensure that the ideas and directions pursued by the machine learning and computer science research communities are put forth and explored by a diverse group of researchers? The work that the computer science and machine learning research communities are pursuing has broad implications for billions of people, and we want the set of researchers doing this work to represent the experiences, perspectives, concerns and creative enthusiasm of all the people of the world. How can we best support new researchers from diverse backgrounds entering the field?
Overall, 2019 was a very exciting year for research at Google and in the broader research community. We’re excited about tackling the research challenges ahead of us in 2020 and beyond, and we look forward to sharing our progress with you!

Source: Google AI Blog


Google at ICCV 2019



This week, Seoul, South Korea hosts the International Conference on Computer Vision 2019 (ICCV 2019), one of the world's premier conferences on computer vision. As a leader in computer vision research and a Gold Sponsor, Google will have a strong presence at ICCV 2019 with over 200 Googlers in attendance, more than 40 research presentations, and involvement in the organization of a number of workshops and tutorials.

If you are attending ICCV this year, please stop by our booth. There you can chat with researchers who are actively pursuing the latest innovations in computer vision and demo some of their latest research, including the technology behind MediaPipe, the new Open Images dataset, new developments for Google Lens and much more.

This year Google researchers are recipients of three prestigious ICCV awards:
More details about the Google research being presented at ICCV 2019 can be found below (Google affiliations in blue).

Organizing Committee includes:
Ming-Hsuan Yang (Program Chair)

Oral Presentations
Learning Single Camera Depth Estimation using Dual-Pixels
Rahul Garg, Neal Wadhwa, Sameer Ansari, Jonathan Barron 

RIO: 3D Object Instance Re-Localization in Changing Indoor Environments
Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, Matthias Niessner 

ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors
Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin 

PuppetGAN: Cross-Domain Image Manipulation by Demonstration
Ben Usman, Nick Dufour, Kate Saenko, Chris Bregler

COCO-GAN: Generation by Parts via Conditional Coordinating
Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, Hwann-Tzong Chen

Towards Unconstrained End-to-End Text Spotting
Siyang Qin, Alessandro Bissaco, Michalis Raptis, Yasuhisa Fujii, Ying Xiao

SinGAN: Learning a Generative Model from a Single Natural Image
Tamar Rott Shaham, Tali Dekel, Tomer Michaeli 
(ICCV 2019 Marr Prize Winner — Best Paper Award)

Generative Modeling for Small-Data Object Detection
Lanlan Liu, Michael Muelly, Jia Deng, Tomas Pfister, Li-Jia Li 

Searching for MobileNetV3
Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, Quoc Le 

S⁴L: Self-Supervised Semi-supervised Learning
Lucas Beyer, Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov 

Sampling-Free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, Federico Tombari

Linearized Multi-sampling for Differentiable Image Transformation
Wei Jiang, Weiwei Sun, Andrea Tagliasacchi, Eduard Trulls, Kwang Moo Yi 

Poster Presentations
ELF: Embedded Localisation of Features in Pre-trained CNN
Assia Benbihi, Matthieu Geist, Cedric Pradalier 

Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras
Ariel Gordon, Hanhan Li, Rico Jonschkowski, Anelia Angelova

ForkNet: Multi-branch Volumetric Semantic Completion from a Single Depth Image
Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari 

A Learned Representation for Scalable Vector Graphics
Raphael Gontijo Lopes, David Ha, Douglas Eck, Jonathon Shlens 

FrameNet: Learning Local Canonical Frames of 3D Surfaces from a Single RGB Image
Jingwei Huang, Yichao Zhou, Thomas Funkhouser, Leonidas Guibas

Prior-Aware Neural Network for Partially-Supervised Multi-Organ Segmentation
Yuyin Zhou, Zhe Li, Song Bai, Xinlei Chen, Mei Han, Chong Wang, Elliot Fishman, Alan Yuille 

Boundless: Generative Adversarial Networks for Image Extension
Dilip Krishnan, Piotr Teterwak, Aaron Sarna, Aaron Maschinot, Ce Liu, David Belanger, William Freeman

Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection
Keren Ye, Mingda Zhang, Adriana Kovashka, Wei Li, Danfeng Qin, Jesse Berent 

NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-supervised Object Detection
Jiyang Gao, Jiang Wang, Shengyang Dai, Li-Jia Li, Ram Nevatia 

Object-Driven Multi-Layer Scene Decomposition from a Single Image
Helisa Dhamo, Nassir Navab, Federico Tombari 

Improving Adversarial Robustness via Guided Complement Entropy
Hao-Yun Chen, Jhao-Hong Liang, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan 

XRAI: Better Attributions Through Regions
Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viegas, Michael Terry

SegSort: Segment Sorting for Semantic Segmentation
Jyh-Jing Hwang, Stella Yu, Jianbo Shi, Maxwell Collins, Tien-Ju Yang, Xiao Zhang, Liang-Chieh Chen 

Self-Supervised Learning with Geometric Constraints in Monocular Video: Connecting Flow, Depth, and Camera
Yuhua Chen, Cordelia Schmid, Cristian Sminchisescu 

VideoBERT: A Joint Model for Video and Language Representation Learning
Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, Cordelia Schmid 

Explaining the Ambiguity of Object Detection and 6D Pose from Visual Data
Fabian Manhardt, Diego Martín Arroyo, Christian Rupprecht, Benjamin  Busam, Tolga Birdal, Nassir Navab, Federico Tombari 

Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation
Qing Lian, Lixin Duan, Fengmao Lv, Boqing Gong 

Learning Shape Templates Using Structured Implicit Functions
Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William Freeman, Thomas Funkhouser

Transferable Representation Learning in Vision-and-Language Navigation
Haoshuo Huang, Vihan Jain, Harsh Mehta, Alexander Ku, Gabriel Magalhaes, Jason Baldridge, Eugene Ie 

Controllable Attention for Structured Layered Video Decomposition
Jean-Baptiste Alayrac, Joao Carreira, Relja Arandjelović, Andrew Zisserman

Pixel2Mesh++: Multi-view 3D Mesh Generation via Deformation
Chao Wen, Yinda Zhang, Zhuwen Li, Yanwei Fu

Beyond Cartesian Representations for Local Descriptors
Patrick Ebel, Anastasiia Mishchuk, Kwang Moo Yi, Pascal Fua, Eduard Trulls

Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization without Accessing Target Domain Data
Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt Keutzer, Boqing Gong 

Evolving Space-Time Neural Architectures for Videos
AJ Piergiovanni, Anelia Angelova, Alexander Toshev, Michael Ryoo 

Moulding Humans: Non-parametric 3D Human Shape Estimation from Single Images
Valentin Gabeur, Jean-Sebastien Franco, Xavier Martin, Cordelia Schmid, Gregory Rogez

Multi-view Image Fusion
Marc Comino Trinidad, Ricardo Martin-Brualla, Florian Kainz, Janne Kontkanen 

EvalNorm: Estimating Batch Normalization Statistics for Evaluation
Saurabh Singh, Abhinav Shrivastava

Attention Augmented Convolutional Networks
Irwan Bello, Barret Zoph, Quoc Le, Ashish Vaswani, Jonathon Shlens 

Patchwork: A Patch-wise Attention Network for Efficient Object Detection and Segmentation in Video Streams
Yuning Chai

Workshops
Low-Power Computer Vision
Organizers include: Bo Chen

Neural Architects
Organizers include: Barret Zoph

The 3rd YouTube-8M Large-Scale Video Understanding Workshop
Organizers include: Paul NatsevCordelia SchmidRahul SukthankarJoonseok LeeGeorge Toderici

Should We Pre-register Experiments in Computer Vision?
Organizers include: Jack Valmadre

Extreme Vision Modeling
Organizers include: Rahul Sukthankar

Joint COCO and Mapillary Recognition Challenge
Organizers include: Tsung-Yi Lin, Yin Cui

Open Images Challenge
Organizers include: Vittorio Ferrari, Alina Kuznetsova, Rodrigo Benenson, Victor Gomes, Matteo Malloci

Tutorials
Meta-Learning and Metric Learning Algorithms
Organizers include: Kevin Swersky

Source: Google AI Blog