Tag Archives: community

Machine Learning Communities: Q3 ‘22 highlights and achievements

Posted by Nari Yoon, Hee Jung, DevRel Community Manager / Soonson Kwon, DevRel Program Manager

Let’s explore highlights and accomplishments of vast Google Machine Learning communities over the third quarter of the year! We are enthusiastic and grateful about all the activities by the global network of ML communities. Here are the highlights!


TensorFlow/Keras

Load-testing TensorFlow Serving’s REST Interface

Load-testing TensorFlow Serving’s REST Interface by ML GDE Sayak Paul (India) and Chansung Park (Korea) shares the lessons and findings they learned from conducting load tests for an image classification model across numerous deployment configurations.

TFUG Taipei hosted events (Python + Hugging Face-Translation+ tf.keras.losses, Python + Object detection, Python+Hugging Face-Token Classification+tf.keras.initializers) in September and helped community members learn how to use TF and Hugging face to implement machine learning model to solve problems.

Neural Machine Translation with Bahdanau’s Attention Using TensorFlow and Keras and the related video by ML GDE Aritra Roy Gosthipaty (India) explains the mathematical intuition behind neural machine translation.

Serving a TensorFlow image classification model as RESTful and gRPC based services with TFServing, Docker, and Kubernetes

Automated Deployment of TensorFlow Models with TensorFlow Serving and GitHub Actions by ML GDE Chansung Park (Korea) and Sayak Paul (India) explains how to automate TensorFlow model serving on Kubernetes with TensorFlow Serving and GitHub Action.

Deploying ? ViT on Kubernetes with TF Serving by ML GDE Sayak Paul (India) and Chansung Park (Korea) shows how to scale the deployment of a ViT model from ? Transformers using Docker and Kubernetes.

Screenshot of the TensorFlow Forum in the Chinese Language run by the tf.wiki team

Long-term TensorFlow Guidance on tf.wiki Forum by ML GDE Xihan Li (China) provides TensorFlow guidance by answering the questions from Chinese developers on the forum.

photo of a phone with the Hindi letter 'Ohm' drawn on the top half of the screen. Hinidi Character recognition shows the letter Ohm as the Predicted Result below.

Hindi Character Recognition on Android using TensorFlow Lite by ML GDE Nitin Tiwari (India) shares an end-to-end tutorial on training a custom computer vision model to recognize Hindi characters. In TFUG Pune event, he also gave a presentation titled Building Computer Vision Model using TensorFlow: Part 1.

Using TFlite Model Maker to Complete a Custom Audio Classification App by ML GDE Xiaoxing Wang (China) shows how to use TFLite Model Maker to build a custom audio classification model based on YAMNet and how to import and use the YAMNet-based custom models in Android projects.

SoTA semantic segmentation in TF with ? by ML GDE Sayak Paul (India) and Chansung Park (Korea). The SegFormer model was not available on TensorFlow.

Text Augmentation in Keras NLP by ML GDE Xiaoquan Kong (China) explains what text augmentation is and how the text augmentation feature in Keras NLP is designed.

The largest vision model checkpoint (public) in TF (10 Billion params) through ? transformers by ML GDE Sayak Paul (India) and Aritra Roy Gosthipaty (India). The underlying model is RegNet, known for its ability to scale.

A simple TensorFlow implementation of a DCGAN to generate CryptoPunks

CryptoGANs open-source repository by ML GDE Dimitre Oliveira (Brazil) shows simple model implementations following TensorFlow best practices that can be extended to more complex use-cases. It connects the usage of TensorFlow with other relevant frameworks, like HuggingFace, Gradio, and Streamlit, building an end-to-end solution.


TFX

TFX Machine Learning Pipeline from data injection in TFRecord to pushing out Vertex AI

MLOps for Vision Models from ? with TFX by ML GDE Chansung Park (Korea) and Sayak Paul (India) shows how to build a machine learning pipeline for a vision model (TensorFlow) from ? Transformers using the TF ecosystem.

First release of TFX Addons Package by ML GDE Hannes Hapke (United States). The package has been downloaded a few thousand times (source). Google and other developers maintain it through bi-weekly meetings. Google’s Open Source Peer Award has recognized the work.

TFUG São Paulo hosted TFX T1 | E4 & TFX T1 | E5. And ML GDE Vinicius Caridá (Brazil) shared how to train a model in a TFX pipeline. The fifth episode talks about Pusher: publishing your models with TFX.

Semantic Segmentation model within ML pipeline by ML GDE Chansung Park (Korea) and Sayak Paul (India) shows how to build a machine learning pipeline for semantic segmentation task with TFX and various GCP products such as Vertex Pipeline, Training, and Endpoints.


JAX/Flax

Screen shot of Tutorial 2 (JAX): Introduction to JAX+Flax with GitHub Repo and Codelab via university of Amseterdam

JAX Tutorial by ML GDE Phillip Lippe (Netherlands) is meant to briefly introduce JAX, including writing and training neural networks with Flax.


TFUG Malaysia hosted Introduction to JAX for Machine Learning (video) and Leong Lai Fong gave a talk. The attendees learned what JAX is and its fundamental yet unique features, which make it efficient to use when executing deep learning workloads. After that, they started training their first JAX-powered deep learning model.

TFUG Taipei hosted Python+ JAX + Image classification and helped people learn JAX and how to use it in Colab. They shared knowledge about the difference between JAX and Numpy, the advantages of JAX, and how to use it in Colab.

Introduction to JAX by ML GDE João Araújo (Brazil) shared the basics of JAX in Deep Learning Indaba 2022.

A comparison of the performance and overview of issues resulting from changing from NumPy to JAX

Should I change from NumPy to JAX? by ML GDE Gad Benram (Portugal) compares the performance and overview of the issues that may result from changing from NumPy to JAX.

Introduction to JAX: efficient and reproducible ML framework by ML GDE Seunghyun Lee (Korea) introduced JAX/Flax and their key features using practical examples. He explained the pure function and PRNG, which make JAX explicit and reproducible, and XLA and mapping functions which make JAX fast and easily parallelized.

Data2Vec Style pre-training in JAX by ML GDE Vasudev Gupta (India) shares a tutorial for demonstrating how to pre-train Data2Vec using the Jax/Flax version of HuggingFace Transformers.

Distributed Machine Learning with JAX by ML GDE David Cardozo (Canada) delivered what makes JAX different from TensorFlow.

Image classification with JAX & Flax by ML GDE Derrick Mwiti (Kenya) explains how to build convolutional neural networks with JAX/Flax. And he wrote several articles about JAX/Flax: What is JAX?, How to load datasets in JAX with TensorFlow, Optimizers in JAX and Flax, Flax vs. TensorFlow, etc..


Kaggle

DDPMs - Part 1 by ML GDE Aakash Nain (India) and cait-tf by ML GDE Sayak Paul (India) were announced as Kaggle ML Research Spotlight Winners.

Forward process in DDPMs from Timestep 0 to 100

Fresher on Random Variables, All you need to know about Gaussian distribution, and A deep dive into DDPMs by ML GDE Aakash Nain (India) explain the fundamentals of diffusion models.

In Grandmasters Journey on Kaggle + The Kaggle Book, ML GDE Luca Massaron (Italy) explained how Kaggle helps people in the data science industry and which skills you must focus on apart from the core technical skills.


Cloud AI

How Cohere is accelerating language model training with Google Cloud TPUs by ML GDE Joanna Yoo (Canada) explains what Cohere engineers have done to solve scaling challenges in large language models (LLMs).

ML GDE Hannes Hapke (United States) chats with Fillipo Mandella, Customer Engineering Manager at Google

In Using machine learning to transform finance with Google Cloud and Digits, ML GDE Hannes Hapke (United States) chats with Fillipo Mandella, Customer Engineering Manager at Google, about how Digits leverages Google Cloud’s machine learning tools to empower accountants and business owners with near-zero latency.

A tour of Vertex AI by TFUG Chennai for ML, cloud, and DevOps engineers who are working in MLOps. This session was about the introduction of Vertex AI, handling datasets and models in Vertex AI, deployment & prediction, and MLOps.

TFUG Abidjan hosted two events with GDG Cloud Abidjan for students and professional developers who want to prepare for a Google Cloud certification: Introduction session to certifications and Q&A, Certification Study Group.

Flow chart showing shows how to deploy a ViT B/16 model on Vertex AI

Deploying ? ViT on Vertex AI by ML GDE Sayak Paul (India) and Chansung Park (Korea) shows how to deploy a ViT B/16 model on Vertex AI. They cover some critical aspects of a deployment such as auto-scaling, authentication, endpoint consumption, and load-testing.

Photo collage of AI generated images

TFUG Singapore hosted The World of Diffusion - DALL-E 2, IMAGEN & Stable Diffusion. ML GDE Martin Andrews (Singapore) and Sam Witteveen (Singapore) gave talks named “How Diffusion Works” and “Investigating Prompt Engineering on Diffusion Models” to bring people up-to-date with what has been going on in the world of image generation.

ML GDE Martin Andrews (Singapore) have done three projects: GCP VM with Nvidia set-up and Convenience Scripts, Containers within a GCP host server, with Nvidia pass-through, Installing MineRL using Containers - with linked code.

Jupyter Services on Google Cloud by ML GDE Gad Benram (Portugal) explains the differences between Vertex AI Workbench, Colab, and Deep Learning VMs.

Google Cloud's Two Towers Recommender and TensorFlow

Train and Deploy Google Cloud's Two Towers Recommender by ML GDE Rubens de Almeida Zimbres (Brazil) explains how to implement the model and deploy it in Vertex AI.


Research & Ecosystem

WOMEN DATA SCIENCE, LA PAZ Club de lectura de papers de Machine Learning Read, Learn and Share the knowledge #MLPaperReadingClubs, Nathaly Alarcón, @WIDS_LaPaz #MLPaperReadingClubs

The first session of #MLPaperReadingClubs (video) by ML GDE Nathaly Alarcon Torrico (Bolivia) and Women in Data Science La Paz. Nathaly led the session, and the community members participated in reading the ML paper “Zero-shot learning through cross-modal transfer.”

In #MLPaperReadingClubs (video) by TFUG Lesotho, Arnold Raphael volunteered to lead the first session “Zero-shot learning through cross-modal transfer.”

Screenshot of a screenshare of Zero-shot learning through cross-modal transfer to 7 participants in a virtual call

ML Paper Reading Clubs #1: Zero Shot Learning Paper (video) by TFUG Agadir introduced a model that can recognize objects in images even if no training data is available for the objects. TFUG Agadir prepared this event to make people interested in machine learning research and provide them with a broader vision of differentiating good contributions from great ones.

Opening of the Machine Learning Paper Reading Club (video) by TFUG Dhaka introduced ML Paper Reading Club and the group’s plan.

EDA on SpaceX Falcon 9 launches dataset (Kaggle) (video) by TFUG Mysuru & TFUG Chandigarh organizer Aashi Dutt (presenter) walked through exploratory data analysis on SpaceX Falcon 9 launches dataset from Kaggle.

Screenshot of ML GDE Qinghua Duan (China) showing how to apply the MRC paradigm and BERT to solve the dialogue summarization problem.

Introduction to MRC-style dialogue summaries based on BERT by ML GDE Qinghua Duan (China) shows how to apply the MRC paradigm and BERT to solve the dialogue summarization problem.

Plant disease classification using Deep learning model by ML GDE Yannick Serge Obam Akou (Cameroon) talked on plant disease classification using deep learning model : an end to end Android app (open source project) that diagnoses plant diseases.

TensorFlow/Keras implementation of Nystromformer

Nystromformer Github repository by Rishit Dagli provides TensorFlow/Keras implementation of Nystromformer, a transformer variant that uses the Nyström method to approximate standard self-attention with O(n) complexity which allows for better scalability.

#WeArePlay | Meet Sam from Chicago. More stories from Peru, Croatia and Estonia.

Posted by Leticia Lago, Developer Marketing

A medical game for doctors, a language game for kids, a scary game for horror lovers and an escape room game for thrill seekers! In this latest batch of #WeArePlay stories, we’re celebrating the founders behind a wonderful variety of games from all over the world. Have a read and get gaming! 

To start, let’s meet Sam from Chicago. Coming from a family of doctors, his Dad challenged him to make a game to help those in the medical field. Sam agreed, made a game and months later discovered over 100,000 doctors were able to practice medical procedures. This early success inspired him to found Level Ex - a company of 135, making world-class medical games for doctors across the globe. Despite his achievements, his Dad still hopes Sam may one day get into medicine himself and clinch a Nobel prize.


Next, a few more stories from around the world:

  • Aldo and Sandro from Peru - founders of Dark Dome. They combine storytelling and art to make thrilling and chilling games, filled with plot twists and jump scares.


  • Vladimir, Tomislav and Boris from Croatia - founders of Pine Studio. They won the Indie Games Festival 2021 with their game Cats In Time. 


  • Kelly, Mikk, Reimo and Madde from Estonia - founders of ALPA kids. Their language games for children have a huge impact on early education and language preservation.


Check out all the stories now at g.co/play/weareplay and stay tuned for even more coming soon.


How useful did you find this blog post?


#WeArePlay | Meet Sam from Chicago. More stories from Peru, Croatia and Estonia.

Posted by Leticia Lago, Developer Marketing

A medical game for doctors, a language game for kids, a scary game for horror lovers and an escape room game for thrill seekers! In this latest batch of #WeArePlay stories, we’re celebrating the founders behind a wonderful variety of games from all over the world. Have a read and get gaming! 


To start, let’s meet Sam from Chicago. Coming from a family of doctors, his Dad challenged him to make a game to help those in the medical field. Sam agreed, made a game and months later discovered over 100,000 doctors were able to practice medical procedures. This early success inspired him to found Level Ex - a company of 135, making world-class medical games for doctors across the globe. Despite his achievements, his Dad still hopes Sam may one day get into medicine himself and clinch a Nobel prize.


Next, a few more stories from around the world:
  • Aldo and Sandro from Peru - founders of Dark Dome. They combine storytelling and art to make thrilling and chilling games, filled with plot twists and jump scares.

  • Vladimir, Tomislav and Boris from Croatia - founders of Pine Studio. They won the Indie Games Festival 2021 with their game Cats In Time. 

  • Kelly, Mikk, Reimo and Madde from Estonia - founders of ALPA kids. Their language games for children have a huge impact on early education and language preservation.

Check out all the stories now at g.co/play/weareplay and stay tuned for even more coming soon.


How useful did you find this blog post?


Machine Learning Communities: Q2 ‘22 highlights and achievements

Posted by Nari Yoon, Hee Jung, DevRel Community Manager / Soonson Kwon, DevRel Program Manager

Let’s explore highlights and accomplishments of vast Google Machine Learning communities over the second quarter of the year! We are enthusiastic and grateful about all the activities by the global network of ML communities. Here are the highlights!

TensorFlow/Keras

TFUG Agadir hosted #MLReady phase as a part of #30DaysOfML. #MLReady aimed to prepare the attendees with the knowledge required to understand the different types of problems which deep learning can solve, and helped attendees be prepared for the TensorFlow Certificate.

TFUG Taipei hosted the basic Python and TensorFlow courses named From Python to TensorFlow. The aim of these events is to help everyone learn about the basics of Python and TensorFlow, including TensorFlow Hub, TensorFlow API. The event videos are shared every week via Youtube playlist.

TFUG New York hosted Introduction to Neural Radiance Fields for TensorFlow users. The talk included Volume Rendering, 3D view synthesis, and links to a minimal implementation of NeRF using Keras and TensorFlow. In the event, ML GDE Aritra Roy Gosthipaty (India) had a talk focusing on breaking the concepts of the academic paper, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis into simpler and more ingestible snippets.

TFUG Turkey, GDG Edirne and GDG Mersin organized a TensorFlow Bootcamp 22 and ML GDE M. Yusuf Sarıgöz (Turkey) participated as a speaker, TensorFlow Ecosystem: Get most out of auxiliary packages. Yusuf demonstrated the inner workings of TensorFlow, how variables, tensors and operations interact with each other, and how auxiliary packages are built upon this skeleton.

TFUG Mumbai hosted the June Meetup and 110 folks gathered. ML GDE Sayak Paul (India) and TFUG mentor Darshan Despande shared knowledge through sessions. And ML workshops for beginners went on and participants built up machine learning models without writing a single line of code.

ML GDE Hugo Zanini (Brazil) wrote Realtime SKU detection in the browser using TensorFlow.js. He shared a solution for a well-known problem in the consumer packaged goods (CPG) industry: real-time and offline SKU detection using TensorFlow.js.

ML GDE Gad Benram (Portugal) wrote Can a couple TensorFlow lines reduce overfitting? He explained how just a few lines of code can generate data augmentations and boost a model’s performance on the validation set.

ML GDE Victor Dibia (USA) wrote How to Build An Android App and Integrate Tensorflow ML Models sharing how to run machine learning models locally on Android mobile devices, How to Implement Gradient Explanations for a HuggingFace Text Classification Model (Tensorflow 2.0) explaining in 5 steps about how to verify the model is focusing on the right tokens to classify text. He also wrote how to finetune a HuggingFace model for text classification, using Tensorflow 2.0.

ML GDE Karthic Rao (India) released a new series ML for JS developers with TFJS. This series is a combination of short portrait and long landscape videos. You can learn how to build a toxic word detector using TensorFlow.js.

ML GDE Sayak Paul (India) implemented the DeiT family of ViT models, ported the pre-trained params into the implementation, and provided code for off-the-shelf inference, fine-tuning, visualizing attention rollout plots, distilling ViT models through attention. (code | pretrained model | tutorial)

ML GDE Sayak Paul (India) and ML GDE Aritra Roy Gosthipaty (India) inspected various phenomena of a Vision Transformer, shared insights from various relevant works done in the area, and provided concise implementations that are compatible with Keras models. They provide tools to probe into the representations learned by different families of Vision Transformers. (tutorial | code)

JAX/Flax

ML GDE Aakash Nain (India) had a special talk, Introduction to JAX for ML GDEs, TFUG organizers and ML community network organizers. He covered the fundamentals of JAX/Flax so that more and more people try out JAX in the near future.

ML GDE Seunghyun Lee (Korea) started a project, Training and Lightweighting Cookbook in JAX/FLAX. This project attempts to build a neural network training and lightweighting cookbook including three kinds of lightweighting solutions, i.e., knowledge distillation, filter pruning, and quantization.

ML GDE Yucheng Wang (China) wrote History and features of JAX and explained the difference between JAX and Tensorflow.

ML GDE Martin Andrews (Singapore) shared a video, Practical JAX : Using Hugging Face BERT on TPUs. He reviewed the Hugging Face BERT code, written in JAX/Flax, being fine-tuned on Google’s Colab using Google TPUs. (Notebook for the video)

ML GDE Soumik Rakshit (India) wrote Implementing NeRF in JAX. He attempts to create a minimal implementation of 3D volumetric rendering of scenes represented by Neural Radiance Fields.

Kaggle

ML GDEs’ Kaggle notebooks were announced as the winner of Google OSS Expert Prize on Kaggle: Sayak Paul and Aritra Roy Gosthipaty’s Masked Image Modeling with Autoencoders in March; Sayak Paul’s Distilling Vision Transformers in April; Sayak Paul & Aritra Roy Gosthipaty’s Investigating Vision Transformer Representations; Soumik Rakshit’s Tensorflow Implementation of Zero-Reference Deep Curve Estimation in May and Aakash Nain’s The Definitive Guide to Augmentation in TensorFlow and JAX in June.

ML GDE Luca Massaron (Italy) published The Kaggle Book with Konrad Banachewicz. This book details competition analysis, sample code, end-to-end pipelines, best practices, and tips & tricks. And in the online event, Luca and the co-author talked about how to compete on Kaggle.















ML GDE Ertuğrul Demir (Turkey) wrote Kaggle Handbook: Fundamentals to Survive a Kaggle Shake-up covering bias-variance tradeoff, validation set, and cross validation approach. In the second post of the series, he showed more techniques using analogies and case studies.













TFUG Chennai hosted ML Study Jam with Kaggle and created study groups for the interested participants. More than 60% of members were active during the whole program and many of them shared their completion certificates.

TFUG Mysuru organizer Usha Rengaraju shared a Kaggle notebook which contains the implementation of the research paper: UNETR - Transformers for 3D Biomedical Image Segmentation. The model automatically segments the stomach and intestines on MRI scans.

TFX

ML GDE Sayak Paul (India) and ML GDE Chansung Park (Korea) shared how to deploy a deep learning model with Docker, Kubernetes, and Github actions, with two promising ways - FastAPI (for REST) and TF Serving (for gRPC).

ML GDE Ukjae Jeong (Korea) and ML Engineers at Karrot Market, a mobile commerce unicorn with 23M users, wrote Why Karrot Uses TFX, and How to Improve Productivity on ML Pipeline Development.

ML GDE Jun Jiang (China) had a talk introducing the concept of MLOps, the production-level end-to-end solutions of Google & TensorFlow, and how to use TFX to build the search and recommendation system & scientific research platform for large-scale machine learning training.

ML GDE Piero Esposito (Brazil) wrote Building Deep Learning Pipelines with Tensorflow Extended. He showed how to get started with TFX locally and how to move a TFX pipeline from local environment to Vertex AI; and provided code samples to adapt and get started with TFX.

TFUG São Paulo (Brazil) had a series of online webinars on TensorFlow and TFX. In the TFX session, they focused on how to put the models into production. They talked about the data structures in TFX and implementation of the first pipeline in TFX: ingesting and validating data.

TFUG Stockholm hosted MLOps, TensorFlow in Production, and TFX covering why, what and how you can effectively leverage MLOps best practices to scale ML efforts and had a look at how TFX can be used for designing and deploying ML pipelines.

Cloud AI

ML GDE Chansung Park (Korea) wrote MLOps System with AutoML and Pipeline in Vertex AI on GCP official blog. He showed how Google Cloud Storage and Google Cloud Functions can help manage data and handle events in the MLOps system.

He also shared the Github repository, Continuous Adaptation with VertexAI's AutoML and Pipeline. This contains two notebooks to demonstrate how to automate to produce a new AutoML model when the new dataset comes in.

TFUG Northwest (Portland) hosted The State and Future of AI + ML/MLOps/VertexAI lab walkthrough. In this event, ML GDE Al Kari (USA) outlined the technology landscape of AI, ML, MLOps and frameworks. Googler Andrew Ferlitsch had a talk about Google Cloud AI’s definition of the 8 stages of MLOps for enterprise scale production and how Vertex AI fits into each stage. And MLOps engineer Chris Thompson covered how easy it is to deploy a model using the Vertex AI tools.

Research

ML GDE Qinghua Duan (China) released a video which introduces Google’s latest 540 billion parameter model. He introduced the paper PaLM, and described the basic training process and innovations.

ML GDE Rumei LI (China) wrote blog postings reviewing papers, DeepMind's Flamingo and Google's PaLM.

South African developers build web application to help local athletes

Posted by Aniedi Udo-Obong, Sub-Saharan Africa Regional Lead, Google Developer Groups

Lesego Ndlovu and Simon Mokgotlhoa have stayed friends since they were eight years old, trading GameBoy cartridges and playing soccer. They live three houses away from each other in Soweto, the biggest township in South Africa, with over one million residents. The two friends have always been fascinated by technology, and by the time the duo attended university, they wanted to start a business together that would also help their community.

Lesego Ndlovu and Simon Mokgotlhoa sitting at a desk on their computers

After teaching themselves to code and attending Google Developer Groups (GDG) events in Johannesburg, they built a prototype and launched a chapter of their own (GDG Soweto) to teach other new developers how to code and build technology careers.

Building an app to help their community

Lesego and Simon wanted to build an application that would help the talented soccer players in their community get discovered and recruited by professional soccer teams. To do that, they had to learn to code.

Lesego Ndlovu and Simon Mokgotlhoa holding their phones towards the screen showcasing the Ball Talent app

“We always played soccer, and we saw talented players not get discovered, so, given our interest in sports and passion for technology, we wanted to make something that could change that narrative,” Lesego says. “We watched videos on the Chrome Developers YouTube channel and learned HTML, CSS, and JavaScript, but we didn’t know how to make an app, deliver a product, or start a business. Our tech journey became a business journey. We learned about the code as the business grew. It’s been a great journey.”

After many all-nighters learning frontend development using HTML, CSS, and JavaScript, and working on their project, they built BallTalent, a Progressive Web App (PWA), that helps local soccer players in their neighborhood get discovered by professional soccer clubs. They record games in their neighborhood and upload them to the app, so clubs can identify new talent.

“We tested our prototype with people, and it seemed like they really loved it, which pushed us to keep coding and improving on the project,” says Simon. “The application is currently focused on soccer, but it’s built it in a way that it can focus on other sports.”

In 2019, when BallTalent launched, the project placed in the top 5 of one of South Africa’s most prestigious competitions, Diageo Social Tech Startup Challenge. BallTalent has helped local soccer players match with professional teams, benefiting the community. Simon and Lesego plan to release version two soon, with a goal of expanding to other sports.

Learning to code with web technologies and resources

Lesego and Simon chose to watch the Chrome Developers YouTube channel to learn to code, because it was free, accessible, and taught programming in ways that were easy to understand. Preferring to continue to use free Google tools because of their availability and ease of use, Lesego and Simon used Google developer tools on Chrome to build and test the BallTalent app, which is hosted on Google Cloud Platform.

BallTalent Shows Youth Talent to the Worlds Best Scouts and Clubs

They used NodeJS as their backend runtime environment to stay within the Google ecosystem–NodeJS is powered by the V8 JavaScript engine, which is developed by the Chromium Project. They used a service worker codelab from Google to allow users to install the BallTalent PWA and see partial content, even without an internet connection.

We are focused on HTML, CSS, JavaScript, frontend frameworks like Angular, and Cloud tools like Firebase, to be able to equip people with the knowledge of how to set up an application,” says Simon.

Moving gif of soccer players playing on a soccer field

BallTalent shares sample footage of a previous match: Mangaung United Vs Bizana Pondo Chiefs, during the ABC Motsepe Play Offs

“Google has been with us the whole way,” says Simon.

Contributing to the Google Developer community

Because of their enthusiasm for web technologies and positive experience learning to code using Google tools, Lesego and Simon were enthusiastic about joining a Google Developer Community. They became regular members at GDG Johannesburg and went to DevFest South Africa in 2018, where they got inspired to start their own GDG chapter in Soweto. The chapter focuses on frontend development to meet the needs of a largely beginner developer membership and has grown to 500+ members.

Looking forward to continued growth

The duo is now preparing to launch the second version of their BallTalent app, which gives back to their community by pairing local soccer talent with professional teams seeking players. In addition, they’re teaching new developers in their township how to build their own apps, building community and creating opportunities for new developers. Google Developer Groups are local community groups for developers interested in learning new skills, teaching others, and connecting with other developers. We encourage you to join us, and if you’re interested in becoming a GDG organizer like Simon and Lesego, we encourage you to apply.

Experts.Anyone.Anywhere

Posted by Janelle Kuhlman, Developer Relations Program Manager

Click above to meet our community of Experts

The Google Developer Experts program is a global network of highly experienced technology experts, developers and thought leaders. GDEs share their expertise with other developers and tech communities through a variety of ways such as speaking engagements, mentorship and content writing. The community has access to an exclusive network of experts that span across different Google technologies including Android, Cloud, Machine Learning and more.

Get to know our diverse community and subscribe to the Google Developers YouTube Channel to stay informed on the latest updates across our products and platforms!

Finding courage and inspiration in the developer community

Posted by Monika Janota

How do we empower women in tech and equip them with the skills to help them become true leaders? One way is learning from others' successes and failures. Web GDEs—Debbie O'Brien, Julia Miocene, and Glafira Zhur—discuss the value of one to one mentoring and the impact it has made on their own professional and personal development.

A 2019 study showed that only 25% of keynote speakers at tech events are women, meanwhile 70% of female speakers mentioned being the only woman on a conference panel. One way of changing that is by running programs and workshops with the aim of empowering women and providing them with the relevant soft skills training, including public speaking, content creation, and leadership. Among such programs are the Women Developer Academy (WDA) and the Road to GDE, both run by Google's developer communities.

With more than 1000 graduates around the world, WDA is a program run by Women Techmakers for professional IT practitioners. To equip women in tech with speaking and presentation skills, along with confidence and courage, training sessions, workshops, and mentoring meetings are organized. Road to GDE, on the other hand, is a three-month mentoring program created to support people from historically underrepresented groups in tech on their path to becoming experts. What makes both programs special is the fact that they're based on a unique connection between mentor and mentee, direct knowledge sharing, and an individualized approach.

Photo of Julia Miocene speaking at a conference Julia Miocene

Some Web GDE community members have had a chance to be part of the mentoring programs for women as both mentors and mentees. Frontend developers Julia Miocene and Glafira Zhur are relatively new to the GDE program. They became Google Developers Experts in October 2021 and January 2022 respectively, after graduating from the first edition of both the Women Developer Academy and the Road to GDE; whilst Debbie O'Brien has been a member of the community and an active mentor for both programs for several years. They have all shared their experiences with the programs in order to encourage other women in tech to believe in themselves, take a chance, and to become true leaders.

Different paths, one goal

Although all three share an interest in frontend development, each has followed a very different path. Glafira Zhur, now a team leader with 12 years of professional experience, originally planned to become a musician, but decided to follow her other passion instead. A technology fan thanks to her father, she was able to reinstall Windows at the age of 11. Julia Miocene, after more than ten years in product design, was really passionate about CSS. She became a GDE because she wanted to work with Chrome and DevTools. Debbie is a Developer Advocate working in the frontend area, with a strong passion for user experience and performance. For her, mentoring is a way of giving back to the community, helping other people achieve their dreams, and become the programmers they want to be. At one point while learning JavaScript, she was so discouraged she wanted to give it up, but her mentor convinced her she could be successful. Now she's returning the favor.

Photo of Debbie O'Brien and another woman in a room smiling at the camera

Debbie O'Brien

As GDEs, Debbie, Glafira, and Julia all mention that the most valuable part of becoming experts is the chance to meet people with similar interests in technology, to network, and to provide early feedback for the web team. Mentoring, on the other hand, enables them to create, it boosts their confidence and empowers them to share their skills and knowledge—regardless of whether they're a mentor or a mentee.

Sharing knowledge

A huge part of being a mentee in Google's programs is learning how to share knowledge with other developers and help them in the most effective way. Many WDA and Road to GDE participants become mentors themselves. According to Julia, it's important to remember that a mentor is not a teacher—they are much more. The aim of mentoring, she says, is to create something together, whether it's an idea, a lasting connection, a piece of knowledge, or a plan for the future.

Glafira mentioned that she learned to perceive social media in a new way—as a hub for sharing knowledge, no matter how small the piece of advice might seem. It's because, she says, even the shortest Tweet may help someone who's stuck on a technical issue that they might not be able to resolve without such content being available online. Every piece of knowledge is valuable. Glafira adds that, "Social media is now my tool, I can use it to inspire people, invite them to join the activities I organize. It's not only about sharing rough knowledge, but also my energy."

Working with mentors who have successfully built an audience for their own channels allows the participants to learn more about the technical aspects of content creation—how to choose topics that might be interesting for readers, set up the lighting in the studio, or prepare an engaging conference speech.

Learning while teaching

From the other side of the mentor—mentee relationship, Debbie O'Brien says the best thing about mentoring is seeing the mentees grow and succeed: "We see in them something they can't see in themselves, we believe in them, and help guide them to achieve their goals. The funny thing is that sometimes the advice we give them is also useful for ourselves, so as mentors we end up learning a lot from the experience too."

TV screenin a room showing and image od Glafira Zhur

Glafira Zhur

Both Glafira and Julia state that they're willing to mentor other women on their way to success. Asked what is the most important learning from a mentorship program, they mention confidence—believing in yourself is something they want for every female developer out there.

Growing as a part of the community

Both Glafira and Julia mentioned that during the programs they met many inspiring people from their local developer communities. Being able to ask others for help, share insights and doubts, and get feedback was a valuable lesson for both women.

Mentors may become role models for the programs' participants. Julia mentioned how important it was for her to see someone else succeed and follow in their footsteps, to map out exactly where you want to be professionally, and how you can get there. This means learning not just from someone else's failures, but also from their victories and achievements.

Networking within the developer community is also a great opportunity to grow your audience by visiting other contributors' podcasts and YouTube channels. Glafira recalls that during the Academy, she received multiple invites and had an opportunity to share her knowledge on different channels.

Overall, what's even more important than growing your audience is finding your own voice. As Debbie states: "We need more women speaking at conferences, sharing knowledge online, and being part of the community. So I encourage you all to be brave and follow your dreams. I believe in you, so now it's time to start believing in yourself."

Machine Learning Communities: Q1 ‘22 highlights and achievements

Posted by Nari Yoon, Hee Jung, DevRel Community Manager / Soonson Kwon, DevRel Program Manager

Let’s explore highlights and accomplishments of vast Google Machine Learning communities over the first quarter of the year! We are enthusiastic and grateful about all the activities that the communities across the globe do. Here are the highlights!

ML Ecosystem Campaign Highlights

ML Olympiad is an associated Kaggle Community Competitions hosted by Machine Learning Google Developers Experts (ML GDEs) or TensorFlow User Groups (TFUGs) sponsored by Google. The first round was hosted from January to March, suggesting solving critical problems of our time. Competition highlights include Autism Prediction Challenge, Arabic_Poems, Hausa Sentiment Analysis, Quality Education, Good Health and Well Being. Thank you TFUG Saudi, New York, Guatemala, São Paulo, Pune, Mysuru, Chennai, Bauchi, Casablanca, Agadir, Ibadan, Abidjan, Malaysia and ML GDE Ruqiya Bin Safi, Vinicius Fernandes Caridá, Yogesh Kulkarni, Mohammed buallay, Sayed Ali Alkamel, Yannick Serge Obam, Elyes Manai, Thierno Ibrahima DIOP, Poo Kuan Hoong for hosting ML Olympiad!

Highlights and Achievements of ML Communities

TFUG organizer Ali Mustufa Shaikh (TFUG Mumbai) and Rishit Dagli won the TensorFlow Community Spotlight award (paper and code). This project was supported by provided Google Cloud credit.

ML GDE Sachin Kumar (Qatar) posted Build a retail virtual agent from scratch with Dialogflow CX - Ultimate Chatbot Tutorials. In this tutorial, you will learn how to build a chatbot and voice bot from scratch using Dialogflow CX, a Conversational AI Platform (CAIP) for building conversational UIs.

ML GDE Ngoc Ba (Vietnam) posted MTet: Multi-domain Translation for English and Vietnamese. This project is about how to collect high quality data and train a state-of-the-art neural machine translation model for Vietnamese. And it utilized Google Cloud TPU, Cloud Storage and related GCP products for faster training.

Kaggle announced the Google Open Source Prize early this year (Winners announcement page). In January, ML GDE Aakash Kumar Nain (India)’s Building models in JAX - Part1 (Stax) was awarded.

In February, ML GDE Victor Dibia (USA)’s notebook Signature Image Cleaning with Tensorflow 2.0 and ML GDE Sayak Paul (India) & Soumik Rakshit’s notebook gaugan-keras were awarded.

TFUG organizer Usha Rengaraju posted Variable Selection Networks (AI for Climate Change) and Probabilistic Bayesian Neural Networks using TensorFlow Probability notebooks on Kaggle. They both got gold medals, and she has become a Triple GrandMaster!

TFUG Chennai hosted the two events, Transformers - A Journey into attention and Intro to Deep Reinforcement Learning. Those events were planned for beginners. Events include introductory sessions explaining the transformers research papers and the basic concept of reinforcement learning.

ML GDE Margaret Maynard-Reid (USA), Nived P A, and Joel Shor posted Our Summer of Code Project on TF-GAN. This article describes enhancements made to the TensorFlow GAN library (TF-GAN) of the last summer.

ML GDE Aakash Nain (India) released a series of tutorials about building models in JAX. In the second tutorial, Aakash uses one of the most famous and most widely used high-level libraries for Jax to build a classifier. In the notebook, you will be taking a deep dive into Flax, too.

ML GDE Bhavesh Bhatt (India) built a model for braille to audio with 95% accuracy. He created a model that translates braille to text and audio, lending a helping hand to people with visual disabilities.

ML GDE Sayak Paul (India) recently wrote Publishing ConvNeXt Models on TensorFlow Hub. This is a contribution from the 30 versions of the model, ready for inference and transfer learning, with documentation and sample code. And he also posted First Steps in GSoC to encourage the fellow ML GDEs’ participation in Google Summer of Code (GSoC).

ML GDE Merve Noyan (Turkey) trained 40 models on keras.io/examples; built demos for them with Streamlit and Gradio. And those are currently being hosted here. She also held workshops entitled NLP workshop with TensorFlow for TFUG Delhi, TFUG Chennai, TFUG Hyderabad and TFUG Casablanca. It covered the basic to advanced topics in NLP right from Transformers till model hosting in Hugging Face, using TFX and TF Serve.

Machine Learning Communities: Q4 ‘21 highlights and achievements

Posted by HyeJung Lee, DevRel Community Manager and Soonson Kwon, DevRel Program Manager

Image shows graphic illustrating Q4 success. Includes an arrow pointing to a group of stick figures

Let’s explore highlights and achievements of vast Google Machine Learning communities over the last quarter of last year! We are excited and grateful about all the activities that the communities across the globe do.

Image of the Jax logo  next to images of animals and objects. The animals and objects are labelled Predictions

India-based Aakash Nain has completed the TF-Jax tutorial series with Part 9 (Autodiff in JAX) and Part 10 (Pytrees in JAX). Aakash also started a new tutorial series to learn about the existing methods of building models in JAX. The first tutorial Building models in JAX - Part1 (Stax) is released.

Christmas tree made of code next to words that say Advent of Code

On Dec 12th, ML GDE Paolo Galeone started to solve puzzles of the Advent of Code series using “pure TensorFlow” (without any other library). His solution has been updated in a series of 12 on his blog. He explained how he designed the solutions, how he implemented them, and - when needed - focused on some TensorFlow features not widely used. (Day 1, Day 2, Day 3, Day 4, Day 5, Day 6, Day 7, Day 8, Day 9, Day 10, Day 11, Day 12, Wrap up)

Detailed  diagram of batch prediction/evaluation pipeline leading to model training pipeline

ML GDE Chansung Park (Korea) & Sayak Paul (India) published an “Continuous Adaptation for Machine Learning System to Data Changes” article on TensorFlow blog. They presented a project that implements a workflow combining batch prediction and model evaluation for continuous evaluation retraining In order to capture changes in the data.

Image of Elyes Manais' Google Cloud Certification

ML GDE Elyes Manai from Tunisia wrote an article on GDE blog about his experience on the Google Cloud ML Engineer certification covering guide to certificate and tips.

Image collage of medical staff wearing PPE

TFUG organizer Ali Mustufa Shaikh and Rishit Dagli released “CPPE-5: Medical Personal Protective Equipment Dataset” (paper, code). This paper got featured on Google Research TRC's publication section on January 5, 2022.

Image of a Google slide with text reading Ok, but what are transformers?

TFUG New York hosted a series of events in Dec. End-to-End NLP Workshop with TensorFlow. Brief introduction to the Kaggle competition for Great Barrier Reef challenge by Google(Slide). TF idea for ML Projects with GCP.

Left side of image shows a screenshot  from the Google for Startups Accelerator:MENA page. Right side of mage shows man with glasses holding a piece of paper in front of a wall that has signs on it that say hashtag creativity and hashtag technology

ML GDE Elyes Manai from Tunisia wrote an article “The ability to change people’s lives and leave one’s mark“. Are you facing difficulties growing in constrained environments? And do you think you're not a first-class student and you don't have connections in the industry? Then, check out Elyes’s story. He shared how Google helped him accelerate his impact.

Image shows a graph with data. Labels are on the side to denote wing, body, and tail

ML GDE Sayak Paul (India) and Soumik Rakshit’s Point Cloud Segmentation implemented the PointNet architecture for segmenting 3D point clouds using the ShapeNetCore dataset with TensorFlow 2.x. It is a winner of #TFCommunitySpotlight too.

Screenshot from a paper titled What Should Not be Contrastive in Contrastive Learning

Annotated Research Papers by ML GDE Aakash Kumar Nain (India) is an effort to make papers more accessible to a wider community. It also supports the web version and includes papers from Google Research and etc. This repository is popular enough to have a +2k star and a +200 fork.

Graphic wih text that reads A DevLibrary video interview wth Shai Reznik

Interview series of DevLibrary contributors : Meet the ML GDE Shai Reznik (Israel) and Doug Duhaime. And check out what they built with Google technology and what made them passionate.

Image of a TensorFlow 2.0 Global Docs Sprint event invite with Vikram Tiwari

ML DevFest 2021 by GDG Cloud San Francisco. There are 5 sessions that walk you through framing ML problems, researching ML, building proofs of concepts using existing ML APIs and models, building ML pipelines and etc. ML GDE Vikram Tiwari (USA) presented Vertex, ML Ops and GCP.

The words using Machine Learning for COVID19 helpline with Krupal Modi next to a picture of a man holding a microphone

Krupal Modi (India)’s blog article and #IamaGDE video shares how he’s been leading the machine learning initiatives at Haptik, a conversational AI platform, and how the team paired with the Indian Government and WhatsApp to build a COVID-19 helpline.

Hashtag I am a GDE next to a photo of a woman with sunglasses on her head

Leigh Johnson from USA is the founder of Print Nanny, an automated failure detection system and monitoring system for 3D printers. Meet Leigh in this blog and video!

ML Olympiad: Globally Distributed ML Competitions by the Community

Posted by Hee Jung, DevRel Community Manager

Blog header image shows graphic illustration of people, a group, and a medal

We are happy to announce ML Olympiad, an associated Kaggle Community Competitions hosted by Machine Learning Google Developer Experts (ML GDE) and TensorFlow User Group (TFUG).

Kaggle recently announced "Community Competitions" allowing anyone to create and host a competition at no cost. And our proud members of ML communities decided to dive in and take advantage of the feature to solve critical issues of our time, providing opportunities to train developers.

Why the ML Olympiad?

To train ML for developers leveraging Kaggle’s community competition. This is an opportunity for the participants to practice ML. This is the first 2022 global campaign of the ML Ecosystem team and this helps build stronger communities.

Image with text that reads Community Competitions make machine learning fun

ML Olympiad Community Competitions

Currently, 16 ML Olympiad community competitions are open, hosted by ML GDEs and TFUGs.

Arabic_Poems (in local language) link

  • Predict the name of a poet for Arabic poems. Encourage people to practice on Arabic NLP using TF.
  • Hosts: Ruqiya Bin Safi (ML GDE), Eyad Sibai, Hussain Alfayez / Saudi TFUG & Applied ML/AI group

Sky Survey link

  • Stellar classification with the digital sky survey
  • Hosts: Jieun Yoo, Michael Mellinger / NYTFUG

Análisis epidemiológico Guatemala (in local language) link

  • Make an analysis and prediction of epidemiological cases in Guatemala and the relations.
  • Hosts: Alvin Estrada, Julio Monterroso / TensorFlow User Group Guatemala

QUALITY EDUCATION (in local language) link

  • Competition will be focused on the Enem (National High School Examination) data. Competitors will have to create models to predict student scores in multiple tests.
  • Hosts: Vinicius Fernandes Caridá (ML GDE), Pedro Gengo, Alex Fernandes Mansano / Tensorflow User Group São Paulo

Landscape Image Classification link

  • Classification of partially masked natural images of mountains, buildings, seas, etc.
  • Hosts: Aditya Kane, Yogesh Kulkarni (ML GDE), Shashank Sane / TFUG Pune

Autism Prediction Challenge link

  • Classifying whether individuals have Autism or not.
  • Hosts: Usha Rengaraju, Vijayabharathi Karuppasamy, Samuel T / TFUG Mysuru and TFUG Chennai

Tamkeen Fund Granted link

  • Predict the company funds based on the company's features
  • Hosts: Mohammed buallay (ML GDE), Sayed Ali Alkamel (ML GDE)

Hausa Sentiment Analysis (in local language) link

  • Classify the sentiment of sentences of Hausa Language
  • Hosts: Nuruddeen Sambo, Dattijo Murtala Makama / TFUG Bauchi

TSA Classification (in local language) link

  • We invite participants to develop a classification method to identify early autistic disorders.
  • Hosts: Yannick Serge Obam (ML GDE), Arnold Junior Mve Mve

Let's Fight lung cancer (in local language) link

  • Spotting factors that are link to lung cancer detection
  • Hosts: abderrahman jaize, Sara EL-ATEIF / TFUG Casablanca

Genome Sequences classification (in local language) link

  • Genome sequence classification based on NCBI's GenBank database
  • Hosts: Taha Bouhsine, Said ElHachmey, Lahcen Ousayd / TensorFlow User Group Agadir

GOOD HEALTH AND WELL BEING link

  • Using ML to predict heart disease - If a patient has heart disease or not
  • Hosts: Ibrahim Olagoke, Ahmad Olanrewaju, Ernest Owojori / TensorFlow User Group Ibadan

Preserving North African Culture link

  • We are tackling cultural preservation through a machine learning model capable of identifying the origin of a given item (food, clothing, building).
  • Hosts: elyes manai (ML GDE), Rania Boughanmi, Kayoum Djedidi / IEEE ESSTHS + GDSC ENIT

Delivery Assignment Prediction link

  • The aim of this competition is to build a multi-class classification model capable of accurately predicting the most suitable driver for one or several given orders based on the destination of the order and the paths covered by the deliverers.
  • Host: Thierno Ibrahima DIOP (ML GDE)

Used car price link

  • Predicting the price of an imported used car.
  • Hosts: Armel Yara, Kimana Misago, Jordan Erifried / TFUG Abidjan

TensorFlow Malaysia User Group link

  • Using AI/ML to solve Business Data problem
  • Hosts: Poo Kuan Hoong (ML GDE), Yu Yong Poh, Lau Sian Lun / TensorFlow & Deep Learning Malaysia User Group

Navigating ML Olympiad

You can search “ML Olympiad” on Kaggle Community Competitions page to see them all. And for further info, look for #MLOlympiad on social media.

Google Developers support ML Olympiad by providing swag for top 3 winners of each competition. Find your interest among the competitions, join/share them, and get your part of the swag for competition winners!