Tag Archives: Natural Language Processing

MultiModel: Multi-Task Machine Learning Across Domains



Over the last decade, the application and performance of Deep Learning has progressed at an astonishing rate. However, the current state of the field is that the neural network architectures are highly specialized to specific domains of application. An important question remains unanswered: Will a convergence between these domains facilitate a unified model capable of performing well across multiple domains?

Today, we present MultiModel, a neural network architecture that draws from the success of vision, language and audio networks to simultaneously solve a number of problems spanning multiple domains, including image recognition, translation and speech recognition. While strides have been made in this direction before, namely in Google’s Multilingual Neural Machine Translation System used in Google Translate, MultiModel is a first step towards the convergence of vision, audio and language understanding into a single network.

The inspiration for how MultiModel handles multiple domains comes from how the brain transforms sensory input from different modalities (such as sound, vision or taste), into a single shared representation and back out in the form of language or actions. As an analog to these modalities and the transformations they perform, MultiModel has a number of small modality-specific sub-networks for audio, images, or text, and a shared model consisting of an encoder, input/output mixer and decoder, as illustrated below.
MultiModel architecture: small modality-specific sub-networks work with a shared encoder, I/O mixer and decoder. Each petal represents a modality, transforming to and from the internal representation.
We demonstrate that MultiModel is capable of learning eight different tasks simultaneously: it can detect objects in images, provide captions, recognize speech, translate between four pairs of languages, and do grammatical constituency parsing at the same time. The input is given to the model together with a very simple signal that determines which output we are requesting. Below we illustrate a few examples taken from a MultiModel trained jointly on these eight tasks1:
When designing MultiModel it became clear that certain elements from each domain of research (vision, language and audio) were integral to the model’s success in related tasks. We demonstrate that these computational primitives (such as convolutions, attention, or mixture-of-experts layers) clearly improve performance on their originally intended domain of application, while not hindering MultiModel’s performance on other tasks. It is not only possible to achieve good performance while training jointly on multiple tasks, but on tasks with limited quantities of data, the performance actually improves. To our surprise, this happens even if the tasks come from different domains that would appear to have little in common, e.g., an image recognition task can improve performance on a language task.

It is important to note that while MultiModel does not establish new performance records, it does provide insight into the dynamics of multi-domain multi-task learning in neural networks, and the potential for improved learning on data-limited tasks by the introduction of auxiliary tasks. There is a longstanding saying in machine learning: “the best regularizer is more data”; in MultiModel, this data can be sourced across domains, and consequently can be obtained more easily than previously thought. MultiModel provides evidence that training in concert with other tasks can lead to good results and improve performance on data-limited tasks.

Many questions about multi-domain machine learning remain to be studied, and we will continue to work on tuning Multimodel and improving its performance. To allow this research to progress quickly, we open-sourced MultiModel as part of the Tensor2Tensor library. We believe that such synergetic models trained on data from multiple domains will be the next step in deep learning and will ultimately solve tasks beyond the reach of current narrowly trained networks.

Acknowledgements
This work is a collaboration between Googlers Łukasz Kaiser, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones and Jakob Uszkoreit, and Aidan N. Gomez from the University of Toronto. It was performed while Aidan was working with the Google Brain team.



1 The 8 tasks were: (1) speech recognition (WSJ corpus), (2) image classification (ImageNet), (3) image captioning (MS COCO), (4) parsing (Penn Treebank), (5) English-German translation, (6) German-English translation, (7) English-French translation, (8) French-English translation (all using WMT data-sets).

Accelerating Deep Learning Research with the Tensor2Tensor Library



Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results.

Today, we are happy to release Tensor2Tensor (T2T), an open-source system for training deep learning models in TensorFlow. T2T facilitates the creation of state-of-the art models for a wide variety of ML applications, such as translation, parsing, image captioning and more, enabling the exploration of various ideas much faster than previously possible. This release also includes a library of datasets and models, including the best models from a few recent papers (Attention Is All You Need, Depthwise Separable Convolutions for Neural Machine Translation and One Model to Learn Them All) to help kick-start your own DL research.

Translation Model
Training time
BLEU (difference from baseline)
Transformer (T2T)
3 days on 8 GPU
28.4 (+7.8)
SliceNet (T2T)
6 days on 32 GPUs
26.1 (+5.5)
1 day on 64 GPUs
26.0 (+5.4)
ConvS2S
18 days on 1 GPU
25.1 (+4.5)
GNMT
1 day on 96 GPUs
24.6 (+4.0)
8 days on 32 GPUs
23.8 (+3.2)
MOSES (phrase-based baseline)
N/A
20.6 (+0.0)
BLEU scores (higher is better) on the standard WMT English-German translation task.
As an example of the kind of improvements T2T can offer, we applied the library to machine translation. As you can see in the table above, two different T2T models, SliceNet and Transformer, outperform the previous state-of-the-art, GNMT+MoE. Our best T2T model, Transformer, is 3.8 points better than the standard GNMT model, which itself was 4 points above the baseline phrase-based translation system, MOSES. Notably, with T2T you can approach previous state-of-the-art results with a single GPU in one day: a small Transformer model (not shown above) gets 24.9 BLEU after 1 day of training on a single GPU. Now everyone with a GPU can tinker with great translation models on their own: our github repo has instructions on how to do that.

Modular Multi-Task Training
The T2T library is built with familiar TensorFlow tools and defines multiple pieces needed in a deep learning system: data-sets, model architectures, optimizers, learning rate decay schemes, hyperparameters, and so on. Crucially, it enforces a standard interface between all these parts and implements current ML best practices. So you can pick any data-set, model, optimizer and set of hyperparameters, and run the training to check how it performs. We made the architecture modular, so every piece between the input data and the predicted output is a tensor-to-tensor function. If you have a new idea for the model architecture, you don’t need to replace the whole setup. You can keep the embedding part and the loss and everything else, just replace the model body by your own function that takes a tensor as input and returns a tensor.

This means that T2T is flexible, with training no longer pinned to a specific model or dataset. It is so easy that even architectures like the famous LSTM sequence-to-sequence model can be defined in a few dozen lines of code. One can also train a single model on multiple tasks from different domains. Taken to the limit, you can even train a single model on all data-sets concurrently, and we are happy to report that our MultiModel, trained like this and included in T2T, yields good results on many tasks even when training jointly on ImageNet (image classification), MS COCO (image captioning), WSJ (speech recognition), WMT (translation) and the Penn Treebank parsing corpus. It is the first time a single model has been demonstrated to be able to perform all these tasks at once.

Built-in Best Practices
With this initial release, we also provide scripts to generate a number of data-sets widely used in the research community1, a handful of models2, a number of hyperparameter configurations, and a well-performing implementation of other important tricks of the trade. While it is hard to list them all, if you decide to run your model with T2T you’ll get for free the correct padding of sequences and the corresponding cross-entropy loss, well-tuned parameters for the Adam optimizer, adaptive batching, synchronous distributed training, well-tuned data augmentation for images, label smoothing, and a number of hyper-parameter configurations that worked very well for us, including the ones mentioned above that achieve the state-of-the-art results on translation and may help you get good results too.

As an example, consider the task of parsing English sentences into their grammatical constituency trees. This problem has been studied for decades and competitive methods were developed with a lot of effort. It can be presented as a sequence-to-sequence problem and be solved with neural networks, but it used to require a lot of tuning. With T2T, it took us only a few days to add the parsing data-set generator and adjust our attention transformer model to train on this problem. To our pleasant surprise, we got very good results in only a week:

Parsing Model
F1 score (higher is better)
Transformer (T2T)
91.3
Dyer et al.
91.7
Zhu et al.
90.4
Socher et al.
90.4
Vinyals & Kaiser et al.
88.3
Parsing F1 scores on the standard test set, section 23 of the WSJ. We only compare here models trained discriminatively on the Penn Treebank WSJ training set, see the paper for more results.

Contribute to Tensor2Tensor
In addition to exploring existing models and data-sets, you can easily define your own model and add your own data-sets to Tensor2Tensor. We believe the already included models will perform very well for many NLP tasks, so just adding your data-set might lead to interesting results. By making T2T modular, we also make it very easy to contribute your own model and see how it performs on various tasks. In this way the whole community can benefit from a library of baselines and deep learning research can accelerate. So head to our github repository, try the new models, and contribute your own!

Acknowledgements
The release of Tensor2Tensor was only possible thanks to the widespread collaboration of many engineers and researchers. We want to acknowledge here the core team who contributed (in alphabetical order): Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, Jakob Uszkoreit, Ashish Vaswani.



1 We include a number of datasets for image classification (MNIST, CIFAR-10, CIFAR-100, ImageNet), image captioning (MS COCO), translation (WMT with multiple languages including English-German and English-French), language modelling (LM1B), parsing (Penn Treebank), natural language inference (SNLI), speech recognition (TIMIT), algorithmic problems (over a dozen tasks from reversing through addition and multiplication to algebra) and we will be adding more and welcome your data-sets too.

2 Including LSTM sequence-to-sequence RNNs, convolutional networks also with separable convolutions (e.g., Xception), recently researched models like ByteNet or the Neural GPU, and our new state-of-the-art models mentioned in this post that we will be actively updating in the repository.




Efficient Smart Reply, now for Gmail



Last year we launched Smart Reply, a feature for Inbox by Gmail that uses machine learning to suggest replies to email. Since the initial release, usage of Smart Reply has grown significantly, making up about 12% of replies in Inbox on mobile. Based on our examination of the use of Smart Reply in Inbox and our ideas about how humans learn and use language, we have created a new version of Smart Reply for Gmail. This version increases the percentage of usable suggestions and is more algorithmically efficient.

Novel thinking: hierarchy
Inspired by how humans understand languages and concepts, we turned to hierarchical models of language, an approach that uses hierarchies of modules, each of which can learn, remember, and recognize a sequential pattern.

The content of language is deeply hierarchical, reflected in the structure of language itself, going from letters to words to phrases to sentences to paragraphs to sections to chapters to books to authors to libraries, etc. Consider the message, "That interesting person at the cafe we like gave me a glance." The hierarchical chunks in this sentence are highly variable. The subject of the sentence is "That interesting person at the cafe we like." The modifier "interesting" tells us something about the writer's past experiences with the person. We are told that the location of an incident involving both the writer and the person is "at the cafe." We are also told that "we," meaning the writer and the person being written to, like the cafe. Additionally, each word is itself part of a hierarchy, sometimes more than one. A cafe is a type of restaurant which is a type of store which is a type of establishment, and so on.

In proposing an appropriate response to this message we might consider the meaning of the word "glance," which is potentially ambiguous. Was it a positive gesture? In that case, we might respond, "Cool!" Or was it a negative gesture? If so, does the subject say anything about how the writer felt about the negative exchange? A lot of information about the world, and an ability to make reasoned judgments, are needed to make subtle distinctions.

Given enough examples of language, a machine learning approach can discover many of these subtle distinctions. Moreover, a hierarchical approach to learning is well suited to the hierarchical nature of language. We have found that this approach works well for suggesting possible responses to emails. We use a hierarchy of modules, each of which considers features that correspond to sequences at different temporal scales, similar to how we understand speech and language.
Each module processes inputs and provides transformed representations of those inputs on its outputs (which are, in turn, available for the next level). In the Smart Reply system, and the figure above, the repeated structure has two layers of hierarchy. The first makes each feature useful as a predictor of the final result, and the second combines these features. By definition, the second works at a more abstract representation and considers a wider timescale.

By comparison, the initial release of Smart Reply encoded input emails word-by-word with a long-short-term-memory (LSTM) recurrent neural network, and then decoded potential replies with yet another word-level LSTM. While this type of modeling is very effective in many contexts, even with Google infrastructure, it’s an approach that requires substantial computation resources. Instead of working word-by-word, we found an effective and highly efficient path by processing the problem more all-at-once, by comparing a simple hierarchy of vector representations of multiple features corresponding to longer time spans.

Semantics
We have also considered whether the mathematical space of these vector representations is implicitly semantic. Do the hierarchical network representations reflect a coarse “understanding” of the actual meaning of the inputs and the responses in order to determine which go together, or do they reflect more consistent syntactical patterns? Given many real examples of which pairs go together and, perhaps more importantly which do not, we found that our networks are surprisingly effective and efficient at deriving representations that meet the training requirements.
So far we see that the system can find responses that are on point, without an overlap of keywords or even synonyms of keywords.More directly, we’re delighted when the system suggests results that show understanding and are helpful.

The key to this work is the confidence and trust people give us when they use the Smart Reply feature. As always, thank you for showing us the ways that work (and the ways that don’t!). With your help, we’ll do our best to keep learning.

Coarse Discourse: A Dataset for Understanding Online Discussions



Every day, participants of online communities form and share their opinions, experiences, advice and social support, most of which is expressed freely and without much constraint. These online discussions are often a key resource of information for many important topics, such as parenting, fitness, travel and more. However, these discussions also are intermixed with a clutter of disagreements, humor, flame wars and trolling, requiring readers to filter the content before getting the information they are looking for. And while the field of Information Retrieval actively explores ways to allow users to more efficiently find, navigate and consume this content, there is a lack of shared datasets on forum discussions to aid in understanding these discussions a bit better.

To aid researchers in this space, we are releasing the Coarse Discourse dataset, the largest dataset of annotated online discussions to date. The Coarse Discourse contains over half a million human annotations of publicly available online discussions on a random sample of over 9,000 threads from 130 communities from reddit.com.

To create this dataset, we developed the Coarse Discourse taxonomy of forum comments by going through a small set of forum threads, reading every comment, and deciding what role the comments played in the discussion. We then repeated and revised this exercise with crowdsourced human editors to validate the reproducibility of the taxonomy's discourse types, which include: announcement, question, answer, agreement, disagreement, appreciation, negative reaction, elaboration, and humor. From this data, over 100,000 comments were independently annotated by the crowdsourced editors for discourse type and relation. Along with the raw annotations from crowdsourced editors, we also provide the Coarse Discourse annotation task guidelines used by the editors to help with collecting data for other forums and refining the task further.
An example thread annotated with discourse types and relations. Early findings suggest that question answering is a prominent use case in most communities, while some communities are more converationally focused, with back-and-forth interactions.
For machine learning and natural language processing researchers trying to characterize the nature of online discussions, we hope that this dataset is a useful resource. Visit our GitHub repository to download the data. For more details, check out our ICWSM paper, “Characterizing Online Discussion Using Coarse Discourse Sequences.”

Acknowledgments
This work was done by Amy Zhang during her internship at Google. We would also like to thank Bryan Culbertson, Olivia Rhinehart, Eric Altendorf, David Huynh, Nancy Chang, Chris Welty and our crowdsourced editors.

An Upgrade to SyntaxNet, New Models and a Parsing Competition



At Google, we continuously improve the language understanding capabilities used in applications ranging from generation of email responses to translation. Last summer, we open-sourced SyntaxNet, a neural-network framework for analyzing and understanding the grammatical structure of sentences. Included in our release was Parsey McParseface, a state-of-the-art model that we had trained for analyzing English, followed quickly by a collection of pre-trained models for 40 additional languages, which we dubbed Parsey's Cousins. While we were excited to share our research and to provide these resources to the broader community, building machine learning systems that work well for languages other than English remains an ongoing challenge. We are excited to announce a few new research resources, available now, that address this problem.

SyntaxNet Upgrade
We are releasing a major upgrade to SyntaxNet. This upgrade incorporates nearly a year’s worth of our research on multilingual language understanding, and is available to anyone interested in building systems for processing and understanding text. At the core of the upgrade is a new technology that enables learning of richly layered representations of input sentences. More specifically, the upgrade extends TensorFlow to allow joint modeling of multiple levels of linguistic structure, and to allow neural-network architectures to be created dynamically during processing of a sentence or document.

Our upgrade makes it, for example, easy to build character-based models that learn to compose individual characters into words (e.g. ‘c-a-t’ spells ‘cat’). By doing so, the models can learn that words can be related to each other because they share common parts (e.g. ‘cats’ is the plural of ‘cat’ and shares the same stem; ‘wildcat’ is a type of ‘cat’). Parsey and Parsey’s Cousins, on the other hand, operated over sequences of words. As a result, they were forced to memorize words seen during training and relied mostly on the context to determine the grammatical function of previously unseen words.

As an example, consider the following (meaningless but grammatically correct) sentence:
This sentence was originally coined by Andrew Ingraham who explained: “You do not know what this means; nor do I. But if we assume that it is English, we know that the doshes are distimmed by the gostak. We know too that one distimmer of doshes is a gostak." Systematic patterns in morphology and syntax allow us to guess the grammatical function of words even when they are completely novel: we understand that ‘doshes’ is the plural of the noun ‘dosh’ (similar to the ‘cats’ example above) or that ‘distim’ is the third person singular of the verb distim. Based on this analysis we can then derive the overall structure of this sentence even though we have never seen the words before.

ParseySaurus
To showcase the new capabilities provided by our upgrade to SyntaxNet, we are releasing a set of new pretrained models called ParseySaurus. These models use the character-based input representation mentioned above and are thus much better at predicting the meaning of new words based both on their spelling and how they are used in context. The ParseySaurus models are far more accurate than Parsey’s Cousins (reducing errors by as much as 25%), particularly for morphologically-rich languages like Russian, or agglutinative languages like Turkish and Hungarian. In those languages there can be dozens of forms for each word and many of these forms might never be observed during training - even in a very large corpus.

Consider the following fictitious Russian sentence, where again the stems are meaningless, but the suffixes define an unambiguous interpretation of the sentence structure:
Even though our Russian ParseySaurus model has never seen these words, it can correctly analyze the sentence by inspecting the character sequences which constitute each word. In doing so, the system can determine many properties of the words (notice how many more morphological features there are here than in the English example). To see the sentence as ParseySaurus does, here is a visualization of how the model analyzes this sentence:
Each square represents one node in the neural network graph, and lines show the connections between them. The left-side “tail” of the graph shows the model consuming the input as one long string of characters. These are intermittently passed to the right side, where the rich web of connections shows the model composing words into phrases and producing a syntactic parse. Check out the full-size rendering here.

A Competition
You might be wondering whether character-based modeling are all we need or whether there are other techniques that might be important. SyntaxNet has lots more to offer, like beam search and different training objectives, but there are of course also many other possibilities. To find out what works well in practice, we are helping co-organize a multilingual parsing competition at this year’s Conference on Computational Natural Language Learning (CoNLL) with the goal of building syntactic parsing systems that work well in real-world settings and for 45 different languages.

The competition is made possible by the Universal Dependencies (UD) initiative, whose goal is to develop cross-linguistically consistent treebanks. Because machine learned models can only be as good as the data that they have access to, we have been contributing data to UD since 2013. For the competition, we partnered with UD and DFKI to build a new multilingual evaluation set consisting of 1000 sentences that have been translated into 20+ different languages and annotated by linguists with parse trees. This evaluation set is the first of its kind (in the past, each language had its own independent evaluation set) and will enable more consistent cross-lingual comparisons. Because the sentences have the same meaning and have been annotated according to the same guidelines, we will be able to get closer to answering the question of which languages might be harder to parse.

We hope that the upgraded SyntaxNet framework and our the pre-trained ParseySaurus models will inspire researchers to participate in the competition. We have additionally created a tutorial showing how to load a Docker image and train models on the Google Cloud Platform, to facilitate participation by smaller teams with limited resources. So, if you have an idea for making your own models with the SyntaxNet framework, sign up to compete! We believe that the configurations that we are releasing are a good place to start, but we look forward to seeing how participants will be able to extend and improve these models or perhaps create better ones!

Thanks to everyone involved who made this competition happen, including our collaborators at UD-Pipe, who provide another baseline implementation to make it easy to enter the competition. Happy parsing from the main developers, Chris Alberti, Daniel Andor, Ivan Bogatyy, Mark Omernick, Zora Tung and Ji Ma!

A Large Corpus for Supervised Word-Sense Disambiguation



Understanding the various meanings of a particular word in text is key to understanding language. For example, in the sentence “he will receive stock in the reorganized company”, we know that “stock” refers to “the capital raised by a business or corporation through the issue and subscription of shares” as defined in the New Oxford American Dictionary (NOAD), based on the context. However, there are more than 10 other definitions for “stock” in NOAD, ranging from “goods in a store”to “a medieval device for punishment”. For a computer algorithm, distinguishing between these meanings is so difficult that it has been described as “AI-complete” in the past (Navigli, 2009; Ide and Veronis 1998; Mallery 1988).

In order to help further progress on this challenge, we’re happy to announce the release of word-sense annotations on the popular MASC and SemCor datasets, manually annotated with senses from the NOAD. We’re also releasing mappings from the NOAD senses to English Wordnet, which is more commonly used by the research community. This is one of the largest releases of fully sense-annotated English corpora.

Supervised Word-Sense Disambiguation
Humans distinguish between meanings of words in text easily because we have access to an enormous amount of common-sense knowledge about how the world works, and how this connects to language. For an example of the difficulty, “[stock] in a business” implies the financial sense, but “[stock] in a bodega” is more likely to refer to goods on the shelves of a store, even though a bodega is a kind of business. Acquiring sufficient knowledge in a form that a machine can use, and then applying it to understanding the words in text, is a challenge.

Supervised word-sense disambiguation (WSD) is the problem of building a machine-learned system using human-labeled data that can assign a dictionary sense to all words used in text (in contrast to entity disambiguation, which focuses on nouns, mostly proper). Building a supervised model that performs better than just assigning the most frequent sense of a word without considering the surrounding text is difficult, but supervised models can perform well when supplied with significant amounts of training data. (Navigli, 2009)

By releasing this dataset, it is our hope that the research community will be able to further the advance of algorithms that allow machines to understand language better, allowing applications such as:
  • Facilitating the automatic construction of databases from text in order to answer questions and connect knowledge in documents. For example, understanding that a “hemi engine” is a kind of automotive machinery, and a “locomotive engine” is a kind of train, or that “Kanye West is a star” implies that he is a celebrity, but “Sirius is a star” implies that it is an astronomical object.
  • Disambiguating words in queries, so that results for “date palm” and “date night” or “web spam” and “spam recipe” can have distinct interpretations for different senses, and documents returned from a query have the same meaning that is implied by the query.
Manual Annotation
In the manually labeled data sets that we are releasing, each sense annotation is labeled by five raters. To ensure high quality of the sense annotation, raters are first trained with gold annotations, which were labeled by experienced linguists in a separate pilot study before the annotation task. The figure below shows an example of a rater’s work page in our annotation tool.

The left side of the page lists all candidate dictionary senses (in this case, the word “general”). Example sentences from the dictionary are also provided. The to-be-annotated words, highlighted within a sentence, are shown on the right side of the work page. Besides linking a dictionary sense to a word, raters could also label one of the three exceptions: (1) The word is a typo (2) None of the above and (3) I can’t decide. Raters could also check whether the word usage is a metaphor and leave comments.

The sense annotation task used for this data release achieves an inter-rater reliability score of 0.869 using Krippendorff's alpha (α >= 0.67 is considered an acceptable level of reproducibility, and α >= 0.80 is considered a highly reproducible result) (Krippendorff, 2004). Annotation counts are listed below.

Total
noun
verb
adjective
adverb
SemCor
115k
38k
57k
11.6k
8.6k
MASC
133k
50k
12.7k
13.6k
4.2k

Wordnet Mappings
We’ve also included two sets of mappings from NOAD to Wordnet. A smaller set of 2200 words was manually mapped in a process similar to the sense annotations described above, and a larger set was created algorithmically. Together, these mappings allow for resources in Wordnet to be applied to this NOAD corpus, and for systems built using Wordnet to be evaluated using this corpus.

You can learn more about our full research results on this corpus using LSTM-based language models and semi-supervised learning in “Semi-supervised Word Sense Disambiguation with Neural Models”.

Acknowledgements
The datasets were built with help from Eric Altendorf, Heng Chen, Jutta Degener, Ryan Doherty, David Huynh, Ji Li, Julian Richardson and Binbin Ruan.

Meet Parsey’s Cousins: Syntax for 40 languages, plus new SyntaxNet capabilities



Just in time for ACL 2016, we are pleased to announce that Parsey McParseface, released in May as part of SyntaxNet and the basis for the Cloud Natural Language API, now has 40 cousins! Parsey’s Cousins is a collection of pretrained syntactic models for 40 languages, capable of analyzing the native language of more than half of the world’s population at often unprecedented accuracy. To better address the linguistic phenomena occurring in these languages we have endowed SyntaxNet with new abilities for Text Segmentation and Morphological Analysis.

When we released Parsey, we were already planning to expand to more languages, and it soon became clear that this was both urgent and important, because researchers were having trouble creating top notch SyntaxNet models for other languages.

The reason for that is a little bit subtle. SyntaxNet, like other TensorFlow models, has a lot of knobs to turn, which affect accuracy and speed. These knobs are called hyperparameters, and control things like the learning rate and its decay, momentum, and random initialization. Because neural networks are more sensitive to the choice of these hyperparameters than many other machine learning algorithms, picking the right hyperparameter setting is very important. Unfortunately there is no tested and proven way of doing this and picking good hyperparameters is mostly an empirical science -- we try a bunch of settings and see what works best.

An additional challenge is that training these models can take a long time, several days on very fast hardware. Our solution is to train many models in parallel via MapReduce, and when one looks promising, train a bunch more models with similar settings to fine-tune the results. This can really add up -- on average, we train more than 70 models per language. The plot below shows how the accuracy varies depending on the hyperparameters as training progresses. The best models are up to 4% absolute more accurate than ones trained without hyperparameter tuning.
Held-out set accuracy for various English parsing models with different hyperparameters (each line corresponds to one training run with specific hyperparameters). In some cases training is a lot slower and in many cases a suboptimal choice of hyperparameters leads to significantly lower accuracy. We are releasing the best model that we were able to train for each language.
In order to do a good job at analyzing the grammar of other languages, it was not sufficient to just fine-tune our English setup. We also had to expand the capabilities of SyntaxNet. The first extension is a model for text segmentation, which is the task of identifying word boundaries. In languages like English, this isn’t very hard -- you can mostly look for spaces and punctuation. In Chinese, however, this can be very challenging, because words are not separated by spaces. To correctly analyze dependencies between Chinese words, SyntaxNet needs to understand text segmentation -- and now it does.
Analysis of a Chinese string into a parse tree showing dependency labels, word tokens, and parts of speech (read top to bottom for each word token).
The second extension is a model for morphological analysis. Morphology is a language feature that is poorly represented in English. It describes inflection: i.e., how the grammatical function and meaning of the word changes as its spelling changes. In English, we add an -s to a word to indicate plurality. In Russian, a heavily inflected language, morphology can indicate number, gender, whether the word is the subject or object of a sentence, possessives, prepositional phrases, and more. To understand the syntax of a sentence in Russian, SyntaxNet needs to understand morphology -- and now it does.
Parse trees showing dependency labels, parts of speech, and morphology.
As you might have noticed, the parse trees for all of the sentences above look very similar. This is because we follow the content-head principle, under which dependencies are drawn between content words, with function words becoming leaves in the parse tree. This idea was developed by the Universal Dependencies project in order to increase parallelism between languages. Parsey’s Cousins are trained on treebanks provided by this project and are designed to be cross-linguistically consistent and thus easier to use in multi-lingual language understanding applications.

Using the same set of labels across languages can help us understand how sentences in different languages, or variations in the same language, convey the same meaning. In all of the above examples, the root indicates the main verb of the sentence and there is a passive nominal subject (indicated by the arc labeled with ‘nsubjpass’) and a passive auxiliary (‘auxpass’). If you look closely, you will also notice some differences because the grammar of each language differs. For example, English uses the preposition ‘by,’ where Russian uses morphology to mark that the phrase ‘the publisher (издателем)’ is in instrumental case -- the meaning is the same, it is just expressed differently.

Google has been involved in the Universal Dependencies project since its inception and we are very excited to be able to bring together our efforts on datasets and modeling. We hope that this release will facilitate research progress in building computer systems that can understand all of the world’s languages.

Parsey's Cousins can be found on GitHub, along with Parsey McParseface and SyntaxNet.