Tag Archives: ACL

Google at ACL 2020

This week, the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020), a premier conference covering a broad spectrum of research areas that are concerned with computational approaches to natural language, takes place online.

As a leader in natural language processing and understanding, and a Diamond Level sponsor of ACL 2020, Google will showcase the latest research in the field with over 30 publications, and the organization of and participation in a variety of workshops and tutorials.

If you’re registered for ACL 2020, we hope that you’ll visit the Google virtual booth to learn more about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about the Google research being presented at ACL 2020 below (Google affiliations bolded).

Diversity & Inclusion (D&I) Chair: Vinodkumar Prabhakaran
Accessibility Chair: Sushant Kafle
Local Sponsorship Chair: Kristina Toutanova
Virtual Infrastructure Committee: Yi Luan
Area Chairs: Anders Søgaard, Ankur Parikh, Annie Louis, Bhuvana Ramabhadran, Christo Kirov, Daniel Cer, Dipanjan Das, Diyi Yang, Emily Pitler, Eunsol Choi, George Foster, Idan Szpektor, Jacob Eisenstein, Jason Baldridge, Jun Suzuki, Kenton Lee, Luheng He, Marius Pasca, Ming-Wei Chang, Sebastian Gehrmann, Shashi Narayan, Slav Petrov, Vinodkumar Prabhakaran, Waleed Ammar, William Cohen

Long Papers
Cross-modal Language Generation using Pivot Stabilization for Web-scale Language Coverage
Ashish V. Thapliyal, Radu Soricut

Automatic Detection of Generated Text is Easiest when Humans are Fooled
Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, Douglas Eck

On Faithfulness and Factuality in Abstractive Summarization
Joshua Maynez, Shashi Narayan, Bernd Bohnet, Ryan McDonald

MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, Denny Zhou

BabyWalk: Going Farther in Vision-and-Language Navigation by Taking Baby Steps
Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng, Vihan Jain, Eugene Ie, Fei Sha

Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation
Xuanli He, Gholamreza Haffari, Mohammad Norouzi

GoEmotions: A Dataset of Fine-Grained Emotions
Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, Sujith Ravi

TaPas: Weakly Supervised Table Parsing via Pre-training (see blog post)
Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, Julian Eisenschlos

Toxicity Detection: Does Context Really Matter?
John Pavlopoulos, Jeffrey Sorensen, Lucas Dixon, Nithum Thain, Ion Androutsopoulos

(Re)construing Meaning in NLP
Sean Trott, Tiago Timponi Torrent, Nancy Chang, Nathan Schneider

Pretraining with Contrastive Sentence Objectives Improves Discourse Performance of Language Models
Dan Iter, Kelvin Guu, Larry Lansing, Dan Jurafsky

Probabilistic Assumptions Matter: Improved Models for Distantly-Supervised Document-Level Question Answering
Hao Cheng, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

AdvAug: Robust Adversarial Augmentation for Neural Machine Translation
Yong Cheng, Lu Jiang, Wolfgang Macherey, Jacob Eisenstein

Named Entity Recognition as Dependency Parsing
Juntao Yu, Bernd Bohnet, Massimo Poesio

Cross-modal Coherence Modeling for Caption Generation
Malihe Alikhani, Piyush Sharma, Shengjie Li, Radu Soricut, Matthew Stone

Representation Learning for Information Extraction from Form-like Documents (see blog post)
Bodhisattwa Prasad Majumder, Navneet Potti, Sandeep Tata, James Bradley Wendt, Qi Zhao, Marc Najork

Low-Dimensional Hyperbolic Knowledge Graph Embeddings
Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, Christopher Ré

What Question Answering can Learn from Trivia Nerds
Jordan Boyd-Graber, Benjamin Börschinger

Learning a Multi-Domain Curriculum for Neural Machine Translation
Wei Wang, Ye Tian, Jiquan Ngiam, Yinfei Yang, Isaac Caswell, Zarana Parekh

Translationese as a Language in "Multilingual" NMT
Parker Riley, Isaac Caswell, Markus Freitag, David Grangier

Mapping Natural Language Instructions to Mobile UI Action Sequences
Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, Jason Baldridge

BLEURT: Learning Robust Metrics for Text Generation (see blog post)
Thibault Sellam, Dipanjan Das, Ankur Parikh

Exploring Unexplored Generalization Challenges for Cross-Database Semantic Parsing
Alane Suhr, Ming-Wei Chang, Peter Shaw, Kenton Lee

Frugal Paradigm Completion
Alexander Erdmann, Tom Kenter, Markus Becker, Christian Schallhart

Short Papers
Reverse Engineering Configurations of Neural Text Generation Models
Yi Tay, Dara Bahri, Che Zheng, Clifford Brunk, Donald Metzler, Andrew Tomkins

Syntactic Data Augmentation Increases Robustness to Inference Heuristics
Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Pitler, Tal Linzen

Leveraging Monolingual Data with Self-Supervision for Multilingual Neural Machine Translation
Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Firat, Mia Chen, Sneha Kudugunta, Naveen Arivazhagan, Yonghui Wu

Social Biases in NLP Models as Barriers for Persons with Disabilities
Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, Stephen Denuyl

Toward Better Storylines with Sentence-Level Language Models
Daphne Ippolito, David Grangier, Douglas Eck, Chris Callison-Burch

TACL Papers
TYDI QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages (see blog post)
Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, Jennimaria Palomaki

Phonotactic Complexity and Its Trade-offs
Tiago Pimentel, Brian Roark, Ryan Cotterell

Multilingual Universal Sentence Encoder for Semantic Retrieval (see blog post)
Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant, Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, Ray Kurzweil

IWPT - The 16th International Conference on Parsing Technologies
Yuji Matsumoto, Stephan Oepen, Kenji Sagae, Anders Søgaard, Weiwei Sun and Reut Tsarfaty

ALVR - Workshop on Advances in Language and Vision Research
Xin Wang, Jesse Thomason, Ronghang Hu, Xinlei Chen, Peter Anderson, Qi Wu, Asli Celikyilmaz, Jason Baldridge and William Yang Wang

WNGT - The 4th Workshop on Neural Generation and Translation
Alexandra Birch, Graham Neubig, Andrew Finch, Hiroaki Hayashi, Kenneth Heafield, Ioannis Konstas, Yusuke Oda and Xian Li

NLPMC - NLP for Medical Conversations
Parminder Bhatia, Chaitanya Shivade, Mona Diab, Byron Wallace, Rashmi Gangadharaiah, Nan Du, Izhak Shafran and Steven Lin

AutoSimTrans - The 1st Workshop on Automatic Simultaneous Translation
Hua Wu, Colin Cherry, James Cross, Liang Huang, Zhongjun He, Mark Liberman and Yang Liu

Interpretability and Analysis in Neural NLP (cutting-edge)
Yonatan Belinkov, Sebastian Gehrmann, Ellie Pavlick

Commonsense Reasoning for Natural Language Processing (Introductory)
Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin Choi, Dan Roth

Source: Google AI Blog

Extracting Structured Data from Templatic Documents

Templatic documents, such as receipts, bills, insurance quotes, and others, are extremely common and critical in a diverse range of business workflows. Currently, processing these documents is largely a manual effort, and automated systems that do exist are based on brittle and error-prone heuristics. Consider a document type like invoices, which can be laid out in thousands of different ways — invoices from different companies, or even different departments within the same company, may have slightly different formatting. However, there is a common understanding of the structured information that an invoice should contain, such as an invoice number, an invoice date, the amount due, the pay-by date, and the list of items for which the invoice was sent. A system that can automatically extract all this data has the potential to dramatically improve the efficiency of many business workflows by avoiding error-prone, manual work.

In “Representation Learning for Information Extraction from Form-like Documents”, accepted to ACL 2020, we present an approach to automatically extract structured data from templatic documents. In contrast to previous work on extraction from plain-text documents, we propose an approach that uses knowledge of target field types to identify candidate fields. These are then scored using a neural network that learns a dense representation of each candidate using the words in its neighborhood. Experiments on two corpora (invoices and receipts) show that we’re able to generalize well to unseen layouts.

Why Is This Hard?
The challenge in this information extraction problem arises because it straddles the natural language processing (NLP) and computer vision worlds. Unlike classic NLP tasks, such documents do not contain “natural language” as might be found in regular sentences and paragraphs, but instead resemble forms. Data is often presented in tables, but in addition many documents have multiple pages, frequently with a varying number of sections, and have a variety of layout and formatting clues to organize the information. An understanding of the two-dimensional layout of text on the page is key to understanding such documents. On the other hand, treating this purely as an image segmentation problem makes it difficult to take advantage of the semantics of the text.

Solution Overview
Our approach to this problem allows developers to train and deploy an extraction system for a given domain (like invoices) using two inputs — a target schema (i.e., a list of fields to extract and their corresponding types) and a small collection of documents labeled with the ground truth for use as a training set. Supported field types include basics, such as dates, integers, alphanumeric codes, currency amounts, phone-numbers, and URLs. We also take advantage of entity types commonly detected by the Google Knowledge Graph, such as addresses, names of companies, etc.

The input document is first run through an Optical Character Recognition (OCR) service to extract the text and layout information, which allows this to work with native digital documents, such as PDFs, and document images (e.g., scanned documents). We then run a candidate generator that identifies spans of text in the OCR output that might correspond to an instance of a given field. The candidate generator utilizes pre-existing libraries associated with each field type (date, number, phone-number, etc.), which avoids the need to write new code for each candidate generator. Each of these candidates is then scored using a trained neural network (the “scorer”, described below) to estimate the likelihood that it is indeed a value one might extract for that field. Finally, an assigner module matches the scored candidates to the target fields. By default, the assigner simply chooses the highest scoring candidate for the field, but additional domain-specific constraints can be incorporated, such as requiring that the invoice date field is chronologically before the payment date field.
The processing steps in the extraction system using a toy schema with two fields on an input invoice document. Blue boxes show the candidates for the invoice_date field and gold boxes for the amount_due field.
The scorer is a neural model that is trained as a binary classifier. It takes as input the target field from the schema along with the extraction candidate and produces a prediction score between 0 and 1. The target label for a candidate is determined by whether the candidate matches the ground truth for that document and field. The model learns how to represent each field and each candidate in a vector space in which the nearer a field and candidate are in the vector space, the more likely it is that the candidate is the true extraction value for that field and document.

Candidate Representation
A candidate is represented by the tokens in its neighborhood along with the relative position of the token on the page with respect to the centroid of the bounding box identified for the candidate. Using the invoice_date field as an example, phrases in the neighborhood like “Invoice Date’” or “Inv Date” might indicate to the scorer that this is a likely candidate, while phrases like “Delivery Date” would indicate that this is likely not the invoice_date. We do not include the value of the candidate in its representation in order to avoid overfitting to values that happen to be present in a small training data set — e.g., “2019” for the invoice date, if the training corpus happened to include only invoices from that year.
A small snippet of an invoice. The green box shows a candidate for the invoice_date field, and the red box is a token in the neighborhood along with the arrow representing the relative position. Each of the other tokens (‘number’, ‘date’, ‘page’, ‘of’, etc along with the other occurrences of ‘invoice’) are part of the neighborhood for the invoice candidate.
Model Architecture
The figure below shows the general structure of the network. In order to construct the candidate encoding (i), each token in the neighborhood is embedded using a word embedding table (a). The relative position of each neighbor (b) is embedded using two fully connected ReLU layers that capture fine-grained non-linearities. The text and position embeddings for each neighbor are concatenated to form a neighbor encoding (d). A self attention mechanism is used to incorporate the neighborhood context for each neighbor (e), which is combined into a neighborhood encoding (f) using max-pooling. The absolute position of the candidate on the page (g) is embedded in a manner similar to the positional embedding for a neighbor, and concatenated with the neighborhood encoding for the candidate encoding (i). The final scoring layer computes the cosine similarity between the field embedding (k) and the candidate encoding (i) and then rescales it to be between 0 and 1.

For training and validation, we used an internal dataset of invoices with a large variety of layouts. In order to test the ability of the model to generalize to unseen layouts, we used a test-set of invoices with layouts that were disjoint from the training and validation set. We report the F1 score of the extractions from this system on a few key fields below (higher is better):

Field F1 Score
amount_due 0.801
delivery_date 0.667
due_date 0.861
invoice_date 0.940
invoice_id 0.949
purchase_order 0.896
total_amount 0.858
total_tax_amount 0.839

As you can see from the table above, the model does well on most fields. However, there’s room for improvement for fields like delivery_date. Additional investigation revealed that this field was present in a very small subset of the examples in our training data. We expect that gathering additional training data will help us improve on it.

What’s next?
Google Cloud recently announced an invoice parsing service as part of the Document AI product. The service uses the methods described above, along with other recent research breakthroughs like BERT, to extract more than a dozen key fields from invoices. You can upload an invoice at the demo page and see this technology in action!

For a given document type we expect to be able to build an extraction system given a modest sized labeled corpus. There are several follow-ons we are currently pursuing, including the improvement of data efficiency and accurately handling nested and repeated fields, and fields for which it is difficult to define a good candidate generator.

This work was a collaboration between Google Research and several engineers in Google Cloud. I’d like to thank Navneet Potti, James Wendt, Marc Najork, Qi Zhao, and Ivan Kuznetsov in Google Research as well as Lauro Costa, Evan Huang, Will Lu, Lukas Rutishauser, Mu Wang, and Yang Xu on the Cloud AI team for their support. And finally, our research interns Bodhisattwa Majumder and Beliz Gunel for their tireless experimentation on dozens of ideas.

Source: Google AI Blog

Evaluating Natural Language Generation with BLEURT

In the last few years, research in natural language generation (NLG) has made tremendous progress, with models now able to translate text, summarize articles, engage in conversation, and comment on pictures with unprecedented accuracy, using approaches with increasingly high levels of sophistication. Currently, there are two methods to evaluate these NLG systems: human evaluation and automatic metrics. With human evaluation, one runs a large-scale quality survey for each new version of a model using human annotators, but that approach can be prohibitively labor intensive. In contrast, one can use popular automatic metrics (e.g., BLEU), but these are oftentimes unreliable substitutes for human interpretation and judgement. The rapid progress of NLG and the drawbacks of existing evaluation methods calls for the development of novel ways to assess the quality and success of NLG systems.

In “BLEURT: Learning Robust Metrics for Text Generation” (presented during ACL 2020), we introduce a novel automatic metric that delivers ratings that are robust and reach an unprecedented level of quality, much closer to human annotation. BLEURT (Bilingual Evaluation Understudy with Representations from Transformers) builds upon recent advances in transfer learning to capture widespread linguistic phenomena, such as paraphrasing. The metric is available on Github.

Evaluating NLG Systems
In human evaluation, a piece of generated text is presented to annotators, who are tasked with assessing its quality with respect to its fluency and meaning. The text is typically shown side-by-side with a reference, authored by a human or mined from the Web.
An example questionnaire used for human evaluation in machine translation.
The advantage of this method is that it is accurate: people are still unrivaled when it comes to evaluating the quality of a piece of text. However, this method of evaluation can easily take days and involve dozens of people for just a few thousand examples, which disrupts the model development workflow.

In contrast, the idea behind automatic metrics is to provide a cheap, low-latency proxy for human-quality measurements. Automatic metrics often take two sentences as input, a candidate and a reference, and they return a score that indicates to what extent the former resembles the latter, typically using lexical overlap. A popular metric is BLEU, which counts the sequences of words in the candidate that also appear in the reference (the BLEU score is very similar to precision).

The advantages and weaknesses of automatic metrics are the opposite of those that come with human evaluation. Automatic metrics are convenient — they can be computed in real-time throughout the training process (e.g., for plotting with Tensorboard). However, they are often inaccurate due to their focus on surface-level similarities and they fail to capture the diversity of human language. Frequently, there are many perfectly valid sentences that can convey the same meaning. Overlap-based metrics that rely exclusively on lexical matches unfairly reward those that resemble the reference in their surface form, even if they do not accurately capture meaning, and penalize other paraphrases.
BLEU scores for three candidate sentences. Candidate 2 is semantically close to the reference, and yet its score is lower than Candidate 3.
Ideally, an evaluation method for NLG should combine the advantages of both human evaluation and automatic metrics — it should be relatively cheap to compute, but flexible enough to cope with linguistic diversity.

Introducing BLEURT
BLEURT is a novel, machine learning-based automatic metric that can capture non-trivial semantic similarities between sentences. It is trained on a public collection of ratings (the WMT Metrics Shared Task dataset) as well as additional ratings provided by the user.
Three candidate sentences rated by BLEURT. BLEURT captures that candidate 2 is similar to the reference, even though it contains more non-reference words than candidate 3.
Creating a metric based on machine learning poses a fundamental challenge: the metric should do well consistently on a wide range of tasks and domains, and over time. However, there is only a limited amount of training data. Indeed, public data is sparse — the WMT Metrics Task dataset, the largest collection of human ratings at the time of writing, contains ~260K human ratings covering the news domain only. This is too limited to train a metric suited for the evaluation of NLG systems of the future.

To address this problem, we employ transfer learning. First, we use the contextual word representations of BERT, a state-of-the-art unsupervised representation learning method for language understanding that has already been successfully incorporated into NLG metrics (e.g., YiSi or BERTscore).

Second, we introduce a novel pre-training scheme to increase BLEURT's robustness. Our experiments reveal that training a regression model directly over publicly available human ratings is a brittle approach, since we cannot control in what domain and across what time span the metric will be used. The accuracy is likely to drop in the presence of domain drift, i.e., when the text used comes from a different domain than the training sentence pairs. It may also drop when there is a quality drift, when the ratings to be predicted are higher than those used during training — a feature which would normally be good news because it indicates that ML research is making progress.

The success of BLEURT relies on “warming-up” the model using millions of synthetic sentence pairs before fine-tuning on human ratings. We generated training data by applying random perturbations to sentences from Wikipedia. Instead of collecting human ratings, we use a collection of metrics and models from the literature (including BLEU), which allows the number of training examples to be scaled up at very low cost.
BLEURT's data generation process combines random perturbations and scoring with pre-existing metrics and models.
Experiments reveal that pre-training significantly increases BLEURT's accuracy, especially when the test data is out-of-distribution.

We pre-train BLEURT twice, first with a language modelling objective (as explained in the original BERT paper), then with a collection of NLG evaluation objectives. We then fine-tune the model on the WMT Metrics dataset, on a set of ratings provided by the user, or a combination of both.The following figure illustrates BLEURT's training procedure end-to-end.

We benchmark BLEURT against competing approaches and show that it offers superior performance, correlating well with human ratings on the WMT Metrics Shared Task (machine translation) and the WebNLG Challenge (data-to-text). For example, BLEURT is ~48% more accurate than BLEU on the WMT Metrics Shared Task of 2019. We also demonstrate that pre-training helps BLEURT cope with quality drift.
Correlation between different metrics and human ratings on the WMT'19 Metrics Shared Task.
As NLG models have gotten better over time, evaluation metrics have become an important bottleneck for the research in this field. There are good reasons why overlap-based metrics are so popular: they are simple, consistent, and they do not require any training data. In the use cases where multiple reference sentences are available for each candidate, they can be very accurate. While they play a critical part in our infrastructure, they are also very conservative, and only give an incomplete picture of NLG systems' performance. Our view is that ML engineers should enrich their evaluation toolkits with more flexible, semantic-level metrics.

BLEURT is our attempt to capture NLG quality beyond surface overlap. Thanks to BERT's representations and a novel pre-training scheme, our metric yields SOTA performance on two academic benchmarks, and we are currently investigating how it can improve Google products. Future research includes investigating multilinguality and multimodality.

This project was co-advised by Dipanjan Das. We thank Slav Petrov, Eunsol Choi, Nicholas FitzGerald, Jacob Devlin, Madhavan Kidambi, Ming-Wei Chang, and all the members of the Google Research Language team.

Source: Google AI Blog

Using Neural Networks to Find Answers in Tables

Much of the world’s information is stored in the form of tables, which can be found on the web or in databases and documents. These might include anything from technical specifications of consumer products to financial and country development statistics, sports results and much more. Currently, one needs to manually look at these tables to find the answer to a question or rely on a service that gives answers to specific questions (e.g., about sports results). This information would be much more accessible and useful if it could be queried through natural language.

For example, the following figure shows a table with a number of questions that people might want to ask. The answer to these questions might be found in one, or multiple, cells in a table (“Which wrestler had the most number of reigns?”), or might require aggregating multiple table cells (“How many world champions are there with only one reign?”).
A table and questions with the expected answers. Answers can be selected (#1, #4) or computed (#2, #3).
Many recent approaches apply traditional semantic parsing to this problem, where a natural language question is translated to an SQL-like database query that executes against a database to provide the answers. For example, the question “How many world champions are there with only one reign?” would be mapped to a query such as “select count(*) where column("No. of reigns") == 1;” and then executed to produce the answer. This approach often requires substantial engineering in order to generate syntactically and semantically valid queries and is difficult to scale to arbitrary questions rather than questions about very specific tables (such as sports results).

In, “TAPAS: Weakly Supervised Table Parsing via Pre-training”, accepted at ACL 2020, we take a different approach that extends the BERT architecture to encode the question jointly along with tabular data structure, resulting in a model that can then point directly to the answer. Instead of creating a model that works only for a single style of table, this approach results in a model that can be applied to tables from a wide range of domains. After pre-training on millions of Wikipedia tables, we show that our approach exhibits competitive accuracy on three academic table question-answering (QA) datasets. Additionally, in order to facilitate more exciting research in this area, we have open-sourced the code for training and testing the models as well as the models pre-trained on Wikipedia tables, available at our GitHub repo.

How to Process a Question
To process a question such as “Average time as champion for top 2 wrestlers?”, our model jointly encodes the question as well as the table content row by row using a BERT model that is extended with special embeddings to encode the table structure.

The key addition to the transformer-based BERT model are the extra embeddings that are used to encode the structured input. We rely on learned embeddings for the column index, the row index and one special rank index, which indicates the order of elements in numerical columns. The following image shows how all of these are added together at the input and fed into the transformer layers. The figure below illustrates how the question is encoded, together with the small table shown on the left. Each cell token has a special embedding that indicates its row, column and numeric rank within the column.
BERT layer input: Every input token is represented as the sum of the embeddings of its word, absolute position, segment (whether it belongs to the question or table), column and row and numeric rank (the position the cell would have if the column was sorted by its numeric values).
The model has two outputs: 1) for each table cell, a score indicates the probability that this cell will be part of the answer and 2) an aggregation operation that indicates which operation (if any) is applied to produce the final answer. The following figure shows how, for the question “Average time as champion for top 2 wrestlers?”, the model should select the first two cells of the “Combined days” column and the “AVERAGE” operation with high probability.
Model schematic: The BERT layer encodes both the question and table. The model outputs a probability for every aggregation operation and a selection probability for every table cell. For the question “Average time as champion for top 2 wrestlers?” the AVERAGE operation and the cells with the numbers 3,749 and 3,103 should have a high probability.
Using a method similar to how BERT is trained on text, we pre-trained our model on 6.2 million table-text pairs extracted from the English Wikipedia. During pre-training, the model learns to restore words in both table and text that have been replaced with a mask. We find that the model can do this with relatively high accuracy (71.4% of the masked tokens are restored correctly for tables unseen during training).

Learning from Answers Only
During fine-tuning the model learns how to answer questions from a table. This is done through training with either strong or weak supervision. In the case of strong supervision, for a given table and questions, one must provide the cells and aggregation operation to select (e.g., sum or count), a time-consuming and laborious process. More commonly, one trains using weak supervision, where only the correct answer (e.g., 3426 for the question in the example above) is provided. In this case, the model attempts to find an aggregation operation and cells that produce an answer close to the correct answer. This is done by computing the expectation over all the possible aggregation decisions and comparing it with the true result. The weak supervision scenario is beneficial because it allows for non-experts to provide the data needed to train the model and takes less time than strong supervision.

We applied our model to three datasets — SQA, WikiTableQuestions (WTQ) and WikiSQL — and compared it to the performance of the top three state-of-the-art (SOTA) models for parsing tabular data. The comparison models included Min et al (2019) for WikiSQL, Wang et al. (2019) for WTQ and our own previous work for SQA (Mueller et al., 2019). For all datasets, we report the answer accuracy on the test sets for the weakly supervised training setup. For SQA and WIkiSQL we used our base model pre-trained on Wikipedia, while for WTQ, we found it beneficial to additionally pre-train on the SQA data. Our best models outperform the previous SOTA for SQA by more than 12 points, the previous SOTA for WTQ by more than 4 points and performs similarly to the best model published on WikiSQL.
Test answer accuracy for the weakly-supervised setup on three academic TableQA datasets.
This work was carried out by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos in the Google AI language group in Zurich. We would like to thank Yasemin Altun, Srini Narayanan, Slav Petrov, William Cohen, Massimo Nicosia, Syrine Krichene, and Jordan Boyd-Graber for useful comments and suggestions.

Source: Google AI Blog

Robust Neural Machine Translation

In recent years, neural machine translation (NMT) using Transformer models has experienced tremendous success. Based on deep neural networks, NMT models are usually trained end-to-end on very large parallel corpora (input/output text pairs) in an entirely data-driven fashion and without the need to impose explicit rules of language.

Despite this huge success, NMT models can be sensitive to minor perturbations of the input, which can manifest as a variety of different errors, such as under-translation, over-translation or mistranslation. For example, given a German sentence, the state-of-the-art NMT model, Transformer, will yield a correct translation.

“Der Sprecher des Untersuchungsausschusses hat angekündigt, vor Gericht zu ziehen, falls sich die geladenen Zeugen weiterhin weigern sollten, eine Aussage zu machen.”

(Machine translation to English: “The spokesman of the Committee of Inquiry has announced that if the witnesses summoned continue to refuse to testify, he will be brought to court.”),

But, when we apply a subtle change to the input sentence, say from geladenen to the synonym vorgeladenen, the translation becomes very different (and in this case, incorrect):

“Der Sprecher des Untersuchungsausschusses hat angekündigt, vor Gericht zu ziehen, falls sich die vorgeladenen Zeugen weiterhin weigern sollten, eine Aussage zu machen.”

(Machine translation to English: “The investigative committee has announced that he will be brought to justice if the witnesses who have been invited continue to refuse to testify.”).

This lack of robustness in NMT models prevents many commercial systems from being applicable to tasks that cannot tolerate this level of instability. Therefore, learning robust translation models is not just desirable, but is often required in many scenarios. Yet, while the robustness of neural networks has been extensively studied in the computer vision community, only a few prior studies on learning robust NMT models can be found in literature.

In “Robust Neural Machine Translation with Doubly Adversarial Inputs” (to appear at ACL 2019), we propose an approach that uses generated adversarial examples to improve the stability of machine translation models against small perturbations in the input. We learn a robust NMT model to directly overcome adversarial examples generated with knowledge of the model and with the intent of distorting the model predictions. We show that this approach improves the performance of the NMT model on standard benchmarks.

Training a Model with AdvGen
An ideal NMT model would generate similar translations for separate inputs that exhibit small differences. The idea behind our approach is to perturb a translation model with adversarial inputs in the hope of improving the model’s robustness. It does this using an algorithm called Adversarial Generation (AdvGen), which generates plausible adversarial examples for perturbing the model and then feeds them back into the model for defensive training. While this method is inspired by the idea of generative adversarial networks (GANs), it does not rely on a discriminator network, but simply applies the adversarial example in training, effectively diversifying and extending the training set.

The first step is to perturb the model using AdvGen. We start by using Transformer to calculate the translation loss based on a source input sentence, a target input sentence and a target output sentence. Then AdvGen randomly selects some words in the source sentence, assuming a uniform distribution. Each word has an associated list of similar words, i.e., candidates that can be used for substitution, from which AdvGen selects the word that is most likely to introduce errors in Transformer output. Then, this generated adversarial sentence is fed back into Transformer, initiating the defense stage.
First, the Transformer model is applied to an input sentence (lower left) and, in conjunction with the target output sentence (above right) and target input sentence (middle right; beginning with the placeholder “<sos>”), the translation loss is calculated. The AdvGen function then takes the source sentence, word selection distribution, word candidates, and the translation loss as inputs to construct an adversarial source example.
During the defend stage, the adversarial sentence is fed back into the Transformer model. Again the translation loss is calculated, but this time using the adversarial source input. Using the same method as above, AdvGen uses the target input sentence, word replacement candidates, the word selection distribution calculated by the attention matrix, and the translation loss to construct an adversarial target example.
In the defense stage, the adversarial source example serves as input to the Transformer model, and the translation loss is calculated. AdvGen then uses the same method as above to generate an adversarial target example from the target input.
Finally, the adversarial sentence is fed back into Transformer and the robustness loss using the adversarial source example, the adversarial target input example and the target sentence is calculated. If the perturbation led to a significant loss, the loss is minimized so that when the model is confronted with similar perturbations, it will not repeat the same mistake. On the other hand, if the perturbation leads to a low loss, nothing happens, indicating that the model can already handle this perturbation.

Model Performance
We demonstrate the effectiveness of our approach by applying it to the standard Chinese-English and English-German translation benchmarks. We observed a notable improvement of 2.8 and 1.6 BLEU points, respectively, compared to the competitive Transformer model, achieving a new state-of-the-art performance.
Comparison of Transformer model (Vaswani et al., 2017) on standard benchmarks.
We then evaluate our model on a noisy dataset, generated using a procedure similar to that described for AdvGen. We take an input clean dataset, such as that used on standard translation benchmarks, and randomly select words for similar word substitution. We find that our model exhibits improved robustness compared to other recent models.
Comparison of Transformer, Miyao et al. and Cheng et al. on artificial noisy inputs.
These results show that our method is able to overcome small perturbations in the input sentence and improve the generalization performance. It outperforms competitive translation models and achieves state-of-the-art translation performance on standard benchmarks. We hope our translation model will serve as a robust building block for improving many downstream tasks, especially when those are sensitive or intolerant to imperfect translation input.

This research was conducted by Yong Cheng, Lu Jiang and Wolfgang Macherey. Additional thanks go to our leadership Andrew Moore and Julia (Wenli) Zhu‎.

Source: Google AI Blog

Google at ACL 2019

This week, Florence, Italy hosts the 2019 Annual Meeting of the Association for Computational Linguistics (ACL 2019), the premier conference in the field of natural language understanding, covering a broad spectrum of research areas that are concerned with computational approaches to natural language.

As a leader in natural language processing and understanding, and a Diamond Level sponsor of ACL 2019, Google will be on hand to showcase the latest research on syntax, semantics, discourse, conversation, multilingual modeling, sentiment analysis, question answering, summarization, and generally building better systems using labeled and unlabeled data.

If you’re attending ACL 2019, we hope that you’ll stop by the Google booth to meet our researchers and discuss projects and opportunities at Google that go into solving interesting problems for billions of people. Our researchers will also be on hand to demo the Natural Questions corpus, the Multilingual Universal Sentence Encoder and more. You can also learn more about the Google research being presented at ACL 2019 below (Google affiliations in blue).

Organizing Committee includes:
Enrique Alfonseca

Accepted Publications
A Joint Named-Entity Recognizer for Heterogeneous Tag-sets Using a Tag Hierarchy
Genady Beryozkin, Yoel Drori, Oren Gilon, Tzvika Hartman, Idan Szpektor

Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
Chinnadhurai Sankar, Sandeep Subramanian, Chris Pal, Sarath Chandar, Yoshua Bengio

Generating Logical Forms from Graph Representations of Text and Entities
Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, Yasemin Altun

Extracting Symptoms and their Status from Clinical Conversations
Nan Du, Kai Chen, Anjuli Kannan, Linh Trans, Yuhui Chen, Izhak Shafran

Stay on the Path: Instruction Fidelity in Vision-and-Language Navigation
Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Le, Jason Baldridge

Meaning to Form: Measuring Systematicity as Information
Tiago Pimentel, Arya D. McCarthy, Damian Blasi, Brian Roark, Ryan Cotterell

Matching the Blanks: Distributional Similarityfor Relation Learning
Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, Tom Kwiatkowski

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, Ruslan Salakhutdinov

HighRES: Highlight-based Reference-less Evaluation of Summarization
Hardy Hardy, Shashi Narayan, Andreas Vlachos

Zero-Shot Entity Linking by Reading Entity Descriptions
Lajanugen Logeswaran, Ming-Wei Chang, Kristina Toutanova, Kenton Lee, Jacob Devlin, Honglak Lee

Robust Neural Machine Translation with Doubly Adversarial Inputs
Yong Cheng, Lu Jiang, Wolfgang Macherey

Natural Questions: a Benchmark for Question Answering Research
Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, Slav Petrov

Like a Baby: Visually Situated Neural Language Acquisition
Alexander Ororbia, Ankur Mali, Matthew Kelly, David Reitter

What Kind of Language Is Hard to Language-Model?
Sebastian J. Mielke, Ryan Cotterell, Kyle Gorman, Brian Roark, Jason Eisner

How Multilingual is Multilingual BERT?
Telmo Pires, Eva Schlinger, Dan Garrette

Handling Divergent Reference Texts when Evaluating Table-to-Text Generation
Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Dipanjan Das, William Cohen

BAM! Born-Again Multi-Task Networks for Natural Language Understanding
Kevin Clark, Minh-Thang Luong, Urvashi Khandelal, Christopher D. Manning, Quoc V. Le

Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning" for Neural Machine Translation
Wei Wang, Isaac Caswell, Ciprian Chelba

Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, Colin Raffel

On the Robustness of Self-Attentive Models
Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh

Neural Decipherment via Minimum-Cost Flow: from Ugaritic to Linear B
Jiaming Luo, Yuan Cao, Regina Barzilay

How Large Are Lions? Inducing Distributions over Quantitative Attributes
Yanai Elazar, Abhijit Mahabal, Deepak Ramachandran, Tania Bedrax-Weiss, Dan Roth

BERT Rediscovers the Classical NLP Pipeline
Ian Tenney, Dipanjan Das, Ellie Pavlick

Can You Tell Me How to Get Past Sesame Street? Sentence-Level Pretraining Beyond Language Modeling
Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappagari, R. Thomas Mccoy, Roma Patel, Najoung Kim, Ian Tenney, Yinghui Huang, Katherin Yu, Shuning Jin, Berlin Chen, Benjamin Van Durme, Edouard Grave, Ellie Pavlick, Samuel R. Bowman

Robust Zero-Shot Cross-Domain Slot Filling with Example Values
Darsh Shah, Raghav Gupta, Amir Fayazi, Dilek Hakkani-Tur

Latent Retrieval for Weakly Supervised Open Domain Question Answering
Kenton Lee, Ming-Wei Chang, Kristina Toutanova

On-device Structured and Context Partitioned Projection Networks
Sujith Ravi, Zornitsa Kozareva

Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu, Besim Avci

Informative Image Captioning with External Sources of Information
Sanqiang Zhao, Piyush Sharma, Tomer Levinboim, Radu Soricut

Reducing Word Omission Errors in Neural Machine Translation: A Contrastive Learning Approach
Zonghan Yang, Yong Cheng, Yang Liu, Maosong Sun

Synthetic QA Corpora Generation with Roundtrip Consistency
Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin, Michael Collins

Unsupervised Paraphrasing without Translation
Aurko Roy, David Grangier

Widening NLP 2019
Organizers include: Diyi Yang

NLP for Conversational AI
Organizers include: Thang-Minh Luong, Tania Bedrax-Weiss

The Fourth Arabic Natural Language Processing Workshop
Organizers include: Imed Zitouni

The Third Workshop on Abusive Language Online
Organizers include: Zeerak Waseem

TyP-NLP, Typology for Polyglot NLP
Organizers include: Manaal Faruqui

Gender Bias in Natural Language Processing
Organizers include: Kellie Webster

Wikipedia as a Resource for Text Analysis and Retrieval
Organizer: Marius Pasca

Source: Google AI Blog

Google at ACL 2017

This week, Vancouver, Canada hosts the 2017 Annual Meeting of the Association for Computational Linguistics (ACL 2017), the premier conference in the field of natural language understanding, covering a broad spectrum of diverse research areas that are concerned with computational approaches to natural language.

As a leader in natural language processing & understanding and a Platinum sponsor of ACL 2017, Google will be on hand to showcase research interests that include syntax, semantics, discourse, conversation, multilingual modeling, sentiment analysis, question answering, summarization, and generally building better systems using labeled and unlabeled data, state-of-the-art modeling and learning from indirect supervision.

If you’re attending ACL 2017, we hope that you’ll stop by the Google booth to check out some demos, meet our researchers and discuss projects and opportunities at Google that go into solving interesting problems for billions of people. Learn more about the Google research being presented at ACL 2017 below (Googlers highlighted in blue).

Organizing Committee
Area Chairs include: Sujith Ravi (Machine Learning), Thang Luong (Machine Translation)
Publication Chairs include: Margaret Mitchell (Advisory)

Accepted Papers
A Polynomial-Time Dynamic Programming Algorithm for Phrase-Based Decoding with a Fixed Distortion Limit
Yin-Wen Chang, Michael Collins
(Oral Session)

Cross-Sentence N-ary Relation Extraction with Graph LSTMs
Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-Tau Yih
(Oral Session)

Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao

Coarse-to-Fine Question Answering for Long Documents
Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste, Jonathan Berant

Automatic Compositor Attribution in the First Folio of Shakespeare
Maria Ryskina, Hannah Alpert-Abrams, Dan Garrette, Taylor Berg-Kirkpatrick

A Nested Attention Neural Hybrid Model for Grammatical Error Correction
Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen Gong, Steven Truong, Jianfeng Gao

Get To The Point: Summarization with Pointer-Generator Networks
Abigail See, Peter J. Liu, Christopher D. Manning

Identifying 1950s American Jazz Composers: Fine-Grained IsA Extraction via Modifier Composition
Ellie Pavlick*, Marius Pasca

Learning to Skim Text
Adams Wei Yu, Hongrae Lee, Quoc Le

2017 ACL Student Research Workshop
Program Committee includes: Emily Pitler, Brian Roark, Richard Sproat

WiNLP: Women and Underrepresented Minorities in Natural Language Processing
Organizers include: Margaret Mitchell
Gold Sponsor

BUCC: 10th Workshop on Building and Using Comparable Corpora
Scientific Committee includes: Richard Sproat

CLPsych: Computational Linguistics and Clinical Psychology – From Linguistic Signal to Clinical
Program Committee includes: Brian Roark, Richard Sproat

Repl4NLP: 2nd Workshop on Representation Learning for NLP
Program Committee includes: Ankur Parikh, John Platt

RoboNLP: Language Grounding for Robotics
Program Committee includes: Ankur Parikh, Tom Kwiatkowski

CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
Management Group includes: Slav Petrov

CoNLL-SIGMORPHON-2017 Shared Task: Universal Morphological Reinflection
Organizing Committee includes: Manaal Faruqui
Invited Speaker: Chris Dyer

SemEval: 11th International Workshop on Semantic Evaluation
Organizers include: Daniel Cer

ALW1: 1st Workshop on Abusive Language Online
Panelists include: Margaret Mitchell

EventStory: Events and Stories in the News
Program Committee includes: Silvia Pareti

NMT: 1st Workshop on Neural Machine Translation
Organizing Committee includes: Thang Luong
Program Committee includes: Hieu Pham, Taro Watanabe
Invited Speaker: Quoc Le

Natural Language Processing for Precision Medicine
Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih

Deep Learning for Dialogue Systems
Yun-Nung Chen, Asli Celikyilmaz, Dilek Hakkani-Tur

* Contributed during an internship at Google.

Meet Parsey’s Cousins: Syntax for 40 languages, plus new SyntaxNet capabilities

Just in time for ACL 2016, we are pleased to announce that Parsey McParseface, released in May as part of SyntaxNet and the basis for the Cloud Natural Language API, now has 40 cousins! Parsey’s Cousins is a collection of pretrained syntactic models for 40 languages, capable of analyzing the native language of more than half of the world’s population at often unprecedented accuracy. To better address the linguistic phenomena occurring in these languages we have endowed SyntaxNet with new abilities for Text Segmentation and Morphological Analysis.

When we released Parsey, we were already planning to expand to more languages, and it soon became clear that this was both urgent and important, because researchers were having trouble creating top notch SyntaxNet models for other languages.

The reason for that is a little bit subtle. SyntaxNet, like other TensorFlow models, has a lot of knobs to turn, which affect accuracy and speed. These knobs are called hyperparameters, and control things like the learning rate and its decay, momentum, and random initialization. Because neural networks are more sensitive to the choice of these hyperparameters than many other machine learning algorithms, picking the right hyperparameter setting is very important. Unfortunately there is no tested and proven way of doing this and picking good hyperparameters is mostly an empirical science -- we try a bunch of settings and see what works best.

An additional challenge is that training these models can take a long time, several days on very fast hardware. Our solution is to train many models in parallel via MapReduce, and when one looks promising, train a bunch more models with similar settings to fine-tune the results. This can really add up -- on average, we train more than 70 models per language. The plot below shows how the accuracy varies depending on the hyperparameters as training progresses. The best models are up to 4% absolute more accurate than ones trained without hyperparameter tuning.
Held-out set accuracy for various English parsing models with different hyperparameters (each line corresponds to one training run with specific hyperparameters). In some cases training is a lot slower and in many cases a suboptimal choice of hyperparameters leads to significantly lower accuracy. We are releasing the best model that we were able to train for each language.
In order to do a good job at analyzing the grammar of other languages, it was not sufficient to just fine-tune our English setup. We also had to expand the capabilities of SyntaxNet. The first extension is a model for text segmentation, which is the task of identifying word boundaries. In languages like English, this isn’t very hard -- you can mostly look for spaces and punctuation. In Chinese, however, this can be very challenging, because words are not separated by spaces. To correctly analyze dependencies between Chinese words, SyntaxNet needs to understand text segmentation -- and now it does.
Analysis of a Chinese string into a parse tree showing dependency labels, word tokens, and parts of speech (read top to bottom for each word token).
The second extension is a model for morphological analysis. Morphology is a language feature that is poorly represented in English. It describes inflection: i.e., how the grammatical function and meaning of the word changes as its spelling changes. In English, we add an -s to a word to indicate plurality. In Russian, a heavily inflected language, morphology can indicate number, gender, whether the word is the subject or object of a sentence, possessives, prepositional phrases, and more. To understand the syntax of a sentence in Russian, SyntaxNet needs to understand morphology -- and now it does.
Parse trees showing dependency labels, parts of speech, and morphology.
As you might have noticed, the parse trees for all of the sentences above look very similar. This is because we follow the content-head principle, under which dependencies are drawn between content words, with function words becoming leaves in the parse tree. This idea was developed by the Universal Dependencies project in order to increase parallelism between languages. Parsey’s Cousins are trained on treebanks provided by this project and are designed to be cross-linguistically consistent and thus easier to use in multi-lingual language understanding applications.

Using the same set of labels across languages can help us understand how sentences in different languages, or variations in the same language, convey the same meaning. In all of the above examples, the root indicates the main verb of the sentence and there is a passive nominal subject (indicated by the arc labeled with ‘nsubjpass’) and a passive auxiliary (‘auxpass’). If you look closely, you will also notice some differences because the grammar of each language differs. For example, English uses the preposition ‘by,’ where Russian uses morphology to mark that the phrase ‘the publisher (издателем)’ is in instrumental case -- the meaning is the same, it is just expressed differently.

Google has been involved in the Universal Dependencies project since its inception and we are very excited to be able to bring together our efforts on datasets and modeling. We hope that this release will facilitate research progress in building computer systems that can understand all of the world’s languages.

Parsey's Cousins can be found on GitHub, along with Parsey McParseface and SyntaxNet.

ACL 2016 & Research at Google

This week, Berlin hosts the 2016 Annual Meeting of the Association for Computational Linguistics (ACL 2016), the premier conference of the field of computational linguistics, covering a broad spectrum of diverse research areas that are concerned with computational approaches to natural language. As a leader in Natural Language Processing (NLP) and a Platinum Sponsor of the conference, Google will be on hand to showcase research interests that include syntax, semantics, discourse, conversation, multilingual modeling, sentiment analysis, question answering, summarization, and generally building better learners using labeled and unlabeled data, state-of-the-art modeling, and learning from indirect supervision.

Our systems are used in numerous ways across Google, impacting user experience in search, mobile, apps, ads, translate and more. Our work spans the range of traditional NLP tasks, with general-purpose syntax and semantic algorithms underpinning more specialized systems.
Our researchers are experts in natural language processing and machine learning, and combine methodological research with applied science, and our engineers are equally involved in long-term research efforts and driving immediate applications of our technology.

If you’re attending ACL 2016, we hope that you’ll stop by the booth to check out some demos, meet our researchers and discuss projects and opportunities at Google that go into solving interesting problems for billions of people. Learn more about Google research being presented at ACL 2016 below (Googlers highlighted in blue), and visit the Natural Language Understanding Team page at g.co/NLUTeam.

Generalized Transition-based Dependency Parsing via Control Parameters
Bernd Bohnet, Ryan McDonald, Emily Pitler, Ji Ma

Learning the Curriculum with Bayesian Optimization for Task-Specific Word Representation Learning
Yulia Tsvetkov, Manaal Faruqui, Wang Ling (Google DeepMind), Chris Dyer (Google DeepMind)

Morpho-syntactic Lexicon Generation Using Graph-based Semi-supervised Learning (TACL)
Manaal Faruqui, Ryan McDonald, Radu Soricut

Many Languages, One Parser (TACL)
Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer (Google DeepMind)*, Noah A. Smith

Latent Predictor Networks for Code Generation
Wang Ling (Google DeepMind), Phil Blunsom (Google DeepMind), Edward Grefenstette (Google DeepMind), Karl Moritz Hermann (Google DeepMind), Tomáš Kočiský (Google DeepMind), Fumin Wang (Google DeepMind), Andrew Senior (Google DeepMind)

Collective Entity Resolution with Multi-Focal Attention
Amir Globerson, Nevena Lazic, Soumen Chakrabarti, Amarnag Subramanya, Michael Ringgaard, Fernando Pereira

Plato: A Selective Context Model for Entity Resolution (TACL)
Nevena Lazic, Amarnag Subramanya, Michael Ringgaard, Fernando Pereira

WikiReading: A Novel Large-scale Language Understanding Task over Wikipedia
Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia Polosukhin, Andrew Fandrianto, Jay Han, Matthew Kelcey, David Berthelot

Stack-propagation: Improved Representation Learning for Syntax
Yuan Zhang, David Weiss

Cross-lingual Models of Word Embeddings: An Empirical Comparison
Shyam Upadhyay, Manaal Faruqui, Chris Dyer (Google DeepMind)Dan Roth

Globally Normalized Transition-Based Neural Networks (Outstanding Papers Session)
Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman GanchevSlav Petrov, Michael Collins

Cross-lingual projection for class-based language models
Beat Gfeller, Vlad Schogol, Keith Hall

Synthesizing Compound Words for Machine Translation
Austin Matthews, Eva Schlinger*, Alon Lavie, Chris Dyer (Google DeepMind)*

Cross-Lingual Morphological Tagging for Low-Resource Languages
Jan Buys, Jan A. Botha

1st Workshop on Representation Learning for NLP
Keynote Speakers include: Raia Hadsell (Google DeepMind)
Workshop Organizers include: Edward Grefenstette (Google DeepMind), Phil Blunsom (Google DeepMind), Karl Moritz Hermann (Google DeepMind)
Program Committee members include: Tomáš Kočiský (Google DeepMind), Wang Ling (Google DeepMind), Ankur Parikh (Google), John Platt (Google), Oriol Vinyals (Google DeepMind)

1st Workshop on Evaluating Vector-Space Representations for NLP
Contributed Papers:
Problems With Evaluation of Word Embeddings Using Word Similarity Tasks
Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer (Google DeepMind)*

Correlation-based Intrinsic Evaluation of Word Vector Representations
Yulia Tsvetkov, Manaal Faruqui, Chris Dyer (Google DeepMind)

SIGFSM Workshop on Statistical NLP and Weighted Automata
Contributed Papers:
Distributed representation and estimation of WFST-based n-gram models
Cyril Allauzen, Michael Riley, Brian Roark

Pynini: A Python library for weighted finite-state grammar compilation
Kyle Gorman

* Work completed at CMU