Beta Channel Update for ChromeOS / ChromeOS Flex

The Beta channel is being updated to OS version: 15572.16.0 Browser version: 117.0.5938.22 for most ChromeOS devices.

If you find new issues, please let us know one of the following ways

  1. File a bug
  2. Visit our ChromeOS communities
    1. General: Chromebook Help Community
    2. Beta Specific: ChromeOS Beta Help Community
  3. Report an issue or send feedback on Chrome

Interested in switching channels? Find out how.

Matt Nelson,
Google ChromeOS

How to compare a noisy quantum processor to a classical computer

A full-scale error-corrected quantum computer will be able to solve some problems that are impossible for classical computers, but building such a device is a huge endeavor. We are proud of the milestones that we have achieved toward a fully error-corrected quantum computer, but that large-scale computer is still some number of years away. Meanwhile, we are using our current noisy quantum processors as flexible platforms for quantum experiments.

In contrast to an error-corrected quantum computer, experiments in noisy quantum processors are currently limited to a few thousand quantum operations or gates, before noise degrades the quantum state. In 2019 we implemented a specific computational task called random circuit sampling on our quantum processor and showed for the first time that it outperformed state-of-the-art classical supercomputing.

Although they have not yet reached beyond-classical capabilities, we have also used our processors to observe novel physical phenomena, such as time crystals and Majorana edge modes, and have made new experimental discoveries, such as robust bound states of interacting photons and the noise-resilience of Majorana edge modes of Floquet evolutions.

We expect that even in this intermediate, noisy regime, we will find applications for the quantum processors in which useful quantum experiments can be performed much faster than can be calculated on classical supercomputers — we call these "computational applications" of the quantum processors. No one has yet demonstrated such a beyond-classical computational application. So as we aim to achieve this milestone, the question is: What is the best way to compare a quantum experiment run on such a quantum processor to the computational cost of a classical application?

We already know how to compare an error-corrected quantum algorithm to a classical algorithm. In that case, the field of computational complexity tells us that we can compare their respective computational costs — that is, the number of operations required to accomplish the task. But with our current experimental quantum processors, the situation is not so well defined.

In “Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments”, we provide a framework for measuring the computational cost of a quantum experiment, introducing the experiment’s “effective quantum volume”, which is the number of quantum operations or gates that contribute to a measurement outcome. We apply this framework to evaluate the computational cost of three recent experiments: our random circuit sampling experiment, our experiment measuring quantities known as “out of time order correlators” (OTOCs), and a recent experiment on a Floquet evolution related to the Ising model. We are particularly excited about OTOCs because they provide a direct way to experimentally measure the effective quantum volume of a circuit (a sequence of quantum gates or operations), which is itself a computationally difficult task for a classical computer to estimate precisely. OTOCs are also important in nuclear magnetic resonance and electron spin resonance spectroscopy. Therefore, we believe that OTOC experiments are a promising candidate for a first-ever computational application of quantum processors.

Plot of computational cost and impact of some recent quantum experiments. While some (e.g., QC-QMC 2022) have had high impact and others (e.g., RCS 2023) have had high computational cost, none have yet been both useful and hard enough to be considered a “computational application.” We hypothesize that our future OTOC experiment could be the first to pass this threshold. Other experiments plotted are referenced in the text.


Random circuit sampling: Evaluating the computational cost of a noisy circuit

When it comes to running a quantum circuit on a noisy quantum processor, there are two competing considerations. On one hand, we aim to do something that is difficult to achieve classically. The computational cost — the number of operations required to accomplish the task on a classical computer — depends on the quantum circuit’s effective quantum volume: the larger the volume, the higher the computational cost, and the more a quantum processor can outperform a classical one.

But on the other hand, on a noisy processor, each quantum gate can introduce an error to the calculation. The more operations, the higher the error, and the lower the fidelity of the quantum circuit in measuring a quantity of interest. Under this consideration, we might prefer simpler circuits with a smaller effective volume, but these are easily simulated by classical computers. The balance of these competing considerations, which we want to maximize, is called the "computational resource", shown below.

Graph of the tradeoff between quantum volume and noise in a quantum circuit, captured in a quantity called the “computational resource.” For a noisy quantum circuit, this will initially increase with the computational cost, but eventually, noise will overrun the circuit and cause it to decrease.

We can see how these competing considerations play out in a simple “hello world” program for quantum processors, known as random circuit sampling (RCS), which was the first demonstration of a quantum processor outperforming a classical computer. Any error in any gate is likely to make this experiment fail. Inevitably, this is a hard experiment to achieve with significant fidelity, and thus it also serves as a benchmark of system fidelity. But it also corresponds to the highest known computational cost achievable by a quantum processor. We recently reported the most powerful RCS experiment performed to date, with a low measured experimental fidelity of 1.7x10-3, and a high theoretical computational cost of ~1023. These quantum circuits had 700 two-qubit gates. We estimate that this experiment would take ~47 years to simulate in the world's largest supercomputer. While this checks one of the two boxes needed for a computational application — it outperforms a classical supercomputer — it is not a particularly useful application per se.


OTOCs and Floquet evolution: The effective quantum volume of a local observable

There are many open questions in quantum many-body physics that are classically intractable, so running some of these experiments on our quantum processor has great potential. We typically think of these experiments a bit differently than we do the RCS experiment. Rather than measuring the quantum state of all qubits at the end of the experiment, we are usually concerned with more specific, local physical observables. Because not every operation in the circuit necessarily impacts the observable, a local observable’s effective quantum volume might be smaller than that of the full circuit needed to run the experiment.

We can understand this by applying the concept of a light cone from relativity, which determines which events in space-time can be causally connected: some events cannot possibly influence one another because information takes time to propagate between them. We say that two such events are outside their respective light cones. In a quantum experiment, we replace the light cone with something called a “butterfly cone,” where the growth of the cone is determined by the butterfly speed — the speed with which information spreads throughout the system. (This speed is characterized by measuring OTOCs, discussed later.) The effective quantum volume of a local observable is essentially the volume of the butterfly cone, including only the quantum operations that are causally connected to the observable. So, the faster information spreads in a system, the larger the effective volume and therefore the harder it is to simulate classically.

A depiction of the effective volume Veff of the gates contributing to the local observable B. A related quantity called the effective area Aeff is represented by the cross-section of the plane and the cone. The perimeter of the base corresponds to the front of information travel that moves with the butterfly velocity vB.

We apply this framework to a recent experiment implementing a so-called Floquet Ising model, a physical model related to the time crystal and Majorana experiments. From the data of this experiment, one can directly estimate an effective fidelity of 0.37 for the largest circuits. With the measured gate error rate of ~1%, this gives an estimated effective volume of ~100. This is much smaller than the light cone, which included two thousand gates on 127 qubits. So, the butterfly velocity of this experiment is quite small. Indeed, we argue that the effective volume covers only ~28 qubits, not 127, using numerical simulations that obtain a larger precision than the experiment. This small effective volume has also been corroborated with the OTOC technique. Although this was a deep circuit, the estimated computational cost is 5x1011, almost one trillion times less than the recent RCS experiment. Correspondingly, this experiment can be simulated in less than a second per data point on a single A100 GPU. So, while this is certainly a useful application, it does not fulfill the second requirement of a computational application: substantially outperforming a classical simulation.

Information scrambling experiments with OTOCs are a promising avenue for a computational application. OTOCs can tell us important physical information about a system, such as the butterfly velocity, which is critical for precisely measuring the effective quantum volume of a circuit. OTOC experiments with fast entangling gates offer a potential path for a first beyond-classical demonstration of a computational application with a quantum processor. Indeed, in our experiment from 2021 we achieved an effective fidelity of Feff ~ 0.06 with an experimental signal-to-noise ratio of ~1, corresponding to an effective volume of ~250 gates and a computational cost of 2x1012.

While these early OTOC experiments are not sufficiently complex to outperform classical simulations, there is a deep physical reason why OTOC experiments are good candidates for the first demonstration of a computational application. Most of the interesting quantum phenomena accessible to near-term quantum processors that are hard to simulate classically correspond to a quantum circuit exploring many, many quantum energy levels. Such evolutions are typically chaotic and standard time-order correlators (TOC) decay very quickly to a purely random average in this regime. There is no experimental signal left. This does not happen for OTOC measurements, which allows us to grow complexity at will, only limited by the error per gate. We anticipate that a reduction of the error rate by half would double the computational cost, pushing this experiment to the beyond-classical regime.


Conclusion

Using the effective quantum volume framework we have developed, we have determined the computational cost of our RCS and OTOC experiments, as well as a recent Floquet evolution experiment. While none of these meet the requirements yet for a computational application, we expect that with improved error rates, an OTOC experiment will be the first beyond-classical, useful application of a quantum processor.

Source: Google AI Blog


Teaching language models to reason algorithmically

Large language models (LLMs), such as GPT-3 and PaLM, have shown impressive progress in recent years, which have been driven by scaling up models and training data sizes. Nonetheless, a long standing debate has been whether LLMs can reason symbolically (i.e., manipulating symbols based on logical rules). For example, LLMs are able to perform simple arithmetic operations when numbers are small, but struggle to perform with large numbers. This suggests that LLMs have not learned the underlying rules needed to perform these arithmetic operations.

While neural networks have powerful pattern matching capabilities, they are prone to overfitting to spurious statistical patterns in the data. This does not hinder good performance when the training data is large and diverse and the evaluation is in-distribution. However, for tasks that require rule-based reasoning (such as addition), LLMs struggle with out-of-distribution generalization as spurious correlations in the training data are often much easier to exploit than the true rule-based solution. As a result, despite significant progress in a variety of natural language processing tasks, performance on simple arithmetic tasks like addition has remained a challenge. Even with modest improvement of GPT-4 on the MATH dataset, errors are still largely due to arithmetic and calculation mistakes. Thus, an important question is whether LLMs are capable of algorithmic reasoning, which involves solving a task by applying a set of abstract rules that define the algorithm.

In “Teaching Algorithmic Reasoning via In-Context Learning”, we describe an approach that leverages in-context learning to enable algorithmic reasoning capabilities in LLMs. In-context learning refers to a model’s ability to perform a task after seeing a few examples of it within the context of the model. The task is specified to the model using a prompt, without the need for weight updates. We also present a novel algorithmic prompting technique that enables general purpose language models to achieve strong generalization on arithmetic problems that are more difficult than those seen in the prompt. Finally, we demonstrate that a model can reliably execute algorithms on out-of-distribution examples with an appropriate choice of prompting strategy.

By providing algorithmic prompts, we can teach a model the rules of arithmetic via in-context learning. In this example, the LLM (word predictor) outputs the correct answer when prompted with an easy addition question (e.g., 267+197), but fails when asked a similar addition question with longer digits. However, when the more difficult question is appended with an algorithmic prompt for addition (blue box with white + shown below the word predictor), the model is able to answer correctly. Moreover, the model is capable of simulating the multiplication algorithm (X) by composing a series of addition calculations.


Teaching an algorithm as a skill

In order to teach a model an algorithm as a skill, we develop algorithmic prompting, which builds upon other rationale-augmented approaches (e.g., scratchpad and chain-of-thought). Algorithmic prompting extracts algorithmic reasoning abilities from LLMs, and has two notable distinctions compared to other prompting approaches: (1) it solves tasks by outputting the steps needed for an algorithmic solution, and (2) it explains each algorithmic step with sufficient detail so there is no room for misinterpretation by the LLM.

To gain intuition for algorithmic prompting, let’s consider the task of two-number addition. In a scratchpad-style prompt, we process each digit from right to left and keep track of the carry value (i.e., we add a 1 to the next digit if the current digit is greater than 9) at each step. However, the rule of carry is ambiguous after seeing only a few examples of carry values. We find that including explicit equations to describe the rule of carry helps the model focus on the relevant details and interpret the prompt more accurately. We use this insight to develop an algorithmic prompt for two-number addition, where we provide explicit equations for each step of computation and describe various indexing operations in non-ambiguous formats.

Illustration of various prompt strategies for addition.

Using only three prompt examples of addition with answer length up to five digits, we evaluate performance on additions of up to 19 digits. Accuracy is measured over 2,000 total examples sampled uniformly over the length of the answer. As shown below, the use of algorithmic prompts maintains high accuracy for questions significantly longer than what’s seen in the prompt, which demonstrates that the model is indeed solving the task by executing an input-agnostic algorithm.

Test accuracy on addition questions of increasing length for different prompting methods.


Leveraging algorithmic skills as tool use

To evaluate if the model can leverage algorithmic reasoning in a broader reasoning process, we evaluate performance using grade school math word problems (GSM8k). We specifically attempt to replace addition calculations from GSM8k with an algorithmic solution.

Motivated by context length limitations and possible interference between different algorithms, we explore a strategy where differently-prompted models interact with one another to solve complex tasks. In the context of GSM8k, we have one model that specializes in informal mathematical reasoning using chain-of-thought prompting, and a second model that specializes in addition using algorithmic prompting. The informal mathematical reasoning model is prompted to output specialized tokens in order to call on the addition-prompted model to perform the arithmetic steps. We extract the queries between tokens, send them to the addition-model and return the answer to the first model, after which the first model continues its output. We evaluate our approach using a difficult problem from the GSM8k (GSM8k-Hard), where we randomly select 50 addition-only questions and increase the numerical values in the questions.

An example from the GSM8k-Hard dataset. The chain-of-thought prompt is augmented with brackets to indicate when an algorithmic call should be performed.

We find that using separate contexts and models with specialized prompts is an effective way to tackle GSM8k-Hard. Below, we observe that the performance of the model with algorithmic call for addition is 2.3x the chain-of-thought baseline. Finally, this strategy presents an example of solving complex tasks by facilitating interactions between LLMs specialized to different skills via in-context learning.

Chain-of-thought (CoT) performance on GSM8k-Hard with or without algorithmic call.


Conclusion

We present an approach that leverages in-context learning and a novel algorithmic prompting technique to unlock algorithmic reasoning abilities in LLMs. Our results suggest that it may be possible to transform longer context into better reasoning performance by providing more detailed explanations. Thus, these findings point to the ability of using or otherwise simulating long contexts and generating more informative rationales as promising research directions.


Acknowledgements

We thank our co-authors Behnam Neyshabur, Azade Nova, Hugo Larochelle and Aaron Courville for their valuable contributions to the paper and great feedback on the blog. We thank Tom Small for creating the animations in this post. This work was done during Hattie Zhou’s internship at Google Research.


Source: Google AI Blog


Enhance your Google Keep notes on Android with rich text formatting

What’s changing

Building upon our recent updates to Google Keep on Android devices, such as multi-instance support and the single note widget, we’re adding rich text formatting options to new notes on Keep. This highly requested feature enables you to customize and add emphasis to your text through bolding, underlining, italicizing, and heading styles. 

You will be able to access rich text formatting in existing Keep notes on Android devices in the coming weeks. 
Enhance your Google Keep notes on Android with rich text formatting

Getting started 

  • Admins: There is no admin control for this feature. 
  • End users: Visit the Help Center to learn more about creating or editing a note

Rollout pace 


Availability 

  • Available to all Google Workspace customers and users with personal Google Accounts 

Resources 

Third-party app access enhancements for Google Workspace for Education

What’s changing

Through the app access control settings, we’re making it easier for Google Workspace for Education admins to control how third-party apps access their organizations' Google data when users sign-in using their Google Workspace for Education accounts. 

Users designated as under 18 using the age-based access setting are required to request access to apps that aren’t already configured by admins with a trusted, limited, or blocked access setting.


All Google Workspace for Education Admins must review and confirm access settings for third-party configured apps that are currently accessible to your users by Oct 23, 2023 in order for users designated as under 18 to maintain access to those third-party apps. You’ll have the option to allow users designated as under 18 to skip requesting access for all unconfigured apps that only ask for basic profile information for authentication purposes. These apps will be accessible for users designated as under 18 without further configuration on your part.

Who’s impacted

Admins, end users, and developers 


Why it matters 

Third-party app settings are important for protecting users’ data. We are providing enhanced app access controls to manage access to third-party applications for users designated as under 18. Google Workspace for Education Admins are required to confirm third-party app settings for third-party apps currently accessible by users in their institution by October 23, 2023 to avoid disrupting access to third-party applications for users designated as under 18. 


Additional details

If you’d like to set different levels of access for specific sets of users, you can now configure third-party app access by organizational units.


Getting started 

Rollout pace 

  • This feature is available now. 

Availability 

  • Available to Education Fundamentals, Education Standard, Education Plus, and the Teaching and Learning Upgrade 

Resources 

Join client-side encrypted meetings from your mobile device

What’s changing 

Beginning today, you can join a client-side encrypted meeting directly from the Google Meet and Calendar apps


Client-side encryption gives users direct control of their encryption keys and the identity service that authenticates those keys. Further, client-side encryption ensures that Google cannot access audio and video content under any circumstances. Our original announcement has more information about client-side encryption in Meet.


Getting started


Rollout pace



Availability

  • Available to Google Workspace Enterprise Plus, Education Standard, and Education Plus customers hosting client-side encrypted calls 
  • Not available to Google Workspace Essentials, Business Starter, Business Standard, Business Plus, Enterprise Essentials, Education Fundamentals, The Teaching and Learning Upgrade, Frontline, and Nonprofits customers

Resources



Launching the Merchant Support Service

On August 23rd, 2023, we introduced new features in the Content API for Shopping to help you display detailed information about product and account issues to your merchants, and enable those merchants to request re-review or perform other actions. The new MerchantSupport service provides more transparency about our policy-related requirements to your merchants. These methods should be used for merchants based in the EEA, but can be used globally.

Here are the 2 new methods (developer guide):
  • Render account issues: provides UI elements with text in the language you select to display account issues to your merchants and redirect link to Merchant Center for merchants to request a re-review or perform other actions
  • Render product issues: provides UI elements with text in the language you select to display product issues to your merchants and redirect link to Merchant Center for merchants to request a re-review or perform other actions
All issue texts returned from MerchantSupport methods above are localized. Clients can request texts in any Merchant Center supported language. Please note that merchants need to have access to their Merchant Center account in order to perform the actions.

If you are based in EEA, we highly recommend implementing MerchantSupport methods by the end of the year, so that your merchants will have more information regarding our policy-related requirements, and have access to our new features. In the future we will expand the MerchantSupport service to let you request re-review or perform other actions directly with the Content API for Shopping. With this future addition, your merchants will not have to be redirected to Merchant Center, they will be able to request the action directly in your UI.

If you have any questions or concerns, please don't hesitate to contact us via the forum.

Deprecation of Structured Data Files v5.4

Today we’re announcing the deprecation of Structured Data Files (SDF) v5.4. This version will be fully sunset on February 27, 2024.

Please migrate to v6, the most recent version, by the sunset date. Once v5.4 is sunset::

  • The default version of partners and advertisers using those versions will be updated to the oldest supported version, v5.5.
  • sdfdownloadtasks.create requests declaring the sunset versions in the request body will return a 400 error.

If you run into issues or need help with your migration, please contact us using our support contact form.

Chrome Dev for Android Update

Hi everyone! We've just released Chrome Dev 118 (118.0.5963.0) for Android. It's now available on Google Play.

You can see a partial list of the changes in the Git log. For details on new features, check out the Chromium blog, and for details on web platform updates, check here.

If you find a new issue, please let us know by filing a bug.

Krishna Govind
Google Chrome