Category Archives: Android Developers Blog

An Open Handset Alliance Project

Final update to Android 7.1 Developer Preview

Posted by Dave Burke, VP of Engineering

Today we're rolling out an update to the Android 7.1 Developer Preview -- the last before we release the final Android 7.1.1 platform to the ecosystem. Android 7.1.1 includes the developer features already available on Pixel and Pixel XL devices and adds optimizations and bug fixes on top of the base Android 7.1 platform. With Developer Preview 2, you can make sure your apps are ready for Android 7.1.1 and the consumers that will soon be running it on their devices.

As highlighted in October, we're also expanding the range of devices that can receive this Developer Preview update to Nexus 5X, Nexus 6P, Nexus 9, and Pixel C.

If you have a supported device that's enrolled in the Android Beta Program, you'll receive an update to Developer Preview 2 over the coming week. If you haven't enrolled your device yet, just visit the site to enroll your device and get the update.

In early December, we'll roll out Android 7.1.1 to the full lineup of supported devices as well as Pixel and Pixel XL devices.

What's in this update?

Developer Preview 2 is a release candidate for Android 7.1.1 that you can use to complete your app development and testing in preparation for the upcoming final release. In includes near-final system behaviors and UI, along with the latest bug fixes and optimizations across the system and Google apps.

It also includes the developer features and APIs (API level 25) already introduced in Developer Preview 1. If you haven't explored the developer features, you'll want to take a look at app shortcuts, round icon resources, and image keyboard support, among others -- you can see the full list of developer features here.

With Developer Preview 2, we're also updating the SDK build and platform tools in Android Studio, the Android 7.1.1 platform, and the API Level 25 emulator system images. The latest version of the support library (25.0.1) is also available for you to add image keyboard support, bottom navigation, and other features for devices running API Level 25 or earlier.

For details on API Level 25 check out the API diffs and the updated API reference on the developer preview site.

Get your apps ready for Android 7.1

Now is the time to optimize your apps to look their best on Android 7.1.1. To get started, update to Android Studio 2.2.2 and then download the API Level 25 platform, emulator system images, and tools through the SDK Manager in Android Studio.

After installing the API Level 25 SDK, you can update your project's compileSdkVersion to 25 to build and test against the new APIs. If you're doing compatibility testing, we recommend updating your app's targetSdkVersion to 25 to test your app with compatibility behaviors disabled. For details on how to set up your app with the API Level 25 SDK, see Set up the Preview.

If you're adding app shortcuts or circular launcher icons to your app, you can use Android Studio's built-in Image Asset Studio to quickly help you create icons of different sizes that meet the material design guidelines. You can test your round icons on the Google APIs emulator for API Level 25, which includes support for round icons and the new Google Pixel Launcher.

Android Studio and the Google APIs emulator let you quickly create and test your round icon assets.

If you're adding image keyboard support, you can use the Messenger and Google Keyboard apps included in the preview system images for testing as they include support for this new API.

Scale your tests using Firebase Test Lab for Android

To help scale your testing, make sure to take advantage of Firebase Test Lab for Android and run your tests in the cloud at no charge during the preview period on all virtual devices including the Developer Preview 2 (API 25). You can use the automated crawler (Robo Test) to test your app without having to write any test scripts, or you can upload your own instrumentation (e.g. Espresso) tests. You can upload your tests here.

Publish your apps to alpha, beta or production channels in Google Play

After you've finished final testing, you can publish your updates compiled against, and optionally targeting, API 25 to Google Play. You can publish to your alpha, beta, or even production channels in the Google Play Developer Console. In this way, push your app updates to users whose devices are running Android 7.1, such as Pixel and Android Beta devices.

Get Developer Preview 2 on Your Eligible Device

If you have an eligible device that's already enrolled in the Android Beta Program, the device will get the Developer Preview 2 update over the coming week. No action is needed on your part. If you aren't yet enrolled in program, the easiest way to get started is by visiting android.com/beta and opt-in your eligible Android phone or tablet -- you'll soon receive this preview update over-the-air. As always, you can also download and flash this update manually.

As mentioned above, this Developer Preview update is available for Nexus 5X, Nexus 6P, Nexus 9, and Pixel C devices.

We're expecting to launch the final release of the Android 7.1.1 in just a few weeks Starting in December, we'll roll out Android 7.1.1 to the full lineup of supported preview devices, as well as the recently launched Pixel and Pixel XL devices. At that time, we'll also push the sources to AOSP, so our device manufacturer partners can bring this new platform update to consumers on their devices.

Meanwhile, we continue to welcome your feedback in the Developer Preview issue tracker, N Preview Developer community, or Android Beta community as we work towards the final consumer release in December!

Calling European game developers, enter the Indie Games Contest by December 31

Originally posted on Google Developers blog

Posted by Matteo Vallone, Google Play Partner Development Manager

To build awareness of the awesome innovation and art that indie game developers are bringing to users on Google Play, we have invested heavily over the past year in programs like Indie Corner, as well as events like the Google Play Indie Games Festivals in North America and Korea.

As part of that sustained effort, we also want to celebrate the passion and innovation of indie game developers with the introduction of the first-ever Google Play Indie Games Contest in Europe. The contest will recognize the best indie talent in several countries and offer prizes that will help you get your game noticed by industry experts and gamers worldwide.

Prizes for the finalists and winners:

  • An open showcase held at the Saatchi Gallery in London
  • YouTube influencer campaigns worth up to 100,000 EUR
  • Premium placements on Google Play
  • Tickets to Google I/O 2017 and other top industry events
  • Promotions on our channels
  • Special prizes for the best Unity game
  • And more!

Entering the contest:

If you're based in Czech Republic, Denmark, Finland, France (coming soon), Germany, Iceland, Israel, Netherlands, Norway, Poland (coming soon), Romania, Spain, Sweden, Turkey, or UK (excl. Northern Ireland), have 15 or less full time employees, and published a new game on Google Play after 1 January 2016, you may now be eligible to enter the contest. If you're planning on publishing a new game soon, you can also enter by submitting a private beta. Check out all the details in the terms and conditions. Submissions close on 31 December 2016.

The process:

Up to 20 finalists will get to showcase their games at an open event at the Saatchi Gallery in London on the 16th February 2017. At the event, the top 10 will be selected by the event attendees and the Google Play team. The top 10 will then get the opportunity to pitch to a jury of industry experts, from which the final winner and runners up will be selected.

Even if someone is NOT entering the contest:

Even if you're not eligible to enter the contest, you can still register to attend the final showcase event in London on 16 February 2017, check out some great indie games, and have fun with various industry experts and indie developers. We will also be hosting a workshop for all indie games developers from across EMEA in the new Google office in Kings Cross the next day, so this will be a packed week.

Get started:

Enter the Indie Games Contest now and visit the contest site to find out more about the contest, the event, and the workshop.

Google Play services and Firebase for Android will support API level 14 at minimum

Posted by Doug Stevenson, Developer Advocate

Version 10.0.0 of the Google Play services client libraries, as well as the Firebase client libraries for Android, will be the last version of these libraries that support Android API level 9 (Android 2.3, Gingerbread). The next scheduled release of these libraries, version 10.2.0, will increase the minimum supported API level from 9 to 14 (Android 4.0.1, Ice Cream Sandwich). This change will happen in early 2017.

Why are we discontinuing support for Gingerbread and Honeycomb in Google Play services?

The Gingerbread platform is almost six years old. Many Android developers have already discontinued support for Gingerbread in their apps. This helps them build better apps that make use of the newer capabilities of the Android platform. For us, the situation is the same. By making this change, we will be able to provide a more robust collection of tools for Android developers with greater speed.

What this means for your Android app that uses Google Play services or Firebase:

You may use version 10.0.0 of Google Play services and Firebase as you are currently. It will continue to work with Gingerbread devices as it has in the past.

When you choose to upgrade to the future version 10.2.0, and if your app minimally supports API level 14 or greater (typically specified as "minSdkVersion" in your build.gradle), you will not encounter any versioning problems. However, if your app supports lower than API level 14, you will encounter a problem at build time with an error that looks like this:

Error:Execution failed for task ':app:processDebugManifest'.
> Manifest merger failed : uses-sdk:minSdkVersion 9 cannot be smaller than version 14 declared in library [com.google.android.gms:play-services:10.2.0]
        Suggestion: use tools:overrideLibrary="com.google.android.gms:play_services" to force usage

Unfortunately, the stated suggestion will not help you successfully run your app on older devices. In order to use Google Play services 10.2.0 and later, you can choose one of the following options:

1. Target API level 14 as the minimum supported API level.

This is the recommended course of action. To discontinue support for API levels that will no longer receive Google Play services updates, simply increase the minSdkVersion value in your app's build.gradle to at least 14. If you update your app in this way and publish it to the Play Store, users of devices with less than that level of support will not be able to see or download the update. However, they will still be able to download and use the most recently published version of the app that does target their device.

A very small percentage of all Android devices are using API levels less than 14. You can read more about the current distribution of Android devices. We believe that many of these old devices are not actively being used.

If your app still has a significant number of users on older devices, you can use multiple APK support in Google Play to deliver an APK that uses Google Play services 10.0.0. This is described below.

2. Build multiple APKs to support devices with an API level less than 14.

Along with some configuration and code management, you can build multiple APKs that support different minimum API levels, with different versions of Google Play services. You can accomplish this with build variants in Gradle. First, define build flavors for legacy and newer versions of your app. For example, in your build.gradle, define two different product flavors, with two different compile dependencies for the components of Play Services you're using:

productFlavors {
    legacy {
        minSdkVersion 9
        versionCode 901  // Min API level 9, v01
    }
    current {
        minSdkVersion 14
        versionCode 1401  // Min API level 14, v01
    }
}

dependencies {
    legacyCompile 'com.google.android.gms:play-services:10.0.0'
    currentCompile 'com.google.android.gms:play-services:10.2.0'
}

In the above situation, there are two product flavors being built against two different versions of the Google Play services client libraries. This will work fine if only APIs are called that are available in the 10.0.0 library. If you need to call newer APIs made available with 10.2.0, you will have to create a compatibility library for the newer API calls so that they are only built into the version of the application that can use them:

  • Declare a Java interface that exposes the higher-level functionality you want to perform that is only available in current versions of Play services.
  • Build two Android libraries that implement that interface. The "current" implementation should call the newer APIs as desired. The "legacy" implementation should no-op or otherwise act as desired with older versions of Play services. The interface should be added to both libraries.
  • Conditionally compile each library into the app using "legacyCompile" and "currentCompile" dependencies.
  • In the app's code, call through to the compatibility library whenever newer Play APIs are required.

After building a release APK for each flavor, you then publish them both to the Play Store, and the device will update with the most appropriate version for that device. Read more about multiple APK support in the Play Store.

Pixel Security: Better, Faster, Stronger

Posted by Paul Crowley, Senior Software Engineer and Paul Lawrence, Senior Software Engineer

Encryption protects your data if your phone falls into someone else's hands. The new Google Pixel and Pixel XL are encrypted by default to offer strong data protection, while maintaining a great user experience with high I/O performance and long battery life. In addition to encryption, the Pixel phones debuted running the Android Nougat release, which has even more security improvements.

This blog post covers the encryption implementation on Google Pixel devices and how it improves the user experience, performance, and security of the device.

File-Based Encryption Direct Boot experience

One of the security features introduced in Android Nougat was file-based encryption. File-based encryption (FBE) means different files are encrypted with different keys that can be unlocked independently. FBE also separates data into device encrypted (DE) data and credential encrypted (CE) data.

Direct boot uses file-based encryption to allow a seamless user experience when a device reboots by combining the unlock and decrypt screen. For users, this means that applications like alarm clocks, accessibility settings, and phone calls are available immediately after boot.

Enhanced with TrustZone® security

Modern processors provide a means to execute code in a mode that remains secure even if the kernel is compromised. On ARM®-based processors this mode is known as TrustZone. Starting in Android Nougat, all disk encryption keys are stored encrypted with keys held by TrustZone software. This secures encrypted data in two ways:

  • TrustZone enforces the Verified Boot process. If TrustZone detects that the operating system has been modified, it won't decrypt disk encryption keys; this helps to secure device encrypted (DE) data.
  • TrustZone enforces a waiting period between guesses at the user credential, which gets longer after a sequence of wrong guesses. With 1624 valid four-point patterns and TrustZone's ever-growing waiting period, trying all patterns would take more than four years. This improves security for all users, especially those who have a shorter and more easily guessed pattern, PIN, or password.

Encryption on Pixel phones

Protecting different folders with different keys required a distinct approach from full-disk encryption (FDE). The natural choice for Linux-based systems is the industry-standard eCryptFS. However, eCryptFS didn't meet our performance requirements. Fortunately one of the eCryptFS creators, Michael Halcrow, worked with the ext4 maintainer, Ted Ts'o, to add encryption natively to ext4, and Android became the first consumer of this technology. ext4 encryption performance is similar to full-disk encryption, which is as performant as a software-only solution can be.

Additionally, Pixel phones have an inline hardware encryption engine, which gives them the ability to write encrypted data at line speed to the flash memory. To take advantage of this, we modified ext4 encryption to use this hardware by adding a key reference to the bio structure, within the ext4 driver before passing it to the block layer. (The bio structure is the basic container for block I/O in the Linux kernel.) We then modified the inline encryption block driver to pass this to the hardware. As with ext4 encryption, keys are managed by the Linux keyring. To see our implementation, take a look at the source code for the Pixel kernel.

While this specific implementation of file-based encryption using ext4 with inline encryption benefits Pixel users, FBE is available in AOSP and ready to use, along with the other features mentioned in this post.

Understanding APK packaging in Android Studio 2.2

Posted by Wojtek Kaliciński, Android Developer Advocate

Android Studio 2.2 launched recently with many new and improved features. Some of the changes are easy to miss because they happened under the hood in the Android Gradle plugin, such as the newly rewritten integrated APK packaging and signing step.

APK Signature Scheme v2

With the introduction of the new APK Signature Scheme v2 in Android 7.0 Nougat, we decided to rewrite how assembling APKs works in the Android Gradle plugin. You can read all about the low-level technical details of v2 signatures in the documentation, but here's a quick tl;dr summary of the info you need as an Android app developer:

  • The cryptographic signature of the APK that is used to verify its integrity is now located immediately before the ZIP Central Directory.
  • The signature is computed and verified over the binary contents of the whole APK file, as opposed to decompressed file contents of each file in the archive in v1.
  • An APK can be signed by both v1 and v2 signatures at the same time, so it remains backwards compatible with previous Android releases.

Why introduce this change to how Android verifies APKs? Firstly, for enhanced security and extensibility of this new signing format, and secondly for performance - the new signatures take significantly less time to verify on the device (no need for costly decompression), resulting in faster app installation times.

The consequence of this new signing scheme, however, is that there are new constraints on the APK creation process. Since only uncompressed file contents were verified in v1, that allowed for quite a lot of modifications to be made after APK signing - files could be moved around or even recompressed. In fact, the zipalign tool which was part of the build process did exactly that - it was used to align ZIP entries on correct byte boundaries for improved runtime performance.

Because v2 signatures verify all bytes in the archive and not individual ZIP entries, running zipalign is no longer possible after signing. That's why compression, aligning and signing now happens in a single, integrated step of the build process.

If you have any custom tasks in your build process that involve tampering with or post-processing the APK file in any way, please make sure you disable them or you risk invalidating the v2 signature and thus making your APKs incompatible with Android 7.0 and above.

Should you choose to do signing and aligning manually (such as from the command line), we offer a new tool in the Android SDK, called apksigner, that provides both v1 and v2 APK signing and verification. Note that you need to run zipalign before running apksigner if you are using v2 signatures. Also remember the jarsigner tool from the JDK is not compatible with Android v2 signatures, so you can't use it to re-sign your APKs if you want to retain the v2 signature.

In case you want to disable adding v1 or v2 signatures when building with the Android Gradle plugin, you can add these lines to your signingConfig section in build.gradle:

v1SigningEnabled false
v2SigningEnabled false

Note: both signing schemes are enabled by default in Android Gradle plugin 2.2.

Release builds for smaller APKs

We took this opportunity when rewriting the packager to make some optimizations to the size of release APKs, resulting in faster downloads, smaller delta updates on the Play Store, and less wasted space on the device. Here are some of the changes we made:

  • Files in the archive are now sorted to minimize differences between APK builds.
  • All file timestamps and metadata are zeroed out.
  • Level 6 and level 9 compression is checked for all files in parallel and the optimal one is used, i.e. if L9 provides little benefit in terms of size, then L6 may be chosen for better performance
  • Native libraries are stored uncompressed and page aligned in the APK. This brings support for the android:extractNativeLibs="false" option from Android 6.0 Marshmallow and lets applications use less space on the device as well as generate smaller updates on the Play Store
  • Zopfli compression is not used to better support Play Store update algorithms. It is not recommended to recompress your APKs with Zopfli. Pre-optimizing individual resources such as PNG files in your projects is still fine and recommended.

These changes help make your releases as small as possible so that users can download and update your app even on a slower connection or on less capable devices. But what about debug builds?

Debug builds for installation speed

When developing apps you want to keep the iteration cycle fast - change code, build, and deploy on a connected device or emulator. Since Android Studio 2.0 we've been working to make all the steps as fast as possible. With Instant Run we're now able to update only the changed code and resources during runtime, while the new Emulator brings multi-processor support and faster ADB speeds for quicker APK transfer and installation. Build improvements can cut that time even further and in Android Studio 2.2 we're introducing incremental packaging and parallel compression for debug builds. Together with other features like selectively packaging resources for the target device density and ABI this will make your development even faster.

A word of caution: the APK files created for Instant Run or by invoking a debug build are not meant for distribution on the Play Store! They contain additional instrumentation code for Instant Run and are missing resources for device configurations other than the one that was connected when you started the build. Make sure you only distribute release versions of the APK which you can create using the Android Studio Generate Signed APK command or the assembleRelease Gradle task.

Adding TV Channels to Your App with the TIF Companion Library

Posted by Nick Felker and Sachit Mishra, Developer Programs Engineers

The TV Input Framework (TIF) on Android TV makes it easy for third-party app developers to create their own TV channels with any type of linear media. It introduces a new way for apps to engage with users with a high-quality channel surfing experience, and it gives users a single interface to browse and watch all of their channels.

To help developers get started with building TV channels, we have created the TV Input Framework Companion Library, which includes a number of helper methods and classes to make the development process as easy as possible.

This library provides standard classes to set up a background task that updates the program guide and an interface that helps integrate your media player with the playback controller, as well as supports the new TV Recording APIs that are available in Android Nougat. It includes everything you need to start showing your content on your Android TV's live TV app.

(Note: source from android-tv-sample-inputs sample)

To get started, take a look at the sample app and documentation. The sample demonstrates how to extend this library to create custom channels and manage video playback. Developers can immediately get started with the sample app by updating the XMLTV file with their own content or dynamically creating channels in the SampleJobService.

You can include this library in your app by copying the library directory from the sample into your project root directory. Then, add the following to your project's settings.gradle file:

include ':library'

In your app's build.gradle file, add the following to your dependencies:

compile project(':library')

Android TV continues to grow, and whether your app has on-demand or live media, TIF is a great way to keep users engaged with your content. One partner for example, Haystack TV, recently integrated TIF into their app and it now accounts for 16% of watch time for new users on Android TV.

Check out our TV developer site to learn more about Android TV, and join our developer community on Google+ at g.co/androidtvdev to discuss this library and other topics with TV developers.

Make and ndk-build support in Android Studio 2.2

Posted by Kathryn Shih, Android Product Manager

In addition to supporting the experimental Gradle plugin, Android Studio 2.2 enables you to build C/C++ components of Android projects using CMake and ndk-build.

The Android Studio team plans to continue to support the experimental Gradle plugin. This will eventually replace the current Gradle plugin, providing additional tightly-integrated benefits to C/C++ developers such as smarter dependency management. So if you're interested in someday having the smartest possible interface between your IDE and your build system, you shouldn't ignore the experimental plugin.

CMake and ndk-build are useful alternatives to Gradle in several cases:

  • Projects that are already using CMake or ndk-build, such as legacy Eclipse ndk projects
  • Projects that are unable to assume the risk of using an experimental plugin for their C/C++ builds
  • Projects that will share a C/C++ build system across multiple platforms
  • C/C++ projects that need to use advanced features currently unavailable in experimental Gradle such as NEON support

For new projects, we recommend using CMake or experimental Gradle. For new Android projects with limited C++, we recommend trying the experimental Gradle plugin. For projects with substantial amounts of C++, or where you want the maximally stable build configuration, we recommend using a CMake build. Android Studio intends CMake to be a permanently supported solution.

While we think that there are substantial advantages to having a single build system able to handle all parts of an Android application, stabilizing the experimental plugin is not an option for us because it relies on Gradle APIs that are still a work in progress. Until the Gradle APIs are stabilized, the experimental plugin will keep changing, particularly in its Domain Specific Language, and will be strictly tied to a very specific version of Gradle itself.

Note that the the old, undocumented ndkCompile integration is deprecated. If you are using it, you need to move away from it as we'll remove it completely in the near future. We recommend migrating to gradle+cmake via our migration guide.

Migrating from Eclipse to Android Studio

We no longer support the Eclipse ADT. To get started migrating, download and install Android Studio. For most projects, migration is as simple as importing your existing Eclipse ADT projects in Android Studio with the File → New→ Import Project menu option. For more details on the migration process, check out the migration guide.

Feedback and Open Source Contributions

We're dedicated to making Android Studio the best possible integrated development environment for building Android apps, so if there are missing features or other challenges preventing you from using Android Studio, we want to hear about it [please take our survey]. You can also file bugs or feature requests directly with the team, and let us know via our Twitter or Google+ accounts.

Android Studio is an open source project, available to all at no cost. Check out our Open Source project page if you're interested in contributing or learning more.

Test on Android 7.1 Developer Preview in Firebase Test Lab

By Ahmed Mounir Gad, Product Manager, Firebase Test Lab

To deliver the best user experience right out of the gate, Firebase Test Lab for Android allows you to test your apps and ensure their compatibility with multiple device configurations, across OS versions, screen orientations, and locales. With a single click, you can run your tests on hundreds of device configurations in Google Cloud and receive your results quickly.

Today, we’re excited to announce the availability of the Android 7.1 Developer Preview on Firebase Test Lab virtual devices. In addition to testing the Android 7.1 Developer Preview on your physical Android Device with the Android Beta program, or on your local Android Emulator, you can use the Firebase Test Lab to scale your app testing to hundreds of Android virtual devices.

You can also use Firebase Test Lab to perform your own testing. If you don’t have any test scripts, Robo test is ideal for doing your basic compatibility testing on the new platform. It crawls your app in an attempt to find crashes. You can also use the Espresso Test Recorder in Android Studio to record your own instrumentation tests without writing any code.

From now until the end of December (12/31/2016), Firebase Test Lab will be offered at no charge on the Firebase Blaze plan for all virtual devices, to help you ensure the compatibility of your app with the Android 7.1 Developer Preview release, as well as with other Android releases.

Prepare your app for API level 25, then go to the Firebase Test Lab console to run your first test.

Happy testing!

Robo tests uncovering a crash on Android 7.1 Developer Preview for the Flood-It! app.

Welcome to Playtime!

Posted by Larissa Fontaine, Director, Global Head of Apps Business Development, Google Play

Almost three years ago, we started the first of an ongoing series of developer events, called Playtime, dedicated to educating partners on best practices and tools available to improve their apps and games and grow successful businesses on Google Play. It was originally a modest gathering that was held on our campus in Mountain View, CA, but it has quickly grown to become one our premier developer events of the year (outside of Google I/O) with a huge global footprint. We've already been in London, Paris, Berlin, San Paulo, New Delhi, Moscow, Tel Aviv, Tokyo, Seoul and more, just to meet directly with developers.

Today, Playtime is back in San Francisco after a long international run! On stage, we'll recap some of our recent efforts to invest in new areas that go beyond the smartphone, as well as announce new tools and highlight the major progress of recently launched features that help developers increase user engagement and make more money.

Extending beyond mobile devices

We live in a multiscreen world and people want to enjoy Android apps on the their phones, and many other devices. That's why we have been extending Google Play to go beyond the smartphone, enabling new app and gaming experiences while on the go, on a chromebook, in the living room and immersed in virtual reality.

The new Daydream device platform is going to be available soon and will come with a Google Play Store filled with high quality VR apps. Android Apps are now available in beta on a few Chromebook devices (same Android apps that currently run on phones and tablets). And we recently announced a developer preview of Android Wear 2.0 which introduced Google Play for Wear. This makes it easier for users to discover and install great apps that work directly on the watch.

Enhanced developer tools and programs

We continue to deliver the best tools for developers in the Play Developer Console to drive user engagement and increase revenue.

Offer new subscription promos

We know how important subscriptions are in helping you monetize and we're continuing to invest in features to support your subscription business. Subscriptions are the fastest growing business model on Play, with consumer spending in subscription apps increasing 10x over the last 3 years. Coming soon, you'll be able to create an introductory price for new subscribers for a set period of time. For example, you can offer a subscription for $1 per month for the first three months before the normal subscription price kicks in. Along with local/custom pricing and free trials already offered, introductory pricing will help you acquire more subscribers and grow your subscription business.

Build anticipation with pre-registration

Earlier this year, we started working with select developer to let users pre-register for major upcoming Android titles, such as Clash Royale (Supercell), and Candy Crush Jelly Saga (King), which has driven more than 30 million installs so far. With pre-registration, users simply tap the 'pre-register' icon to show their interest. The process automatically sets up an alert that prompts a user once the app is available. The program is limited at this time.

Get feedback early with Early Access

In only a few short months, more developers have been leveraging the "Early Access" open beta program to build a user base, interact with early-adopter users and get invaluable feedback before an official launch. It has been an immediate hit! Since the collection became available to all users, open beta titles have been installed over 4 million times (up from 1 million in September) and demand is growing. If you are a developer getting ready to launch on Google Play, you can nominate your app or game to be part of Early Access. Learn more here.

Recognizing art and innovation from Indies

To build awareness of the awesome innovation and art that indie game developers are bringing to users on Google Play, we have invested heavily over the past year in programs like Indie Corner, as well as industry events like the Google Play Indie Games Festival in North America. The new Indie Corner collection, in particular, has already helped million of gamers discover the latest and most innovative releases on Google Play. Developer can nominate indie game for inclusion at g.co/indiecornersubmission. We'll pick the best games to showcase based on the quality of the experience and exemplary use of Google Play game services.

Ensuring fair play for everyone

Our goal is always to do the right thing for both users and developers. As game economies have become more complex, developers are looking for more tools to ensure that all users play fairly to make gameplay fun for everyone. Today, we are announcing a new API (in beta) that helps developers identify users who have requested refunds so they can better manage their economies. This program is currently in early beta and interested developers can sign up to learn more here.

It has been another great year for Google Play thanks to the continued feedback and support from the developer community.

Support Ended for Eclipse Android Developer Tools

By Jamal Eason, Product Manager, Android

With the release of Android Studio 2.2, the time has now come to say goodbye to the Eclipse Android Developer Tools. We have formally ended their support and development. There's never been a better time to switch to Android Studio and experience the improvements we've made to the Android development workflow.

Android Studio

Android Studio, the official IDE for Android, features powerful code editing with advanced code-completion and refactoring. It includes robust static analysis, bringing the intelligence of the Android engineering team to you to help you easily apply Android coding best practices, and includes simultaneous debugging in both Java and C++ to help fix any bugs that slip through. When you combine this with performance tooling, a fast, flexible build system, code templates, GitHub integration, and its high-performance, feature-rich emulator, you get a deeply Android-tailored development environment for the many form factors of the OS. It's the development environment used by 92% of the top 125 Google Play apps and games, and we're constantly innovating it to handle every Android development need.

What's New in Android Studio 2.2

Android Studio 2.2 builds on the great features from Android Studio 2.0. There are over twenty new features that improve development whether you are designing, iterating, or testing. Notable changes include:

  • Instant Run - The super-fast iteration engine now is both more reliable and available for more types of changes
  • Layout Editor - The new user interface designer that makes it easier than ever to create beautiful app experiences
  • Constraint Layout - A new flexible layout engine for building dynamic user interfaces - designed to work with the new layout editor
  • C++ Support - CMake and ndk-build are now supported alongside improved editing and debug experiences
  • APK Analyzer - Inspects APKs to help you streamline your APK and debug multi-dex issues
  • GPU Debugger (beta) - Captures a stream of OpenGL ES commands and replays them with GPU state inspection
  • Espresso Test Recorder (beta) - Records interactions with your app and outputs UI test code
Top Developers Love Android Studio

For our ADT Fans

All of your favorite ADT tools are now part of Android Studio, including DDMS, Trace Viewer, Network Monitor, and CPU Monitor. We've also improved Android Studio's accessibility, including keyboard navigation enhancements and screen reader support.

We announced that we were ending development and official support for the Android Developer Tools (ADT) in Eclipse at the end of 2015, including the Eclipse ADT plugin and Android Ant build system. With the latest updates to Studio, we've completed the transition.

Migrating to Android Studio

To get started, download and install Android Studio. For most developers, including those with C/C++ projects, migration is as simple as importing your existing Eclipse ADT projects in Android Studio with the File > New > Import Project menu option. For more details on the migration process, check out the migration guide.

Feedback and Open Source Contributions

We're dedicated to making Android Studio the best possible integrated development environment for building Android apps, so if there are missing features or other challenges preventing you from switching to Android Studio, we want to hear about it [survey] ! You can also file bugs or feature requests directly with the team, and let us know via our Twitter or Google+ accounts.

Android Studio is an open source project, available to all at no cost. Check out our Open Source project page if you're interested in contributing or learning more.