Tag Archives: machine learning

Deep Learning for Electronic Health Records



When patients get admitted to a hospital, they have many questions about what will happen next. When will I be able to go home? Will I get better? Will I have to come back to the hospital? Having precise answers to those questions helps doctors and nurses make care better, safer, and faster — if a patient’s health is deteriorating, doctors could be sent proactively to act before things get worse.

Predicting what will happen next is a natural application of machine learning. We wondered if the same types of machine learning that predict traffic during your commute or the next word in a translation from English to Spanish could be used for clinical predictions. For predictions to be useful in practice they should be, at least:
  1. Scalable: Predictions should be straightforward to create for any important outcome and for different hospital systems. Since healthcare data is very complicated and requires much data wrangling, this requirement is not straightforward to satisfy.
  2. Accurate: Predictions should alert clinicians to problems but not distract them with false alarms. With the widespread adoption of electronic health records, we set out to use that data to create more accurate prediction models.
Together with colleagues at UC San Francisco, Stanford Medicine, and The University of Chicago Medicine, we published “Scalable and Accurate Deep Learning with Electronic Health Records” in Nature Partner Journals: Digital Medicine, which contributes to these two aims.
We used deep learning models to make a broad set of predictions relevant to hospitalized patients using de-identified electronic health records. Importantly, we were able to use the data as-is, without the laborious manual effort typically required to extract, clean, harmonize, and transform relevant variables in those records. Our partners had removed sensitive individual information before we received it, and on our side, we protected the data using state-of-the-art security including logical separation, strict access controls, and encryption of data at rest and in transit.

Scalability
Electronic health records (EHRs) are tremendously complicated. Even a temperature measurement has a different meaning depending on if it’s taken under the tongue, through your eardrum, or on your forehead. And that's just a simple vital sign. Moreover, each health system customizes their EHR system, making the data collected at one hospital look different than data on a similar patient receiving similar care at another hospital. Before we could even apply machine learning, we needed a consistent way to represent patient records, which we built on top of the open Fast Healthcare Interoperability Resources (FHIR) standard as described in an earlier blog post.

Once in a consistent format, we did not have to manually select or harmonize the variables to use. Instead, for each prediction, a deep learning model reads all the data-points from earliest to most recent and then learns which data helps predict the outcome. Since there are thousands of data points involved, we had to develop some new types of deep learning modeling approaches based on recurrent neural networks (RNNs) and feedforward networks.
Data in a patient's record is represented as a timeline. For illustrative purposes, we display various types of clinical data (e.g. encounters, lab tests) by row. Each piece of data, indicated as a little grey dot, is stored in FHIR, an open data standard that can be used by any healthcare institution. A deep learning model analyzed a patient's chart by reading the timeline from left to right, from the beginning of a chart to the current hospitalization, and used this data to make different types of predictions.
Thus we engineered a computer system to render predictions without hand-crafting a new dataset for each task, in a scalable manner. But setting up the data is only one part of the work; the predictions also need to be accurate.

Prediction Accuracy
The most common way to assess accuracy is by a measure called the area-under-the-receiver-operator curve, which measures how well a model distinguishes between a patient who will have a particular future outcome compared to one who will not. In this metric, 1.00 is perfect, and 0.50 is no better than random chance, so higher numbers mean the model is more accurate. By this measure, the models we reported in the paper scored 0.86 in predicting if patients will stay long in the hospital (traditional logistic regression scored 0.76); they scored 0.95 in predicting inpatient mortality (traditional methods were 0.86), and they scored 0.77 in predicting unexpected readmissions after patients are discharged (traditional methods were 0.70). These gains were statistically significant.

We also used these models to identify the conditions for which the patients were being treated. For example, if a doctor prescribed ceftriaxone and doxycycline for a patient with an elevated temperature, fever and cough, the model could identify these as signals that the patient was being treated for pneumonia. We emphasize that the model is not diagnosing patients — it picks up signals about the patient, their treatments and notes written by their clinicians, so the model is more like a good listener than a master diagnostician.

An important focus of our work includes the interpretability of the deep learning models used. An “attention map” of each prediction shows the important data points considered by the models as they make that prediction. We show an example as a proof-of-concept and see this as an important part of what makes predictions useful for clinicians.
A deep learning model was used to render a prediction 24 hours after a patient was admitted to the hospital. The timeline (top of figure) contains months of historical data and the most recent data is shown enlarged in the middle. The model "attended" to information highlighted in red that was in the patient's chart to "explain" its prediction. In this case-study, the model highlighted pieces of information that make sense clinically. Figure from our paper.
What does this mean for patients and clinicians?
The results of this work are early and on retrospective data only. Indeed, this paper represents just the beginning of the work that is needed to test the hypothesis that machine learning can be used to make healthcare better. Doctors are already inundated with alerts and demands on their attention — could models help physicians with tedious, administrative tasks so they can better focus on the patient in front of them or ones that need extra attention? Can we help patients get high-quality care no matter where they seek it? We look forward to collaborating with doctors and patients to figure out the answers to these questions and more.

Source: Google AI Blog


13 ways you’re using AI in your daily life

Editor’s note: Artificial intelligence (AI) is behind many of Google’s products and is a big priority for us as a company (more about that at Google I/O next week). Before the festivities commence, we’re sharing how AI already affects your life in ways you might not know, and how people from all over the world have used AI to build their own technology.

AI often sounds like some far-off science fiction concept, but it’s actually behind a lot of things you encounter in your daily life. Here’s the rundown: we train a software system with lots of examples so that it can pick up on patterns. Rather than telling the computer that all spam emails contain the phrase “new weight loss trick!,” you train it on millions of examples of spam, making small corrections until it can pick out the pattern on its own. This ability to learn patterns, called machine learning, makes your life easier in many ways—read on for 13 of them!

Fun stuff

1. Search for “dogs” or “hugs” in your Google Photos library to find your favorite furry friends and (non furry) moments. Even if you haven’t captioned any of your photos, Google can surface the ones that have the object or action you’re looking for.
2. Google Play Music delivers personalized recommendations to play the right music for any moment. By taking into account things like time of day or weather, Play Music can suggest the right music for cooking dinner or watching the sunset

3. Take a photo in Portrait Mode on Pixel 2, and it’ll perfectly blur the backgroundof the photo. This system has been trained on almost a million portraits to learn how to pick out the subject of the photo and blur the background.
4. Watch more than one billion YouTube videos with automatic captions, powered by machine learning algorithms that transcribe speech in 10 languages.

Productivity and security

5. Quickly respond to an email with Smart Reply in Gmail. Smart Reply saves you time by using AI to suggest three responses based on the email you received. Once you’ve selected one, you can send it immediately or edit your response.
6.And with Nudging, Gmail uses AI to remind you to follow up or respond to messages that are older than two to three days, making sure you don’t drop the ball.
7.Every day, Google Play Protect automatically reviews more than 50 billion apps, and even devices themselves, and takes action when it finds anything suspicious.

Helping you out in the world

8.Translate text on a sign or menu by holding your camera in front of it. Google Translate uses optical character recognition to figure out the words, and a translation system that has been trained on millions of examples of existing translations on the web.
9.You can strike up a conversation with your Google Assistant in more than a dozen languages, and this year it’ll be available in many more.
10. Estimate how hard it’ll be to park your car on Google Maps. It takes into account parking availability in a given area, and has learned the patterns of how different parts of a city get busy at different times.
11. Find the right address on Google Maps, thanks to a system that learned to read street names and addresses from billions of Street View images.
12. Search what you see with Google Lens, whether it’s landmarks, books, artwork, or your neighbor’s dog. It’s possible only with the latest in computer vision, using machine learning to identify objects and browse the world around you.
13.Asmart algorithm in Google Trips can help plan your next travel itinerary. It’s the classic “traveling salesman” research problem, applied to modern transportation and all the complex ways people move around.


To learn more about how AI is behind our products, tune into the I/O livestream next week, starting on Tuesday May 8 at 10 a.m. PDT.

Emojis IRL: find them using machine learning

Editor’s Note: AI is behind many of Google’s products and is a big priority for us as a company (more about that at Google I/O next week). Before the festivities commence, we’re sharing how AI already affects your life in ways you might not know, and how people from all over the world have used AI to build their own technology. First, let’s play a game.

Emojis have become a language all their own, so much so that we use them every day to communicate in texts and emails. These emojis are obviously modeled after their real world counterparts, which got us thinking: can we use the power of our phones to find the real world versions of the emojis we use every day?

Introducing Emoji Scavenger Hunt ?️‍♀️, powered by Tensorflow.js—TensorFlow’s open-source framework for machine learning with JavaScript. It works like this: the game will show you an emoji, and you have to find its real world version before time expires. While you search, the neural network will try and guess what it’s seeing—proof that machine learning can be used for more than serious applications. Sometimes, you’re just on the hunt for a ?, and machine learning can help.

Emoji Scavenger Hunt

Play for yourself at g.co/EmojiScavengerHunt. How many emojis ??? can you find ? ?

Announcing Open Images V4 and the ECCV 2018 Open Images Challenge



In 2016, we introduced Open Images, a collaborative release of ~9 million images annotated with labels spanning thousands of object categories. Since its initial release, we've been hard at work updating and refining the dataset, in order to provide a useful resource for the computer vision community to develop new models

Today, we are happy to announce Open Images V4, containing 15.4M bounding-boxes for 600 categories on 1.9M images, making it the largest existing dataset with object location annotations. The boxes have been largely manually drawn by professional annotators to ensure accuracy and consistency. The images are very diverse and often contain complex scenes with several objects (8 per image on average; visualizer).
Annotated images from the Open Images dataset. Left: Mark Paul Gosselaar plays the guitar by Rhys A. Right: Civilization by Paul Downey. Both images used under CC BY 2.0 license.
In conjunction with this release, we are also introducing the Open Images Challenge, a new object detection challenge to be held at the 2018 European Conference on Computer Vision (ECCV 2018). The Open Images Challenge follows in the tradition of PASCAL VOC, ImageNet and COCO, but at an unprecedented scale.

This challenge is unique in several ways:
  • 12.2M bounding-box annotations for 500 categories on 1.7M training images,
  • A broader range of categories than previous detection challenges, including new objects such as “fedora” and “snowman”.
  • In addition to the object detection main track, the challenge includes a Visual Relationship Detection track, on detecting pairs of objects in particular relations, e.g. “woman playing guitar”.
The training set is available now. A test set of 100k images will be released on July 1st 2018 by Kaggle. Deadline for submission of results is on September 1st 2018. We hope that the very large training set will stimulate research into more sophisticated detection models that will exceed current state-of-the-art performance, and that the 500 categories will enable a more precise assessment of where different detectors perform best. Furthermore, having a large set of images with many objects annotated enables to explore Visual Relationship Detection, which is a hot emerging topic with a growing sub-community.

In addition to the above, Open Images V4 also contains 30.1M human-verified image-level labels for 19,794 categories, which are not part of the Challenge. The dataset includes 5.5M image-level labels generated by tens of thousands of users from all over the world at crowdsource.google.com.

Announcing Open Images V4 and the ECCV 2018 Open Images Challenge



In 2016, we introduced Open Images, a collaborative release of ~9 million images annotated with labels spanning thousands of object categories. Since its initial release, we've been hard at work updating and refining the dataset, in order to provide a useful resource for the computer vision community to develop new models

Today, we are happy to announce Open Images V4, containing 15.4M bounding-boxes for 600 categories on 1.9M images, making it the largest existing dataset with object location annotations. The boxes have been largely manually drawn by professional annotators to ensure accuracy and consistency. The images are very diverse and often contain complex scenes with several objects (8 per image on average; visualizer).
Annotated images from the Open Images dataset. Left: Mark Paul Gosselaar plays the guitar by Rhys A. Right: Civilization by Paul Downey. Both images used under CC BY 2.0 license.
In conjunction with this release, we are also introducing the Open Images Challenge, a new object detection challenge to be held at the 2018 European Conference on Computer Vision (ECCV 2018). The Open Images Challenge follows in the tradition of PASCAL VOC, ImageNet and COCO, but at an unprecedented scale.

This challenge is unique in several ways:
  • 12.2M bounding-box annotations for 500 categories on 1.7M training images,
  • A broader range of categories than previous detection challenges, including new objects such as “fedora” and “snowman”.
  • In addition to the object detection main track, the challenge includes a Visual Relationship Detection track, on detecting pairs of objects in particular relations, e.g. “woman playing guitar”.
The training set is available now. A test set of 100k images will be released on July 1st 2018 by Kaggle. Deadline for submission of results is on September 1st 2018. We hope that the very large training set will stimulate research into more sophisticated detection models that will exceed current state-of-the-art performance, and that the 500 categories will enable a more precise assessment of where different detectors perform best. Furthermore, having a large set of images with many objects annotated enables to explore Visual Relationship Detection, which is a hot emerging topic with a growing sub-community.

In addition to the above, Open Images V4 also contains 30.1M human-verified image-level labels for 19,794 categories, which are not part of the Challenge. The dataset includes 5.5M image-level labels generated by tens of thousands of users from all over the world at crowdsource.google.com.

Source: Google AI Blog


Google at ICLR 2018



This week, Vancouver, Canada hosts the 6th International Conference on Learning Representations (ICLR 2018), a conference focused on how one can learn meaningful and useful representations of data for machine learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in neural networks and deep learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2018, Google will have a strong presence with over 130 researchers attending, contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2018, we hope you'll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2018 in the list below (Googlers highlighted in blue)

Senior Program Chairs include:
Tara Sainath

Steering Committee includes:
Hugo Larochelle

Oral Contributions
Wasserstein Auto-Encoders
Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, Bernhard Scholkopf

On the Convergence of Adam and Beyond (Best Paper Award)
Sashank J. Reddi, Satyen Kale, Sanjiv Kumar

Ask the Right Questions: Active Question Reformulation with Reinforcement Learning
Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, Wei Wang

Beyond Word Importance: Contextual Decompositions to Extract Interactions from LSTMs
W. James Murdoch, Peter J. Liu, Bin Yu

Conference Posters
Boosting the Actor with Dual Critic
Bo Dai, Albert Shaw, Niao He, Lihong Li, Le Song

MaskGAN: Better Text Generation via Filling in the _______
William Fedus, Ian Goodfellow, Andrew M. Dai

Scalable Private Learning with PATE
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson

Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Adam Roberts, Jesse Engel, Matt Hoffman

Multi-Mention Learning for Reading Comprehension with Neural Cascades
Swabha Swayamdipta, Ankur P. Parikh, Tom Kwiatkowski

QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
Adams Wei Yu, David Dohan, Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, Quoc V. Le

Sensitivity and Generalization in Neural Networks: An Empirical Study
Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein

Action-dependent Control Variates for Policy Optimization via Stein Identity
Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, Qiang Liu

An Efficient Framework for Learning Sentence Representations
Lajanugen Logeswaran, Honglak Lee

Fidelity-Weighted Learning
Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schölkopf

Generating Wikipedia by Summarizing Long Sequences
Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer

Matrix Capsules with EM Routing
Geoffrey Hinton, Sara Sabour, Nicholas Frosst

Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Sergey Levine, Shixiang Gu, Murtaza Dalal, Vitchyr Pong

Deep Neural Networks as Gaussian Processes
Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel L. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence at Every Step
William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow

Initialization Matters: Orthogonal Predictive State Recurrent Neural Networks
Krzysztof Choromanski, Carlton Downey, Byron Boots

Learning Differentially Private Recurrent Language Models
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang

Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo Mena, David Belanger, Scott Linderman, Jasper Snoek

Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
Benjamin Eysenbach, Shixiang Gu, Julian IbarzSergey Levine

Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Josh Tenenbaum, Hugo Larochelle, Richard Zemel

Thermometer Encoding: One Hot Way to Resist Adversarial Examples
Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

A Hierarchical Model for Device Placement
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. LeJeff Dean

Monotonic Chunkwise Attention
Chung-Cheng Chiu, Colin Raffel

Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin

Trust-PCL: An Off-Policy Trust Region Method for Continuous Control
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, Patrick McDaniel

Stochastic Variational Video Prediction
Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy Campbell, Sergey Levine

Depthwise Separable Convolutions for Neural Machine Translation
Lukasz Kaiser, Aidan N. Gomez, Francois Chollet

Don’t Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le

Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, Kevin Murphy

Large Scale Distributed Neural Network Training through Online Distillation
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, Geoffrey E. Hinton

Learning a Neural Response Metric for Retinal Prosthesis
Nishal P. Shah, Sasidhar Madugula, Alan Litke, Alexander Sher, EJ Chichilnisky, Yoram Singer, Jonathon Shlens

Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan, Ying Xiao, Rif A. Saurous

A Neural Representation of Sketch Drawings
David HaDouglas Eck

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
Carlos Riquelme, George Tucker, Jasper Snoek

Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy, Matthew D. HoffmanJascha Sohl-Dickstein

Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, Pushmeet Kohli

On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, Xiaodong He

A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Samuel L. Smith, Quoc V. Le

Learning how to Explain Neural Networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan, Been Kim, Sven Dähne

Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, Shih-Fu Chang

Towards Neural Phrase-based Machine Translation
Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong Zhou, Li Deng

Unsupervised Cipher Cracking Using Discrete GANs
Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, Lukasz Kaiser

Variational Image Compression With A Scale Hyperprior
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, Nick Johnston

Workshop Posters
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo, Justin Gilmer, Ian Goodfellow, Been Kim

Stoachastic Gradient Langevin Dynamics that Exploit Neural Network Structure
Zachary Nado, Jasper Snoek, Bowen Xu, Roger Grosse, David Duvenaud, James Martens

Towards Mixed-initiative generation of multi-channel sequential structure
Anna Huang, Sherol Chen, Mark J. Nelson, Douglas Eck

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?
Maithra Raghu, Alex Irpan, Jacob Andreas, Robert Kleinberg, Quoc V. Le, Jon Kleinberg

GILBO: One Metric to Measure Them All
Alexander Alemi, Ian Fischer

HoME: a Household Multimodal Environment
Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo Larochelle, Aaron Courville

Learning to Learn without Labels
Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Learning via Social Awareness: Improving Sketch Representations with Facial Feedback
Natasha Jaques, Jesse Engel, David Ha, Fred Bertsch, Rosalind Picard, Douglas Eck

Negative Eigenvalues of the Hessian in Deep Neural Networks
Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol

Realistic Evaluation of Semi-Supervised Learning Algorithms
Avital Oliver, Augustus Odena, Colin Raffel, Ekin Cubuk, lan Goodfellow

Winner's Curse? On Pace, Progress, and Empirical Rigor
D. Sculley, Jasper Snoek, Alex Wiltschko, Ali Rahimi

Meta-Learning for Batch Mode Active Learning
Sachin Ravi, Hugo Larochelle

To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression
Michael Zhu, Suyog Gupta

Adversarial Spheres
Justin Gilmer, Luke Metz, Fartash Faghri, Sam Schoenholz, Maithra Raghu,,Martin Wattenberg, Ian Goodfellow

Clustering Meets Implicit Generative Models
Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Ratsch, Sylvain Gelly, Bernhard Scholkopf

Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks
Vitalii Zhelezniak, Dan Busbridge, April Shen, Samuel L. Smith, Nils Y. Hammerla

Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Trieu Trinh, Quoc Le, Andrew Dai, Thang Luong

Graph Partition Neural Networks for Semi-Supervised Classification
Alexander Gaunt, Danny Tarlow, Marc Brockschmidt, Raquel Urtasun, Renjie Liao, Richard Zemel

Searching for Activation Functions
Prajit Ramachandran, Barret Zoph, Quoc Le

Time-Dependent Representation for Neural Event Sequence Prediction
Yang Li, Nan Du, Samy Bengio

Faster Discovery of Neural Architectures by Searching for Paths in a Large Model
Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, Jeff Dean

Intriguing Properties of Adversarial Examples
Ekin Dogus Cubuk, Barret Zoph, Sam Schoenholz, Quoc Le

PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures
Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, Min Sun

The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, Sergey Levine

Learning to Organize Knowledge with N-Gram Machines
Fan Yang, Jiazhong Nie, William W. Cohen, Ni Lao

Online variance-reducing optimization
Nicolas Le Roux, Reza Babanezhad, Pierre-Antoine Manzagol

Google at ICLR 2018



This week, Vancouver, Canada hosts the 6th International Conference on Learning Representations (ICLR 2018), a conference focused on how one can learn meaningful and useful representations of data for machine learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in neural networks and deep learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2018, Google will have a strong presence with over 130 researchers attending, contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2018, we hope you'll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2018 in the list below (Googlers highlighted in blue)

Senior Program Chair:
Tara Sainath

Steering Committee includes:
Hugo Larochelle

Oral Contributions
Wasserstein Auto-Encoders
Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, Bernhard Scholkopf

On the Convergence of Adam and Beyond (Best Paper Award)
Sashank J. Reddi, Satyen Kale, Sanjiv Kumar

Ask the Right Questions: Active Question Reformulation with Reinforcement Learning
Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, Wei Wang

Beyond Word Importance: Contextual Decompositions to Extract Interactions from LSTMs
W. James Murdoch, Peter J. Liu, Bin Yu

Conference Posters
Boosting the Actor with Dual Critic
Bo Dai, Albert Shaw, Niao He, Lihong Li, Le Song

MaskGAN: Better Text Generation via Filling in the _______
William Fedus, Ian Goodfellow, Andrew M. Dai

Scalable Private Learning with PATE
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson

Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Adam Roberts, Jesse Engel, Matt Hoffman

Multi-Mention Learning for Reading Comprehension with Neural Cascades
Swabha Swayamdipta, Ankur P. Parikh, Tom Kwiatkowski

QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
Adams Wei Yu, David Dohan, Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, Quoc V. Le

Sensitivity and Generalization in Neural Networks: An Empirical Study
Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein

Action-dependent Control Variates for Policy Optimization via Stein Identity
Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, Qiang Liu

An Efficient Framework for Learning Sentence Representations
Lajanugen Logeswaran, Honglak Lee

Fidelity-Weighted Learning
Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schölkopf

Generating Wikipedia by Summarizing Long Sequences
Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer

Matrix Capsules with EM Routing
Geoffrey Hinton, Sara Sabour, Nicholas Frosst

Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Sergey Levine, Shixiang Gu, Murtaza Dalal, Vitchyr Pong

Deep Neural Networks as Gaussian Processes
Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel L. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence at Every Step
William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow

Initialization Matters: Orthogonal Predictive State Recurrent Neural Networks
Krzysztof Choromanski, Carlton Downey, Byron Boots

Learning Differentially Private Recurrent Language Models
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang

Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo Mena, David Belanger, Scott Linderman, Jasper Snoek

Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
Benjamin Eysenbach, Shixiang Gu, Julian IbarzSergey Levine

Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Josh Tenenbaum, Hugo Larochelle, Richard Zemel

Thermometer Encoding: One Hot Way to Resist Adversarial Examples
Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

A Hierarchical Model for Device Placement
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. LeJeff Dean

Monotonic Chunkwise Attention
Chung-Cheng Chiu, Colin Raffel

Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin

Trust-PCL: An Off-Policy Trust Region Method for Continuous Control
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, Patrick McDaniel

Stochastic Variational Video Prediction
Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy Campbell, Sergey Levine

Depthwise Separable Convolutions for Neural Machine Translation
Lukasz Kaiser, Aidan N. Gomez, Francois Chollet

Don’t Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le

Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, Kevin Murphy

Large Scale Distributed Neural Network Training through Online Distillation
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, Geoffrey E. Hinton

Learning a Neural Response Metric for Retinal Prosthesis
Nishal P. Shah, Sasidhar Madugula, Alan Litke, Alexander Sher, EJ Chichilnisky, Yoram Singer, Jonathon Shlens

Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan, Ying Xiao, Rif A. Saurous

A Neural Representation of Sketch Drawings
David HaDouglas Eck

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
Carlos Riquelme, George Tucker, Jasper Snoek

Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy, Matthew D. HoffmanJascha Sohl-Dickstein

Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, Pushmeet Kohli

On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, Xiaodong He

A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Samuel L. Smith, Quoc V. Le

Learning how to Explain Neural Networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan, Been Kim, Sven Dähne

Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, Shih-Fu Chang

Towards Neural Phrase-based Machine Translation
Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong Zhou, Li Deng

Unsupervised Cipher Cracking Using Discrete GANs
Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, Lukasz Kaiser

Variational Image Compression With A Scale Hyperprior
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, Nick Johnston

Workshop Posters
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo, Justin Gilmer, Ian Goodfellow, Been Kim

Stoachastic Gradient Langevin Dynamics that Exploit Neural Network Structure
Zachary Nado, Jasper Snoek, Bowen Xu, Roger Grosse, David Duvenaud, James Martens

Towards Mixed-initiative generation of multi-channel sequential structure
Anna Huang, Sherol Chen, Mark J. Nelson, Douglas Eck

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?
Maithra Raghu, Alex Irpan, Jacob Andreas, Robert Kleinberg, Quoc V. Le, Jon Kleinberg

GILBO: One Metric to Measure Them All
Alexander Alemi, Ian Fischer

HoME: a Household Multimodal Environment
Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo Larochelle, Aaron Courville

Learning to Learn without Labels
Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Learning via Social Awareness: Improving Sketch Representations with Facial Feedback
Natasha Jaques, Jesse Engel, David Ha, Fred Bertsch, Rosalind Picard, Douglas Eck

Negative Eigenvalues of the Hessian in Deep Neural Networks
Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol

Realistic Evaluation of Semi-Supervised Learning Algorithms
Avital Oliver, Augustus Odena, Colin Raffel, Ekin Cubuk, lan Goodfellow

Winner's Curse? On Pace, Progress, and Empirical Rigor
D. Sculley, Jasper Snoek, Alex Wiltschko, Ali Rahimi

Meta-Learning for Batch Mode Active Learning
Sachin Ravi, Hugo Larochelle

To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression
Michael Zhu, Suyog Gupta

Adversarial Spheres
Justin Gilmer, Luke Metz, Fartash Faghri, Sam Schoenholz, Maithra Raghu,,Martin Wattenberg, Ian Goodfellow

Clustering Meets Implicit Generative Models
Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Ratsch, Sylvain Gelly, Bernhard Scholkopf

Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks
Vitalii Zhelezniak, Dan Busbridge, April Shen, Samuel L. Smith, Nils Y. Hammerla

Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Trieu Trinh, Quoc Le, Andrew Dai, Thang Luong

Graph Partition Neural Networks for Semi-Supervised Classification
Alexander Gaunt, Danny Tarlow, Marc Brockschmidt, Raquel Urtasun, Renjie Liao, Richard Zemel

Searching for Activation Functions
Prajit Ramachandran, Barret Zoph, Quoc Le

Time-Dependent Representation for Neural Event Sequence Prediction
Yang Li, Nan Du, Samy Bengio

Faster Discovery of Neural Architectures by Searching for Paths in a Large Model
Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, Jeff Dean

Intriguing Properties of Adversarial Examples
Ekin Dogus Cubuk, Barret Zoph, Sam Schoenholz, Quoc Le

PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures
Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, Min Sun

The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, Sergey Levine

Learning to Organize Knowledge with N-Gram Machines
Fan Yang, Jiazhong Nie, William W. Cohen, Ni Lao

Online variance-reducing optimization
Nicolas Le Roux, Reza Babanezhad, Pierre-Antoine Manzagol

Source: Google AI Blog


Google Cloud Platform announces new credits program for researchers

From Big Data projects like Strayer University’s student support system to AI projects like Carnegie Mellon’s socially aware robot, researchers are discovering that cloud technology can help make academic research cheaper, faster, easier, and more secure. Whether you’re just starting out with a new idea, or validating your work before sharing it with the public, we want to help you advance your new discoveries. That’s why we’re deepening our support for your biggest questions and best guesses through a new program: Google Cloud Platform (GCP) research credits. Academic researchers in qualified regions are encouraged to apply.


Like the Google Cloud Platform Education Grants to support computer science courses and the partnership to support National Science Foundation (NSF) grants in BIGDATA, our GCP research credits program supports faculty who want to take advantage of GCP’s data storage, analytics, and machine-learning capabilities. Andrew V. Sutherland, a computational number theorist and Principal Research Scientist at the Massachusetts Institute of Technology, is one of a growing number of academic researchers who have already made the transition and benefited from GCP. His team moved the L-Functions and Modular Forms Database to GCP because “we are mathematicians who want to focus on our research, and not have to worry about hardware failures or scaling issues with the website.”

Other researchers are taking advantage of GCP’s scalable infrastructure. Ryan Abernathey, Assistant Professor of Earth and Environmental Sciences, Ocean and Climate Physics at the Lamont-Doherty Earth Observatory at Columbia University, used Google Cloud credits through an NSF partnership and, with his team, developed an open-source platform to manage the complex data sets of climate science. The platform, called Pangeo, can run Earth System Modeling simulations on petabytes of high-resolution, three-dimensional data. “This is the future of what day-to-day science research computing will look like,” he predicts.


At the Stanford Center for Genomics and Personalized Medicine (SCGPM), researchers using GCP and BigQuery can now run hundreds of genomes through a variant analysis pipeline and get query results quickly. Mike Snyder, director of SCGPM, notes, “We’re entering an era where people are working with thousands or tens of thousands or even million genome projects, and you’re never going to do that on a local cluster very easily. Cloud computing is where the field is going.”


Googlers like Fei-Fei Li, Chief Scientist for Cloud AI and ML, are excited to be able to support important research through the new avenue of the credits program: “As an academic, I’m thrilled that Google Cloud will make GCP credits available to the research community. This will help support important scientific discoveries and accelerate fundamental research that are critical for the future.”


The GCP research credits program is open to faculty doing cutting-edge research in eligible countries. We’re eager to hear how we can help accelerate your progress. If you’re interested, you can learn more on our FAQ or apply now.

Source: Google Cloud


Google’s Workshop on AI/ML Research and Practice in India



Last month, Google Bangalore hosted the Workshop on Artificial Intelligence and Machine Learning, with the goal of fostering collaboration between the academic and industry research communities in India. This forum was designed to exchange current research and industry projects in AI & ML, and included faculty and researchers from Indian Institutes of Technology (IITs) and other leading universities in India, along with industry practitioners from Amazon, Delhivery, Flipkart, LinkedIn, Myntra, Microsoft, Ola and many more. Participants spoke on the ongoing research and work being undertaken in India in deep learning, computer vision, natural language processing, systems and generative models (you can access all the presentations from the workshop here).

Google’s Jeff Dean and Prabhakar Raghavan kicked off the workshop by sharing Google’s uses of deep learning to solve challenging problems and reinventing productivity using AI. Additional keynotes were delivered by Googlers Rajen Sheth and Roberto Bayardo. We also hosted a panel discussion on the challenges and future of AI/ML ecosystem in India, moderated by Google Bangalore’s Pankaj Gupta. Panel participants included Anirban Dasgupta (IIT Gandhinagar), Chiranjib Bhattacharyya of the Indian Institute of Science (IISc), Ashish Tendulkar and Srinivas Raaghav (Google India) and Shourya Roy (American Express Big Data Labs).
Prabhakar Raghavan’s keynote address
Sessions
The workshop agenda included five broad sessions with presentations by attendees in the following areas:
Pankaj Gupta moderating the panel discussion
Summary and Next Steps
As in many countries around the world, we are seeing increased dialog on various aspects of AI and ML in multiple contexts in India. This workshop hosted 80 attendees representing 9 universities and 36 companies contributing 28 excellent talks, with many opportunities for discussing challenges and opportunities for AI/ML in India. Google will continue to foster this exchange of ideas across a diverse set of folks and applications. As part of this, we also announced the upcoming research awards round (applications due June 4) to support up to seven faculty members in India on their AI/ML research, and new work on an accelerator program for Indian entrepreneurs focused primarily on AI/ML technologies. Please keep an eye out for more information about these programs.

Google’s Workshop on AI/ML Research and Practice in India



Last month, Google Bangalore hosted the Workshop on Artificial Intelligence and Machine Learning, with the goal of fostering collaboration between the academic and industry research communities in India. This forum was designed to exchange current research and industry projects in AI & ML, and included faculty and researchers from Indian Institutes of Technology (IITs) and other leading universities in India, along with industry practitioners from Amazon, Delhivery, Flipkart, LinkedIn, Myntra, Microsoft, Ola and many more. Participants spoke on the ongoing research and work being undertaken in India in deep learning, computer vision, natural language processing, systems and generative models (you can access all the presentations from the workshop here).

Google’s Jeff Dean and Prabhakar Raghavan kicked off the workshop by sharing Google’s uses of deep learning to solve challenging problems and reinventing productivity using AI. Additional keynotes were delivered by Googlers Rajen Sheth and Roberto Bayardo. We also hosted a panel discussion on the challenges and future of AI/ML ecosystem in India, moderated by Google Bangalore’s Pankaj Gupta. Panel participants included Anirban Dasgupta (IIT Gandhinagar), Chiranjib Bhattacharyya of the Indian Institute of Science (IISc), Ashish Tendulkar and Srinivas Raaghav (Google India) and Shourya Roy (American Express Big Data Labs).
Prabhakar Raghavan’s keynote address
Sessions
The workshop agenda included five broad sessions with presentations by attendees in the following areas:
Pankaj Gupta moderating the panel discussion
Summary and Next Steps
As in many countries around the world, we are seeing increased dialog on various aspects of AI and ML in multiple contexts in India. This workshop hosted 80 attendees representing 9 universities and 36 companies contributing 28 excellent talks, with many opportunities for discussing challenges and opportunities for AI/ML in India. Google will continue to foster this exchange of ideas across a diverse set of folks and applications. As part of this, we also announced the upcoming research awards round (applications due June 4) to support up to seven faculty members in India on their AI/ML research, and new work on an accelerator program for Indian entrepreneurs focused primarily on AI/ML technologies. Please keep an eye out for more information about these programs.

Source: Google AI Blog