Tag Archives: ICLR

Predicting the Generalization Gap in Deep Neural Networks



Deep neural networks (DNN) are the cornerstone of recent progress in machine learning, and are responsible for recent breakthroughs in a variety of tasks such as image recognition, image segmentation, machine translation and more. However, despite their ubiquity, researchers are still attempting to fully understand the underlying principles that govern them. In particular, classical theories (e.g., VC-dimension and Rademacher complexity) suggest that over-parameterized functions should generalize poorly to unseen data, yet recent work has found that massively over-parameterized functions (orders of magnitude more parameters than the number of data points) generalize well. In order to improve models, a better understanding of generalization, which can lead to more theoretically grounded and therefore more principled approaches to DNN design, is required.

An important concept for understanding generalization is the generalization gap, i.e., the difference between a model’s performance on training data and its performance on unseen data drawn from the same distribution. Significant strides have been made towards deriving better DNN generalization bounds—the upper limit to the generalization gap—but they still tend to greatly overestimate the actual generalization gap, rendering them uninformative as to why some models generalize so well. On the other hand, the notion of margin—the distance between a data point and the decision boundary—has been extensively studied in the context of shallow models such as support-vector machines, and is found to be closely related to how well these models generalize to unseen data. Because of this, the use of margin to study generalization performance has been extended to DNNs, resulting in highly refined theoretical upper bounds on the generalization gap, but has not significantly improved the ability to predict how well a model generalizes.
An example of a support-vector machine decision boundary. The hyperplane defined by w∙x-b=0 is the "decision boundary" of this linear classifier, i.e., every point x lying on the hyperplane is equally likely to be in either class under this classifier.
In our ICLR 2019 paper, “Predicting the Generalization Gap in Deep Networks with Margin Distributions”, we propose the use of a normalized margin distribution across network layers as a predictor of the generalization gap. We empirically study the relationship between the margin distribution and generalization and show that, after proper normalization of the distances, some basic statistics of the margin distributions can accurately predict the generalization gap. We also make available all the models used as a dataset for studying generalization through the Github repository.
Each plot corresponds to a convolutional neural network trained on CIFAR-10 with different classification accuracies. The probability density (y-axis) of normalized margin distributions (x-axis) at 4 layers of a network is shown for three different models with increasingly better generalization (left to right). The normalized margin distributions are strongly correlated with test accuracy, which suggests they can be used as a proxy for predicting a network's generalization gap. Please see our paper for more details on these networks.
Margin Distributions as a Predictor of Generalization
Intuitively, if the statistics of the margin distribution are truly predictive of the generalization performance, a simple prediction scheme should be able to establish the relationship. As such, we chose linear regression to be the predictor. We found that the relationship between the generalization gap and the log-transformed statistics of the margin distributions is almost perfectly linear (see figure below). In fact, the proposed scheme produces better prediction relative to other existing measures of generalization. This indicates that the margin distributions may contain important information about how deep models generalize.
Predicted generalization gap (x-axis) vs. true generalization gap (y-axis) on CIFAR-100 + ResNet-32. The points lie close to the diagonal line, which indicates that the predicted values of the log linear model fit the true generalization gap very well.
The Deep Model Generalization Dataset
In addition to our paper, we are introducing the Deep Model Generalization (DEMOGEN) dataset, which consists of of 756 trained deep models, along with their training and test performance on the CIFAR-10 and CIFAR-100 datasets. The models are variants of CNNs (with architectures that resemble Network-in-Network) and ResNet-32 with different popular regularization techniques and hyperparameter settings, inducing a wide spectrum of generalization behaviors. For example, the models of CNNs trained on CIFAR-10 have the test accuracies ranging from 60% to 90.5% with generalization gaps ranging from 1% to 35%. For details of the dataset, please see our paper or the Github repository. As part of the dataset release, we also include utilities to easily load the models and reproduce the results presented in our paper.

We hope that this research and the DEMOGEN dataset will provide the community with an accessible tool for studying generalization in deep learning without having to retrain a large number of models. We also hope that our findings will motivate further research in generalization gap predictors and margin distributions in the hidden layers.

Source: Google AI Blog


Google at ICLR 2019



This week, New Orleans, LA hosts the 7th International Conference on Learning Representations (ICLR 2019), a conference focused on how one can learn meaningful and useful representations of data for machine learning. ICLR offers conference and workshop tracks, both of which include invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction and issues regarding non-convex optimization.

At the forefront of innovation in neural networks and deep learning, Google focuses on on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2019, Google will have a strong presence with over 200 researchers attending, contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2019, we hope you'll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2019 in the list below (Googlers highlighted in blue).

Officers and Board Members
Hugo Larochelle, Samy Bengio, Tara Sainath

General Chair
Tara Sainath

Workshop Chairs
Been Kim, Graham Taylor

Program Committee includes:
Chelsea Finn, Dale Schuurmans, Dumitru Erhan, Katherine Heller, Lihong Li, Samy Bengio, Rohit Prabhavalkar, Alex Wiltschko, Slav Petrov, George Dahl

Oral Contributions
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
Jacob Menick, Nal Kalchbrenner

Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset
Curtis Hawthorne, Andrew Stasyuk, Adam Roberts, Ian Simon, Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, Douglas Eck

Meta-Learning Update Rules for Unsupervised Representation Learning
Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Posters
A Data-Driven and Distributed Approach to Sparse Signal Representation and Recovery
Ali Mousavi, Gautam Dasarathy, Richard G. Baraniuk

Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein

Diversity-Sensitive Conditional Generative Adversarial Networks
Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tianchen Zhao, Honglak Lee

Diversity and Depth in Per-Example Routing Models
Prajit Ramachandran, Quoc V. Le

Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, Li Fei-Fei

GANSynth: Adversarial Neural Audio Synthesis
Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, Adam Roberts

K for the Price of 1: Parameter-efficient Multi-task and Transfer Learning
Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, Andrew Howard

Learning to Describe Scenes with Programs
Yunchao Liu, Zheng Wu, Daniel Ritchie, William Freeman, Joshua B Tenenbaum, Jiajun Wu

Learning to Infer and Execute 3D Shape Programs
Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William Freeman, Joshua B Tenenbaum, Jiajun Wu

The Singular Values of Convolutional Layers
Hanie Sedghi, Vineet Gupta, Philip M. Long

Unsupervised Discovery of Parts, Structure, and Dynamics
Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William Freeman, Joshua B Tenenbaum, Jiajun Wu

Adversarial Reprogramming of Neural Networks
Gamaleldin Elsayed, Ian Goodfellow (no longer at Google), Jascha Sohl-Dickstein

Discriminator Rejection Sampling
Ian Goodfellow (no longer at Google), Jascha Sohl-Dickstein

On Self Modulation for Generative Adversarial Networks
Ting Chen, Mario Lucic, Neil Houlsby, Sylvain Gelly

Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani, Colin Raffel, Luke Metz

Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
David Berthelot, Colin Raffel, Aurko Roy, Ian Goodfellow (no longer at Google)

A new dog learns old tricks: RL finds classic optimization algorithms
Weiwei Kong, Christopher Liaw, Aranyak Mehta, D. Sivakumar

Contingency-Aware Exploration in Reinforcement Learning
Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, Honglak Lee

Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial Imitation Learning
Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, Jonathan Tompson

Diversity is All You Need: Learning Skills without a Reward Function
Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, Sergey Levine

Episodic Curiosity through Reachability
Nikolay Savinov, Anton Raichuk, Raphael Marinier, Damien Vincent, Marc Pollefeys, Timothy Lillicrap, Sylvain Gelly

Learning to Navigate the Web
Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, Dilek Hakkani-Tur

Meta-Learning Probabilistic Inference for Prediction
Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, Richard E. Turner

Multi-step Retriever-Reader Interaction for Scalable Open-domain Question Answering
Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Andrew McCallum

Near-Optimal Representation Learning for Hierarchical Reinforcement Learning
Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine

Neural Logic Machines
Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, Dengyong Zhou

Neural Program Repair by Jointly Learning to Localize and Repair
Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, Rishabh Singh

Optimal Completion Distillation for Sequence Learning
Sara Sabour, William Chan, Mohammad Norouzi

Recall Traces: Backtracking Models for Efficient Reinforcement Learning
Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lillicrap, Sergey Levine, Hugo Larochelle, Yoshua Bengio

Sample Efficient Adaptive Text-to-Speech
Yutian Chen, Yannis M Assael, Brendan Shillingford, David Budden, Scott Reed, Heiga Zen, Quan Wang, Luis C. Cobo, Andrew Trask, Ben Laurie, Caglar Gulcehre, Aaron van den Oord, Oriol Vinyals, Nando de Freitas

Synthetic Datasets for Neural Program Synthesis
Richard Shin, Neel Kant, Kavi Gupta, Chris Bender, Brandon Trabucco, Rishabh Singh, Dawn Song

The Laplacian in RL: Learning Representations with Efficient Approximations
Yifan Wu, George Tucker, Ofir Nachum

A Mean Field Theory of Batch Normalization
Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, Samuel S Schoenholz

Efficient Training on Very Large Corpora via Gramian Estimation
Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan Hong, Ed Chi, John Anderson

Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang, Dilip Krishnan, Hossein Mobahi, Samy Bengio

InfoBot: Transfer and Exploration via the Information Bottleneck
Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew Botvinick, Sergey Levine, Yoshua Bengio

AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
Bo Chang, Minmin Chen, Eldad Haber, Ed H. Chi

Complement Objective Training
Hao-Yun Chen, Pei-Hsin Wang, Chun-Hao Liu, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan

DOM-Q-NET: Grounded RL on Structured Language
Sheng Jia, Jamie Kiros, Jimmy Ba

From Language to Goals: Inverse Reinforcement Learning for Vision-Based Instruction Following
Justin Fu, Anoop Korattikara Balan, Sergey Levine, Sergio Guadarrama

Harmonic Unpaired Image-to-image Translation
Rui Zhang, Tomas Pfister, Li-Jia Li

Hierarchical Generative Modeling for Controllable Speech Synthesis
Wei-Ning Hsu, Yu Zhang, Ron Weiss, Heiga Zen, Yonghui Wu, Yuxuan Wang, Yuan Cao, Ye Jia, Zhifeng Chen, Jonathan Shen, Patrick Nguyen, Ruoming Pang

Learning Finite State Representations of Recurrent Policy Networks
Anurag Koul, Alan Fern, Samuel Greydanus

Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Networks
Patrick Chen, Si Si, Sanjiv Kumar, Yang Li, Cho-Jui Hsieh

Music Transformer: Generating Music with Long-Term Structure
Chen-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam Shazeer, Andrew Dai, Matthew D Hoffman, Monica Dinculescu, Douglas Eck

Universal Transformers
Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Lukasz Kaiser

What do you learn from context? Probing for sentence structure in contextualized word representations
Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, Tom McCoy, Najoung Kim, Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, Ellie Pavlick

Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker, Dieterich Lawson, Shixiang Gu, Chris J. Maddison

How Important Is a Neuron?
Kedar Dhamdhere, Mukund Sundararajan, Qiqi Yan

Integer Networks for Data Compression with Latent-Variable Models
Johannes Ballé, Nick Johnston, David Minnen

Modeling Uncertainty with Hedged Instance Embeddings
Seong Joon Oh, Andrew Gallagher, Kevin Murphy, Florian Schroff, Jiyan Pan, Joseph Roth

Preventing Posterior Collapse with delta-VAEs
Ali Razavi, Aaron van den Oord, Ben Poole, Oriol Vinyals

Spectral Inference Networks: Unifying Deep and Spectral Learning
David Pfau, Stig Petersen, Ashish Agarwal, David GT Barrett, Kimberly L Stachenfeld

Spreading vectors for similarity search
Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Hervé Jégou

Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun, Per Karlsson, Jiajun Wu, Joshua B Tenenbaum, Kevin Murphy

Workshops
Learning from Limited Labeled Data
Sponsored by Google

Deep Reinforcement Learning Meets Structured Prediction
Organizing Committee includes: Chen Liang
Invited Speaker: Mohammad Norouzi

Debugging Machine Learning Models
Organizing Committee includes: D. Sculley
Invited Speaker: Dan Moldovan

Structure & Priors in Reinforcement Learning (SPiRL)
Organizing Committee includes: Chelsea Finn

Task-Agnostic Reinforcement Learning (TARL)
Sponsored by Google
Organizing Committee includes: Danijar Hafner, Marc G. Bellemare
Invited Speaker: Chelsea Finn

AI for Social Good
Program Committee includes: Ernest Mwebaze

Safe Machine Learning Specification, Robustness and Assurance
Program Committee includes: Nicholas Carlini

Representation Learning on Graphs and Manifolds
Program Committee includes: Bryan Perozzi

Source: Google AI Blog


Google at ICLR 2018



This week, Vancouver, Canada hosts the 6th International Conference on Learning Representations (ICLR 2018), a conference focused on how one can learn meaningful and useful representations of data for machine learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in neural networks and deep learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2018, Google will have a strong presence with over 130 researchers attending, contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2018, we hope you'll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2018 in the list below (Googlers highlighted in blue)

Senior Program Chairs include:
Tara Sainath

Steering Committee includes:
Hugo Larochelle

Oral Contributions
Wasserstein Auto-Encoders
Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, Bernhard Scholkopf

On the Convergence of Adam and Beyond (Best Paper Award)
Sashank J. Reddi, Satyen Kale, Sanjiv Kumar

Ask the Right Questions: Active Question Reformulation with Reinforcement Learning
Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, Wei Wang

Beyond Word Importance: Contextual Decompositions to Extract Interactions from LSTMs
W. James Murdoch, Peter J. Liu, Bin Yu

Conference Posters
Boosting the Actor with Dual Critic
Bo Dai, Albert Shaw, Niao He, Lihong Li, Le Song

MaskGAN: Better Text Generation via Filling in the _______
William Fedus, Ian Goodfellow, Andrew M. Dai

Scalable Private Learning with PATE
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson

Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Adam Roberts, Jesse Engel, Matt Hoffman

Multi-Mention Learning for Reading Comprehension with Neural Cascades
Swabha Swayamdipta, Ankur P. Parikh, Tom Kwiatkowski

QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
Adams Wei Yu, David Dohan, Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, Quoc V. Le

Sensitivity and Generalization in Neural Networks: An Empirical Study
Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein

Action-dependent Control Variates for Policy Optimization via Stein Identity
Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, Qiang Liu

An Efficient Framework for Learning Sentence Representations
Lajanugen Logeswaran, Honglak Lee

Fidelity-Weighted Learning
Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schölkopf

Generating Wikipedia by Summarizing Long Sequences
Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer

Matrix Capsules with EM Routing
Geoffrey Hinton, Sara Sabour, Nicholas Frosst

Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Sergey Levine, Shixiang Gu, Murtaza Dalal, Vitchyr Pong

Deep Neural Networks as Gaussian Processes
Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel L. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence at Every Step
William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow

Initialization Matters: Orthogonal Predictive State Recurrent Neural Networks
Krzysztof Choromanski, Carlton Downey, Byron Boots

Learning Differentially Private Recurrent Language Models
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang

Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo Mena, David Belanger, Scott Linderman, Jasper Snoek

Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
Benjamin Eysenbach, Shixiang Gu, Julian IbarzSergey Levine

Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Josh Tenenbaum, Hugo Larochelle, Richard Zemel

Thermometer Encoding: One Hot Way to Resist Adversarial Examples
Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

A Hierarchical Model for Device Placement
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. LeJeff Dean

Monotonic Chunkwise Attention
Chung-Cheng Chiu, Colin Raffel

Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin

Trust-PCL: An Off-Policy Trust Region Method for Continuous Control
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, Patrick McDaniel

Stochastic Variational Video Prediction
Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy Campbell, Sergey Levine

Depthwise Separable Convolutions for Neural Machine Translation
Lukasz Kaiser, Aidan N. Gomez, Francois Chollet

Don’t Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le

Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, Kevin Murphy

Large Scale Distributed Neural Network Training through Online Distillation
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, Geoffrey E. Hinton

Learning a Neural Response Metric for Retinal Prosthesis
Nishal P. Shah, Sasidhar Madugula, Alan Litke, Alexander Sher, EJ Chichilnisky, Yoram Singer, Jonathon Shlens

Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan, Ying Xiao, Rif A. Saurous

A Neural Representation of Sketch Drawings
David HaDouglas Eck

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
Carlos Riquelme, George Tucker, Jasper Snoek

Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy, Matthew D. HoffmanJascha Sohl-Dickstein

Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, Pushmeet Kohli

On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, Xiaodong He

A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Samuel L. Smith, Quoc V. Le

Learning how to Explain Neural Networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan, Been Kim, Sven Dähne

Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, Shih-Fu Chang

Towards Neural Phrase-based Machine Translation
Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong Zhou, Li Deng

Unsupervised Cipher Cracking Using Discrete GANs
Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, Lukasz Kaiser

Variational Image Compression With A Scale Hyperprior
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, Nick Johnston

Workshop Posters
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo, Justin Gilmer, Ian Goodfellow, Been Kim

Stoachastic Gradient Langevin Dynamics that Exploit Neural Network Structure
Zachary Nado, Jasper Snoek, Bowen Xu, Roger Grosse, David Duvenaud, James Martens

Towards Mixed-initiative generation of multi-channel sequential structure
Anna Huang, Sherol Chen, Mark J. Nelson, Douglas Eck

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?
Maithra Raghu, Alex Irpan, Jacob Andreas, Robert Kleinberg, Quoc V. Le, Jon Kleinberg

GILBO: One Metric to Measure Them All
Alexander Alemi, Ian Fischer

HoME: a Household Multimodal Environment
Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo Larochelle, Aaron Courville

Learning to Learn without Labels
Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Learning via Social Awareness: Improving Sketch Representations with Facial Feedback
Natasha Jaques, Jesse Engel, David Ha, Fred Bertsch, Rosalind Picard, Douglas Eck

Negative Eigenvalues of the Hessian in Deep Neural Networks
Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol

Realistic Evaluation of Semi-Supervised Learning Algorithms
Avital Oliver, Augustus Odena, Colin Raffel, Ekin Cubuk, lan Goodfellow

Winner's Curse? On Pace, Progress, and Empirical Rigor
D. Sculley, Jasper Snoek, Alex Wiltschko, Ali Rahimi

Meta-Learning for Batch Mode Active Learning
Sachin Ravi, Hugo Larochelle

To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression
Michael Zhu, Suyog Gupta

Adversarial Spheres
Justin Gilmer, Luke Metz, Fartash Faghri, Sam Schoenholz, Maithra Raghu,,Martin Wattenberg, Ian Goodfellow

Clustering Meets Implicit Generative Models
Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Ratsch, Sylvain Gelly, Bernhard Scholkopf

Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks
Vitalii Zhelezniak, Dan Busbridge, April Shen, Samuel L. Smith, Nils Y. Hammerla

Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Trieu Trinh, Quoc Le, Andrew Dai, Thang Luong

Graph Partition Neural Networks for Semi-Supervised Classification
Alexander Gaunt, Danny Tarlow, Marc Brockschmidt, Raquel Urtasun, Renjie Liao, Richard Zemel

Searching for Activation Functions
Prajit Ramachandran, Barret Zoph, Quoc Le

Time-Dependent Representation for Neural Event Sequence Prediction
Yang Li, Nan Du, Samy Bengio

Faster Discovery of Neural Architectures by Searching for Paths in a Large Model
Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, Jeff Dean

Intriguing Properties of Adversarial Examples
Ekin Dogus Cubuk, Barret Zoph, Sam Schoenholz, Quoc Le

PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures
Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, Min Sun

The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, Sergey Levine

Learning to Organize Knowledge with N-Gram Machines
Fan Yang, Jiazhong Nie, William W. Cohen, Ni Lao

Online variance-reducing optimization
Nicolas Le Roux, Reza Babanezhad, Pierre-Antoine Manzagol

Google at ICLR 2018



This week, Vancouver, Canada hosts the 6th International Conference on Learning Representations (ICLR 2018), a conference focused on how one can learn meaningful and useful representations of data for machine learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in neural networks and deep learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2018, Google will have a strong presence with over 130 researchers attending, contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2018, we hope you'll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2018 in the list below (Googlers highlighted in blue)

Senior Program Chair:
Tara Sainath

Steering Committee includes:
Hugo Larochelle

Oral Contributions
Wasserstein Auto-Encoders
Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, Bernhard Scholkopf

On the Convergence of Adam and Beyond (Best Paper Award)
Sashank J. Reddi, Satyen Kale, Sanjiv Kumar

Ask the Right Questions: Active Question Reformulation with Reinforcement Learning
Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, Wei Wang

Beyond Word Importance: Contextual Decompositions to Extract Interactions from LSTMs
W. James Murdoch, Peter J. Liu, Bin Yu

Conference Posters
Boosting the Actor with Dual Critic
Bo Dai, Albert Shaw, Niao He, Lihong Li, Le Song

MaskGAN: Better Text Generation via Filling in the _______
William Fedus, Ian Goodfellow, Andrew M. Dai

Scalable Private Learning with PATE
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson

Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Yujun Lin, Song Han, Huizi Mao, Yu Wang, William J. Dally

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, Roger Grosse

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Adam Roberts, Jesse Engel, Matt Hoffman

Multi-Mention Learning for Reading Comprehension with Neural Cascades
Swabha Swayamdipta, Ankur P. Parikh, Tom Kwiatkowski

QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension
Adams Wei Yu, David Dohan, Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, Quoc V. Le

Sensitivity and Generalization in Neural Networks: An Empirical Study
Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein

Action-dependent Control Variates for Policy Optimization via Stein Identity
Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, Qiang Liu

An Efficient Framework for Learning Sentence Representations
Lajanugen Logeswaran, Honglak Lee

Fidelity-Weighted Learning
Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schölkopf

Generating Wikipedia by Summarizing Long Sequences
Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, Noam Shazeer

Matrix Capsules with EM Routing
Geoffrey Hinton, Sara Sabour, Nicholas Frosst

Temporal Difference Models: Model-Free Deep RL for Model-Based Control
Sergey Levine, Shixiang Gu, Murtaza Dalal, Vitchyr Pong

Deep Neural Networks as Gaussian Processes
Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel L. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence at Every Step
William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow

Initialization Matters: Orthogonal Predictive State Recurrent Neural Networks
Krzysztof Choromanski, Carlton Downey, Byron Boots

Learning Differentially Private Recurrent Language Models
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang

Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo Mena, David Belanger, Scott Linderman, Jasper Snoek

Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
Benjamin Eysenbach, Shixiang Gu, Julian IbarzSergey Levine

Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Josh Tenenbaum, Hugo Larochelle, Richard Zemel

Thermometer Encoding: One Hot Way to Resist Adversarial Examples
Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

A Hierarchical Model for Device Placement
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. LeJeff Dean

Monotonic Chunkwise Attention
Chung-Cheng Chiu, Colin Raffel

Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin

Trust-PCL: An Off-Policy Trust Region Method for Continuous Control
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, Patrick McDaniel

Stochastic Variational Video Prediction
Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy Campbell, Sergey Levine

Depthwise Separable Convolutions for Neural Machine Translation
Lukasz Kaiser, Aidan N. Gomez, Francois Chollet

Don’t Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le

Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, Kevin Murphy

Large Scale Distributed Neural Network Training through Online Distillation
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, Geoffrey E. Hinton

Learning a Neural Response Metric for Retinal Prosthesis
Nishal P. Shah, Sasidhar Madugula, Alan Litke, Alexander Sher, EJ Chichilnisky, Yoram Singer, Jonathon Shlens

Neumann Optimizer: A Practical Optimization Algorithm for Deep Neural Networks
Shankar Krishnan, Ying Xiao, Rif A. Saurous

A Neural Representation of Sketch Drawings
David HaDouglas Eck

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
Carlos Riquelme, George Tucker, Jasper Snoek

Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy, Matthew D. HoffmanJascha Sohl-Dickstein

Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, Pushmeet Kohli

On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, Xiaodong He

A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Samuel L. Smith, Quoc V. Le

Learning how to Explain Neural Networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan, Been Kim, Sven Dähne

Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, Shih-Fu Chang

Towards Neural Phrase-based Machine Translation
Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong Zhou, Li Deng

Unsupervised Cipher Cracking Using Discrete GANs
Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, Lukasz Kaiser

Variational Image Compression With A Scale Hyperprior
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, Nick Johnston

Workshop Posters
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo, Justin Gilmer, Ian Goodfellow, Been Kim

Stoachastic Gradient Langevin Dynamics that Exploit Neural Network Structure
Zachary Nado, Jasper Snoek, Bowen Xu, Roger Grosse, David Duvenaud, James Martens

Towards Mixed-initiative generation of multi-channel sequential structure
Anna Huang, Sherol Chen, Mark J. Nelson, Douglas Eck

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?
Maithra Raghu, Alex Irpan, Jacob Andreas, Robert Kleinberg, Quoc V. Le, Jon Kleinberg

GILBO: One Metric to Measure Them All
Alexander Alemi, Ian Fischer

HoME: a Household Multimodal Environment
Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo Larochelle, Aaron Courville

Learning to Learn without Labels
Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Learning via Social Awareness: Improving Sketch Representations with Facial Feedback
Natasha Jaques, Jesse Engel, David Ha, Fred Bertsch, Rosalind Picard, Douglas Eck

Negative Eigenvalues of the Hessian in Deep Neural Networks
Guillaume Alain, Nicolas Le Roux, Pierre-Antoine Manzagol

Realistic Evaluation of Semi-Supervised Learning Algorithms
Avital Oliver, Augustus Odena, Colin Raffel, Ekin Cubuk, lan Goodfellow

Winner's Curse? On Pace, Progress, and Empirical Rigor
D. Sculley, Jasper Snoek, Alex Wiltschko, Ali Rahimi

Meta-Learning for Batch Mode Active Learning
Sachin Ravi, Hugo Larochelle

To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression
Michael Zhu, Suyog Gupta

Adversarial Spheres
Justin Gilmer, Luke Metz, Fartash Faghri, Sam Schoenholz, Maithra Raghu,,Martin Wattenberg, Ian Goodfellow

Clustering Meets Implicit Generative Models
Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Ratsch, Sylvain Gelly, Bernhard Scholkopf

Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks
Vitalii Zhelezniak, Dan Busbridge, April Shen, Samuel L. Smith, Nils Y. Hammerla

Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Trieu Trinh, Quoc Le, Andrew Dai, Thang Luong

Graph Partition Neural Networks for Semi-Supervised Classification
Alexander Gaunt, Danny Tarlow, Marc Brockschmidt, Raquel Urtasun, Renjie Liao, Richard Zemel

Searching for Activation Functions
Prajit Ramachandran, Barret Zoph, Quoc Le

Time-Dependent Representation for Neural Event Sequence Prediction
Yang Li, Nan Du, Samy Bengio

Faster Discovery of Neural Architectures by Searching for Paths in a Large Model
Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, Jeff Dean

Intriguing Properties of Adversarial Examples
Ekin Dogus Cubuk, Barret Zoph, Sam Schoenholz, Quoc Le

PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures
Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, Min Sun

The Mirage of Action-Dependent Baselines in Reinforcement Learning
George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, Sergey Levine

Learning to Organize Knowledge with N-Gram Machines
Fan Yang, Jiazhong Nie, William W. Cohen, Ni Lao

Online variance-reducing optimization
Nicolas Le Roux, Reza Babanezhad, Pierre-Antoine Manzagol

Source: Google AI Blog


Research at Google and ICLR 2017



This week, Toulon, France hosts the 5th International Conference on Learning Representations (ICLR 2017), a conference focused on how one can learn meaningful and useful representations of data for Machine Learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in Neural Networks and Deep Learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2017, Google will have a strong presence with over 50 researchers attending (many from the Google Brain team and Google Research Europe), contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2017, we hope you'll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2017 in the list below (Googlers highlighted in blue).

Area Chairs include:
George Dahl, Slav Petrov, Vikas Sindhwani

Program Chairs include:
Hugo Larochelle, Tara Sainath

Contributed Talks
Understanding Deep Learning Requires Rethinking Generalization (Best Paper Award)
Chiyuan Zhang*, Samy Bengio, Moritz Hardt, Benjamin Recht*, Oriol Vinyals

Semi-Supervised Knowledge Transfer for Deep Learning from Private Training Data (Best Paper Award)
Nicolas Papernot*, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, Kunal
Talwar


Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
Shixiang (Shane) Gu*, Timothy Lillicrap, Zoubin Ghahramani, Richard E.
Turner, Sergey Levine


Neural Architecture Search with Reinforcement Learning
Barret Zoph, Quoc Le

Posters
Adversarial Machine Learning at Scale
Alexey Kurakin, Ian J. Goodfellow, Samy Bengio

Capacity and Trainability in Recurrent Neural Networks
Jasmine Collins, Jascha Sohl-Dickstein, David Sussillo

Improving Policy Gradient by Exploring Under-Appreciated Rewards
Ofir Nachum, Mohammad Norouzi, Dale Schuurmans

Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc LeGeoffrey Hinton, Jeff Dean

Unrolled Generative Adversarial Networks
Luke Metz, Ben Poole*, David Pfau, Jascha Sohl-Dickstein

Categorical Reparameterization with Gumbel-Softmax
Eric Jang, Shixiang (Shane) Gu*, Ben Poole*

Decomposing Motion and Content for Natural Video Sequence Prediction
Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, Honglak Lee

Density Estimation Using Real NVP
Laurent Dinh*, Jascha Sohl-Dickstein, Samy Bengio

Latent Sequence Decompositions
William Chan*, Yu Zhang*, Quoc Le, Navdeep Jaitly*

Learning a Natural Language Interface with Neural Programmer
Arvind Neelakantan*, Quoc V. Le, Martín Abadi, Andrew McCallum*, Dario
Amodei*

Deep Information Propagation
Samuel Schoenholz, Justin Gilmer, Surya Ganguli, Jascha Sohl-Dickstein

Identity Matters in Deep Learning
Moritz Hardt, Tengyu Ma

A Learned Representation For Artistic Style
Vincent Dumoulin*, Jonathon Shlens, Manjunath Kudlur

Adversarial Training Methods for Semi-Supervised Text Classification
Takeru Miyato, Andrew M. Dai, Ian Goodfellow

HyperNetworks
David Ha, Andrew Dai, Quoc V. Le

Learning to Remember Rare Events
Lukasz Kaiser, Ofir Nachum, Aurko Roy*, Samy Bengio

Workshop Track Abstracts
Particle Value Functions
Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Arnaud Doucet, Andriy Mnih, Yee Whye Teh

Neural Combinatorial Optimization with Reinforcement Learning
Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, Samy Bengio

Short and Deep: Sketching and Neural Networks
Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar

Explaining the Learning Dynamics of Direct Feedback Alignment
Justin Gilmer, Colin Raffel, Samuel S. Schoenholz, Maithra Raghu, Jascha Sohl-Dickstein

Training a Subsampling Mechanism in Expectation
Colin Raffel, Dieterich Lawson

Tuning Recurrent Neural Networks with Reinforcement Learning
Natasha Jaques*, Shixiang (Shane) Gu*, Richard E. Turner, Douglas Eck

REBAR: Low-Variance, Unbiased Gradient Estimates for Discrete Latent Variable Models
George Tucker, Andriy Mnih, Chris J. Maddison, Jascha Sohl-Dickstein

Adversarial Examples in the Physical World
Alexey Kurakin, Ian Goodfellow, Samy Bengio

Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, Geoffrey Hinton

Unsupervised Perceptual Rewards for Imitation Learning
Pierre Sermanet, Kelvin Xu, Sergey Levine

Changing Model Behavior at Test-time Using Reinforcement Learning
Augustus Odena, Dieterich Lawson, Christopher Olah

* Work performed while at Google
† Work performed while at OpenAI

Research at Google and ICLR 2016



This week, San Juan, Puerto Rico hosts the 4th International Conference on Learning Representations (ICLR 2016), a conference focused on how one can learn meaningful and useful representations of data for Machine Learning. ICLR includes conference and workshop tracks, with invited talks along with oral and poster presentations of some of the latest research on deep learning, metric learning, kernel learning, compositional models, non-linear structured prediction, and issues regarding non-convex optimization.

At the forefront of innovation in cutting-edge technology in Neural Networks and Deep Learning, Google focuses on both theory and application, developing learning approaches to understand and generalize. As Platinum Sponsor of ICLR 2016, Google will have a strong presence with over 40 researchers attending (many from the Google Brain team and Google DeepMind), contributing to and learning from the broader academic research community by presenting papers and posters, in addition to participating on organizing committees and in workshops.

If you are attending ICLR 2016, we hope you’ll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people. You can also learn more about our research being presented at ICLR 2016 in the list below (Googlers highlighted in blue).

Organizing Committee

Program Chairs
Samy Bengio, Brian Kingsbury

Area Chairs include:
John Platt, Tara Sanaith

Oral Sessions

Neural Programmer-Interpreters (Best Paper Award Recipient)
Scott Reed, Nando de Freitas

Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen, Ian Goodfellow, Jon Shlens

Conference Track Posters

Prioritized Experience Replay
Tom Schau, John Quan, Ioannis Antonoglou, David Silver

Reasoning about Entailment with Neural Attention
Tim Rocktäschel, Edward GrefenstetteKarl Moritz Hermann, Tomáš Kočiský, Phil Blunsom

Neural Programmer: Inducing Latent Programs With Gradient Descent
Arvind Neelakantan, Quoc Le, Ilya Sutskever

MuProp: Unbiased Backpropagation For Stochastic Neural Networks
Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih

Multi-Task Sequence to Sequence Learning
Minh-Thang Luong, Quoc LeIlya Sutskever, Oriol Vinyals, Lukasz Kaiser

A Test of Relative Similarity for Model Selection in Generative Models
Eugene Belilovsky, Wacha Bounliphone, Matthew Blaschko, Ioannis Antonoglou, Arthur Gretton

Continuous control with deep reinforcement learning
Timothy Lillicrap, Jonathan HuntAlexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra

Policy Distillation
Andrei Rusu, Sergio Gomez, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, Raia Hadsell

Neural Random-Access Machines
Karol Kurach, Marcin Andrychowicz, Ilya Sutskever

Variable Rate Image Compression with Recurrent Neural Networks
George Toderici, Sean O'Malley, Damien Vincent, Sung Jin Hwang, Michele Covell, Shumeet Baluja, Rahul Sukthankar, David Minnen

Order Matters: Sequence to Sequence for Sets
Oriol Vinyals, Samy Bengio, Manjunath Kudlur

Grid Long Short-Term Memory
Nal Kalchbrenner, Alex Graves, Ivo Danihelka

Neural GPUs Learn Algorithms
Lukasz Kaiser, Ilya Sutskever

ACDC: A Structured Efficient Linear Layer
Marcin Moczulski, Misha Denil, Jeremy Appleyard, Nando de Freitas

Workshop Track Posters

Revisiting Distributed Synchronous SGD
Jianmin Chen, Rajat Monga, Samy Bengio, Rafal Jozefowicz

Black Box Variational Inference for State Space Models
Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, Liam Paninski

A Minimalistic Approach to Sum-Product Network Learning for Real Applications
Viktoriya Krakovna, Moshe Looks

Efficient Inference in Occlusion-Aware Generative Models of Images
Jonathan Huang, Kevin Murphy

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke

Deep Autoresolution Networks
Gabriel Pereyra, Christian Szegedy

Learning visual groups from co-occurrences in space and time
Phillip Isola, Daniel Zoran, Dilip Krishnan, Edward H. Adelson

Adding Gradient Noise Improves Learning For Very Deep Networks
Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, James Martens

Adversarial Autoencoders
Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow

Generating Sentences from a Continuous Space
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, Samy Bengio