Tag Archives: Security

Password manager Dashlane sees 70% increase in conversion rate for signing-in with passkeys compared to passwords

Posted by Milica Mihajlija, Technical Writer

This article was originally posted on Google for Developers

Dashlane is a password management tool that provides a secure way to manage user credentials, access control, and authentication across multiple systems and applications. Dashlane has over 18 million users and 20,000 businesses in 180 countries. It’s available on Android, iOS, macOS, Windows, and as a web app with an extension for Chrome, Firefox, Edge, and Safari.


The opportunity

Many users choose password managers because of the pain and frustration of dealing with passwords. While password managers help here, the fact remains that one of the biggest issues with passwords are security breaches. Passkeys on the other hand bring passwordless authentication with major advancements in security.

Passkeys are a simple and secure authentication technology that enables signing in to online accounts without entering a password. They cannot be reused, don't leak in server breaches of relying parties, and protect users from phishing attacks. Passkeys are built on open standards and work on all major platforms and browsers.

As an authentication tool, Dashlane’s primary goal is to ensure customers’ credentials are kept safe. They realized how significant the impact of passkeys could be to the security of their users and adapted their applications to support passkeys across devices, browsers, and platforms. With passkey support they provide users a secure and convenient access with a phishing-resistant authentication method.


Implementation

Passkeys as a replacement for passwords is a relatively new concept and to address the challenge of going from a familiar to an unfamiliar way of logging in, the Dashlane team considered various solutions.

On the desktop web they implemented conditional UI support through a browser extension to help users gracefully navigate the choice between using a password and a passkey to log into websites that support both login methods. As soon as the user taps on the username input field, an autofill suggestion dialog pops up with the stored passkeys and password autofill suggestions. The user can then choose an account and use the device screen lock to sign in.

Moving image showing continual UI experience on the web

Note: To learn how to add passkeys support with conditional UI to your web app check out Create a passkey for passwordless logins and Sign in with a passkey through form autofill.

On Android, they used the Credential Manager API which supports multiple sign-in methods, such as username and password, passkeys, and federated sign-in solutions (such as Sign-in with Google) in a single API. The Credential Manager simplifies the development process and it has enabled Dashlane to implement passkeys support on Android in 8 weeks with a team of one engineer.

Moving image showing authentication UI experience in android

Note: If you are a credential provider, such as a password manager app, check out the guide on how to integrate Credential Manager with your credential provider solution.


Results

Data shows that users are more satisfied with the passkey flows than the existing password flows.

The conversion rate is 92% on passkey authentication opportunities on the web (when Dashlane suggests a saved passkey for the user to sign in), compared to a 54% conversion rate on opportunities to automatically sign in with passwords. That’s a 70% increase in conversion rate compared to passwords–a great sign for passkey adoption.

Graph showing evolution of positive actions on passkeys, measuring the rates of authentication with a passkey and registration of a passkey over a six month period

Image showing password sign-in prompt
Password sign-in prompt.

Image showing passkey sign-in prompt
Passkey sign-in prompt.

The conversion rate here refers to user actions when they visit websites that support passkeys. If a user attempts to register or use a passkey they will see a Dashlane dialog appear on Chrome on desktop. If they proceed and create new or use an existing passkey it is considered a success. If they dismiss the dialog or cancel passkey creation, it’s considered a failure. The same user experience flow applies to passwords.

Dashlane also saw a 63% conversion rate on passkey registration opportunities (when Dashlane offers to save a newly created passkey to the user’s vault) compared to only around 25% conversion rate on suggestions to save new passwords. This indicates that Dashlane’s suggestions to save passkeys are more relevant and precise than the suggestions to save passwords.

Image showing save passkey prompt
Save passkey prompt.

Image showing save password prompt
Save password prompt.

Dashlane observed an acceleration of passkey usage with 6.8% average weekly growth of passkeys saved and used on the web.

graph showing % of Active users that performed a passkey related event, out of users having ever interacted with a passkey with a moving average on 7 days over a six month period
Save password prompt.

Takeaways

While passkeys are a new technology that users are just starting to get familiar with, the adoption rate and positive engagement rates show that Dashlane users are more satisfied with passkey flows than the existing password flows. 


“Staying up to date on developments in the market landscape and industry, anticipating the potential impact to your customers’ experience, and being ready to meet their needs can pay off. Thanks in part to our rapid implementation of the Credential Manager API, customers can rest assured that they can continue to rely on Dashlane to store and help them access services, no matter how authentication methods evolve.“ –Rew Islam, Director of Product Engineering and Innovation at Dashlane
 

Dashlane tracks and investigates all passkey errors and says that there haven’t been many. They also receive few questions from customers around how to use or manage their passkeys. This can be a sign of an intuitive user experience, clear help center documentation, a tendency of passkey users today already being knowledgeable about passkeys, or some combination of these factors.

Enhanced Google Play Protect real-time scanning for app installs

Mobile devices have supercharged our modern lives, helping us do everything from purchasing goods in store and paying bills online to storing financial data, health records, passwords and pictures. According to Data.ai, the pandemic accelerated existing mobile habits – with app categories like finance growing 25% year-over-year and users spending over 100 billion hours in shopping apps. It's now even more important that data is protected so that bad actors can't access the information.

Powering up Google Play Protect

Google Play Protect is built-in, proactive protection against malware and unwanted software and is enabled on all Android devices with Google Play Services. Google Play Protect scans 125 billion apps daily to help protect you from malware and unwanted software. If it finds a potentially harmful app, Google Play Protect can take certain actions such as sending you a warning, preventing an app install, or disabling the app automatically.

To try and avoid detection by services like Play Protect, cybercriminals are using novel malicious apps available outside of Google Play to infect more devices with polymorphic malware, which can change its identifiable features. They’re turning to social engineering to trick users into doing something dangerous, such as revealing confidential information or downloading a malicious app from ephemeral sources – most commonly via links to download malicious apps or downloads directly through messaging apps.

For this reason, Google Play Protect has always also offered users protection outside of Google Play. It checks your device for potentially harmful apps regardless of the install source when you’re online or offline as well. Previously, when installing an app, Play Protect conducted a real-time check and warned users when it identified an app known to be malicious from existing scanning intelligence or was identified as suspicious from our on-device machine learning, similarity comparisons, and other techniques that we are always evolving.


Today, we are making Google Play Protect’s security capabilities even more powerful with real-time scanning at the code-level to combat novel malicious apps. Google Play Protect will now recommend a real-time app scan when installing apps that have never been scanned before to help detect emerging threats.

Scanning will extract important signals from the app and send them to the Play Protect backend infrastructure for a code-level evaluation. Once the real-time analysis is complete, users will get a result letting them know if the app looks safe to install or if the scan determined the app is potentially harmful. This enhancement will help better protect users against malicious polymorphic apps that leverage various methods, such as AI, to be altered to avoid detection.

Our security protections and machine learning algorithms learn from each app submitted to Google for review and we look at thousands of signals and compare app behavior. Google Play Protect is constantly improving with each identified app, allowing us to strengthen our protections for the entire Android ecosystem.

This enhancement to Google Play Protect has started to roll out to all Android devices with Google Play services in select countries, starting with India, and will expand to all regions in the coming months.

Our Multi-Layered User Protections on Android


Android takes a multi-layered defense approach to help keep you safe from mobile malware and unwanted software on Android. Android’s built-in proactive and advanced user protections like Google Play Protect, ongoing security updates, app permission controls, Safe Browsing, and more – alongside spam and phishing protection in Messages by Google and Gmail – work together to help protect your data security and privacy. We are constantly improving this multi-layered approach to find new ways to protect our billions of users.

Keeping Android users safe is a top priority. We are committed to working with our ecosystem partners and app developer community to improve the security of apps and combat malware and unwanted software to make Android even more secure.

Enhanced Google Play Protect real-time scanning for app installs

Mobile devices have supercharged our modern lives, helping us do everything from purchasing goods in store and paying bills online to storing financial data, health records, passwords and pictures. According to Data.ai, the pandemic accelerated existing mobile habits – with app categories like finance growing 25% year-over-year and users spending over 100 billion hours in shopping apps. It's now even more important that data is protected so that bad actors can't access the information.

Powering up Google Play Protect

Google Play Protect is built-in, proactive protection against malware and unwanted software and is enabled on all Android devices with Google Play Services. Google Play Protect scans 125 billion apps daily to help protect you from malware and unwanted software. If it finds a potentially harmful app, Google Play Protect can take certain actions such as sending you a warning, preventing an app install, or disabling the app automatically.

To try and avoid detection by services like Play Protect, cybercriminals are using novel malicious apps available outside of Google Play to infect more devices with polymorphic malware, which can change its identifiable features. They’re turning to social engineering to trick users into doing something dangerous, such as revealing confidential information or downloading a malicious app from ephemeral sources – most commonly via links to download malicious apps or downloads directly through messaging apps.

For this reason, Google Play Protect has always also offered users protection outside of Google Play. It checks your device for potentially harmful apps regardless of the install source when you’re online or offline as well. Previously, when installing an app, Play Protect conducted a real-time check and warned users when it identified an app known to be malicious from existing scanning intelligence or was identified as suspicious from our on-device machine learning, similarity comparisons, and other techniques that we are always evolving.


Today, we are making Google Play Protect’s security capabilities even more powerful with real-time scanning at the code-level to combat novel malicious apps. Google Play Protect will now recommend a real-time app scan when installing apps that have never been scanned before to help detect emerging threats.

Scanning will extract important signals from the app and send them to the Play Protect backend infrastructure for a code-level evaluation. Once the real-time analysis is complete, users will get a result letting them know if the app looks safe to install or if the scan determined the app is potentially harmful. This enhancement will help better protect users against malicious polymorphic apps that leverage various methods, such as AI, to be altered to avoid detection.

Our security protections and machine learning algorithms learn from each app submitted to Google for review and we look at thousands of signals and compare app behavior. Google Play Protect is constantly improving with each identified app, allowing us to strengthen our protections for the entire Android ecosystem.

This enhancement to Google Play Protect has started to roll out to all Android devices with Google Play services in select countries, starting with India, and will expand to all regions in the coming months.

Our Multi-Layered User Protections on Android


Android takes a multi-layered defense approach to help keep you safe from mobile malware and unwanted software on Android. Android’s built-in proactive and advanced user protections like Google Play Protect, ongoing security updates, app permission controls, Safe Browsing, and more – alongside spam and phishing protection in Messages by Google and Gmail – work together to help protect your data security and privacy. We are constantly improving this multi-layered approach to find new ways to protect our billions of users.

Keeping Android users safe is a top priority. We are committed to working with our ecosystem partners and app developer community to improve the security of apps and combat malware and unwanted software to make Android even more secure.

Join us online from 23-27 October for Passkeys Week

Posted by Milica Mihajlija, Technical Writer

Passkeys are a safer and simpler alternative to passwords that works on all modern browsers and platforms. They enable signing into online accounts by using a device screen lock–with a fingerprint, facial recognition, PIN or a pattern.

More and more online services are adding passkey support every day. On 10 October, 2023, Google accounts made passkeys the default sign in method for all devices that support it.

To accelerate our way into a passwordless future, from 23-27 October we are hosting Passkeys Week–an online event where you can learn everything you need to know to successfully implement passkeys. Use #PasskeysWeek to participate in the conversation and spread the word about your products that support passkeys.

Keep an eye on @ChromiumDev and @AndroidDev, where we'll share new learning materials, including blog posts, case studies and pathways to earn passkeys badges on your Google Developer Profile.

On 25 October at 10 AM PDT, we’ll host a live Q&A session on Google for Developers YouTube channel where you can get all your questions about passkeys answered by passkeys engineers from Google. Bookmark this link or click "Notify me" to get alerted when the livestream is about to start:

The recording will also be available on the channel after the event — we hope you will tune in.

Join us online from 23-27 October for Passkeys Week

Posted by Milica Mihajlija, Technical Writer

Passkeys are a safer and simpler alternative to passwords that works on all modern browsers and platforms. They enable signing into online accounts by using a device screen lock–with a fingerprint, facial recognition, PIN or a pattern.

More and more online services are adding passkey support every day. On 10 October, 2023, Google accounts made passkeys the default sign in method for all devices that support it.

To accelerate our way into a passwordless future, from 23-27 October we are hosting Passkeys Week–an online event where you can learn everything you need to know to successfully implement passkeys. Use #PasskeysWeek to participate in the conversation and spread the word about your products that support passkeys.

Keep an eye on @ChromiumDev and @AndroidDev, where we'll share new learning materials, including blog posts, case studies and pathways to earn passkeys badges on your Google Developer Profile.

On 25 October at 10 AM PDT, we’ll host a live Q&A session on Google for Developers YouTube channel where you can get all your questions about passkeys answered by passkeys engineers from Google. Bookmark this link or click "Notify me" to get alerted when the livestream is about to start:

The recording will also be available on the channel after the event — we hope you will tune in.

Scaling BeyondCorp with AI-Assisted Access Control Policies



In July 2023, four Googlers from the Enterprise Security and Access Security organizations developed a tool that aimed at revolutionizing the way Googlers interact with Access Control Lists - SpeakACL. This tool, awarded the Gold Prize during Google’s internal Security & AI Hackathon, allows developers to create or modify security policies using simple English instructions rather than having to learn system-specific syntax or complex security principles. This can save security and product teams hours of time and effort, while helping to protect the information of their users by encouraging the reduction of permitted access by adhering to the principle of least privilege.


Access Control Policies in BeyondCorp

Google requires developers and owners of enterprise applications to define their own access control policies, as described in BeyondCorp: The Access Proxy. We have invested in reducing the difficulty of self-service ACL and ACL test creation to encourage these service owners to define least privilege access control policies. However, it is still challenging to concisely transform their intent into the language acceptable to the access control engine. Additional complexity is added by the variety of engines, and corresponding policy definition languages that target different access control domains (i.e. websites, networks, RPC servers).


To adequately implement an access control policy, service developers are expected to learn various policy definition languages and their associated syntax, in addition to sufficiently understanding security concepts. As this takes time away from core developer work, it is not the most efficient use of developer time. A solution was required to remove these challenges so developers can focus on building innovative tools and products.



Making it Work

We built a prototype interface for interactively defining and modifying access control policies for the BeyondCorp access control engine using the PaLM 2 Large Language Model (LLM). using the PaLM 2 Large Language Model (LLM). We used Google Colab to provide the model with a diverse, highly variable, dataset using in-context learning and fine-tuning. In-context learning allows the model to learn from a dataset of examples that are relevant to the task at hand, which we provided via few-shot learning. Fine-tuning allows the model to be adapted to a specific task by adjusting its parameters. Tuning the model with a diverse labeled dataset that we curated for this task allowed us to improve its ability to generate ACLs that are both syntactically accurate and adhered to the principle of least privilege. 




With SpeakACL, and other tools leveraging AI in security, it is always recommended to take a conservative approach with the autonomy you give an AI agent. To ensure our model outputs are correct & safe to use, we combined our tool with existing safeguards that exist at Google for all access policy modifications:



  • Request LGTM from a teammate to ensure that the intent of the proposed change is correct. 

  • Automated Risk Assessment occurs on proposed security policy at Google. 

  • Manual Review by Security Engineers is performed on changes not assessed as low risk to ensure compliance with security policies and guidelines.

  • Linting, unit tests, and integration tests ensure that the access control language syntax is correct, and that the change does not break any expected access or permit unexpected access.



Looking to the future

While progress in AI is impressive, it is crucial we as an industry continue to prioritize safety while navigating the landscape. Other than adding checks to syntactically and semantically verify access policies produced by our model, we also designed safeguards for sensitive information disclosure, data leaking, prompt injections, and supply chain vulnerabilities to make sure our model is performing at the highest level of security.


SpeakACL is an ACL Generation tool that has the potential to revolutionize the way access policies are created and managed. The efficiency, security, and ease of use achieved by this AI-powered ACL Generation Engine reflects Google’s ongoing commitment to leveraging AI across domains to develop cutting-edge products and infrastructure. 


Bare-metal Rust in Android

Last year we wrote about how moving native code in Android from C++ to Rust has resulted in fewer security vulnerabilities. Most of the components we mentioned then were system services in userspace (running under Linux), but these are not the only components typically written in memory-unsafe languages. Many security-critical components of an Android system run in a “bare-metal” environment, outside of the Linux kernel, and these are historically written in C. As part of our efforts to harden firmware on Android devices, we are increasingly using Rust in these bare-metal environments too.

To that end, we have rewritten the Android Virtualization Framework’s protected VM (pVM) firmware in Rust to provide a memory safe foundation for the pVM root of trust. This firmware performs a similar function to a bootloader, and was initially built on top of U-Boot, a widely used open source bootloader. However, U-Boot was not designed with security in a hostile environment in mind, and there have been numerous security vulnerabilities found in it due to out of bounds memory access, integer underflow and memory corruption. Its VirtIO drivers in particular had a number of missing or problematic bounds checks. We fixed the specific issues we found in U-Boot, but by leveraging Rust we can avoid these sorts of memory-safety vulnerabilities in future. The new Rust pVM firmware was released in Android 14.

As part of this effort, we contributed back to the Rust community by using and contributing to existing crates where possible, and publishing a number of new crates as well. For example, for VirtIO in pVM firmware we’ve spent time fixing bugs and soundness issues in the existing virtio-drivers crate, as well as adding new functionality, and are now helping maintain this crate. We’ve published crates for making PSCI and other Arm SMCCC calls, and for managing page tables. These are just a start; we plan to release more Rust crates to support bare-metal programming on a range of platforms. These crates are also being used outside of Android, such as in Project Oak and the bare-metal section of our Comprehensive Rust course.

Training engineers

Many engineers have been positively surprised by how productive and pleasant Rust is to work with, providing nice high-level features even in low-level environments. The engineers working on these projects come from a range of backgrounds. Our comprehensive Rust course has helped experienced and novice programmers quickly come up to speed. Anecdotally the Rust type system (including the borrow checker and lifetimes) helps avoid making mistakes that are easily made in C or C++, such as leaking pointers to stack-allocated values out of scope.

One of our bare-metal Rust course attendees had this to say:

"types can be built that bring in all of Rust's niceties and safeties and 
yet still compile down to extremely efficient code like writes
of constants to memory-mapped IO."

97% of attendees that completed a survey agreed the course was worth their time.

Advantages and challenges

Device drivers are often written in an object-oriented fashion for flexibility, even in C. Rust traits, which can be seen as a form of compile-time polymorphism, provide a useful high-level abstraction for this. In many cases this can be resolved entirely at compile time, with no runtime overhead of dynamic dispatch via vtables or structs of function pointers.

There have been some challenges. Safe Rust’s type system is designed with an implicit assumption that the only memory the program needs to care about is allocated by the program (be it on the stack, the heap, or statically), and only used by the program. Bare-metal programs often have to deal with MMIO and shared memory, which break this assumption. This tends to require a lot of unsafe code and raw pointers, with limited tools for encapsulation. There is some disagreement in the Rust community about the soundness of references to MMIO space, and the facilities for working with raw pointers in stable Rust are currently somewhat limited. The stabilisation of offset_of, slice_ptr_get, slice_ptr_len, offset_of and other nightly features will improve this, but it is still challenging to encapsulate cleanly. Better syntax for accessing struct fields and array indices via raw pointers without creating references would also be helpful.

The concurrency introduced by interrupt and exception handlers can also be awkward, as they often need to access shared mutable state but can’t rely on being able to take locks. Better abstractions for critical sections will help somewhat, but there are some exceptions that can’t practically be disabled, such as page faults used to implement copy-on-write or other on-demand page mapping strategies.

Another issue we’ve had is that some unsafe operations, such as manipulating the page table, can’t be encapsulated cleanly as they have safety implications for the whole program. Usually in Rust we are able to encapsulate unsafe operations (operations which may cause undefined behaviour in some circumstances, because they have contracts which the compiler can’t check) in safe wrappers where we ensure the necessary preconditions so that it is not possible for any caller to cause undefined behaviour. However, mapping or unmapping pages in one part of the program can make other parts of the program invalid, so we haven’t found a way to provide a fully general safe interface to this. It should be noted that the same concerns apply to a program written in C, where the programmer always has to reason about the safety of the whole program.

Some people adopting Rust for bare-metal use cases have raised concerns about binary size. We have seen this in some cases; for example our Rust pVM firmware binary is around 460 kB compared to 220 kB for the earlier C version. However, this is not a fair comparison as we also added more functionality which allowed us to remove other components from the boot chain, so the overall size of all VM boot chain components was comparable. We also weren’t particularly optimizing for binary size in this case; speed and correctness were more important. In cases where binary size is critical, compiling with size optimization, being careful about dependencies, and avoiding Rust’s string formatting machinery in release builds usually allows comparable results to C.

Architectural support is another concern. Rust is generally well supported on the Arm and RISC-V cores that we see most often, but support for more esoteric architectures (for example, the Qualcomm Hexagon DSP included in many Qualcomm SoCs used in Android phones) can be lacking compared to C.

The future of bare-metal Rust

Overall, despite these challenges and limitations, we’ve still found Rust to be a significant improvement over C (or C++), both in terms of safety and productivity, in all the bare-metal use cases where we’ve tried it so far. We plan to use it wherever practical.

As well as the work in the Android Virtualization Framework, the team working on Trusty (the open-source Trusted Execution Environment used on Pixel phones, among others) have been hard at work adding support for Trusted Applications written in Rust. For example, the reference KeyMint Trusted Application implementation is now in Rust. And there’s more to come in future Android devices, as we continue to use Rust to improve security of the devices you trust.

Expanding our exploit reward program to Chrome and Cloud


In 2020, we launched a novel format for our vulnerability reward program (VRP) with the kCTF VRP and its continuation kernelCTF. For the first time, security researchers could get bounties for n-day exploits even if they didn’t find the vulnerability themselves. This format proved valuable in improving our understanding of the most widely exploited parts of the linux kernel. Its success motivated us to expand it to new areas and we're now excited to announce that we're extending it to two new targets: v8CTF and kvmCTF.




Today, we're launching v8CTF, a CTF focused on V8, the JavaScript engine that powers Chrome. kvmCTF is an upcoming CTF focused on Kernel-based Virtual Machine (KVM) that will be released later in the year.




As with kernelCTF, we will be paying bounties for successful exploits against these platforms, n-days included. This is on top of any existing rewards for the vulnerabilities themselves. For example, if you find a vulnerability in V8 and then write an exploit for it, it can be eligible under both the Chrome VRP and the v8CTF.




We're always looking for ways to improve the security posture of our products, and we want to learn from the security community to understand how they will approach this challenge. If you're successful, you'll not only earn a reward, but you'll also help us make our products more secure for everyone. This is also a good opportunity to learn about technologies and gain hands-on experience exploiting them.




Besides learning about exploitation techniques, we’ll also leverage this program to experiment with new mitigation ideas and see how they perform against real-world exploits. For mitigations, it’s crucial to assess their effectiveness early on in the process, and you can help us battle test them.



How do I participate?

  • First, make sure to check out the rules for v8CTF or kvmCTF. This page contains up-to-date information about the types of exploits that are eligible for rewards, as well as the limits and restrictions that apply.

  • Once you have identified a vulnerability present in our deployed version, exploit it, and grab the flag. It doesn’t even have to be an 0-day!

  • Send us the flag by filling out the form linked in the rules and we’ll take it from there.




We're looking forward to seeing what you can find!

Expanding our exploit reward program to Chrome and Cloud


In 2020, we launched a novel format for our vulnerability reward program (VRP) with the kCTF VRP and its continuation kernelCTF. For the first time, security researchers could get bounties for n-day exploits even if they didn’t find the vulnerability themselves. This format proved valuable in improving our understanding of the most widely exploited parts of the linux kernel. Its success motivated us to expand it to new areas and we're now excited to announce that we're extending it to two new targets: v8CTF and kvmCTF.




Today, we're launching v8CTF, a CTF focused on V8, the JavaScript engine that powers Chrome. kvmCTF is an upcoming CTF focused on Kernel-based Virtual Machine (KVM) that will be released later in the year.




As with kernelCTF, we will be paying bounties for successful exploits against these platforms, n-days included. This is on top of any existing rewards for the vulnerabilities themselves. For example, if you find a vulnerability in V8 and then write an exploit for it, it can be eligible under both the Chrome VRP and the v8CTF.




We're always looking for ways to improve the security posture of our products, and we want to learn from the security community to understand how they will approach this challenge. If you're successful, you'll not only earn a reward, but you'll also help us make our products more secure for everyone. This is also a good opportunity to learn about technologies and gain hands-on experience exploiting them.




Besides learning about exploitation techniques, we’ll also leverage this program to experiment with new mitigation ideas and see how they perform against real-world exploits. For mitigations, it’s crucial to assess their effectiveness early on in the process, and you can help us battle test them.



How do I participate?

  • First, make sure to check out the rules for v8CTF or kvmCTF. This page contains up-to-date information about the types of exploits that are eligible for rewards, as well as the limits and restrictions that apply.

  • Once you have identified a vulnerability present in our deployed version, exploit it, and grab the flag. It doesn’t even have to be an 0-day!

  • Send us the flag by filling out the form linked in the rules and we’ll take it from there.




We're looking forward to seeing what you can find!

Improving user safety in OAuth flows through new OAuth Custom URI scheme restrictions

Posted by Vikrant Rana, Product Manager

OAuth 2.0 Custom URI schemes are known to be vulnerable to app impersonation attacks. As part of Google’s continuous commitment to user safety and finding ways to make it safer to use third-party applications that access Google user data, we will be restricting the use of custom URI scheme methods. They’ll be disallowed for new Chrome extensions and will no longer be supported for Android apps by default.

Disallowing Custom URI scheme redirect method for new Chrome Extensions

To protect users from malicious actors who might impersonate Chrome extensions and steal their credentials, we no longer allow new extensions to use OAuth custom URI scheme methods. Instead, implement OAuth using Chrome Identity API, a more secure way to deliver OAuth 2.0 response to your app.

What do developers need to do?

New Chrome extensions will be required to use the Chrome Identity API method for authorization. While existing OAuth client configurations are not affected by this change, we strongly encourage you to migrate them to the Chrome Identity API method. In the future, we may disallow Custom URI scheme methods and require all extensions to use the Chrome Identity API method.

Disabling Custom URI scheme redirect method for Android clients by default

By default, new Android apps will no longer be allowed to use Custom URI schemes to make authorization requests. Instead, consider using Google Identity Services for Android SDK to deliver the OAuth 2.0 response directly to your app.

What do developers need to do?

We strongly recommend switching existing apps to use the Google Identity Services for Android SDK. If you're creating a new app and the recommended alternative doesn’t work for your needs, you can enable the Custom URI scheme method for your app in the “Advanced Settings” section of the client configuration page on the Google API Console.

User-facing error message

Users may see an “invalid request” error message if they try to use an app that is making unauthorized requests using the Custom URI scheme method. They can learn more about this error by clicking on the "Learn more" link in the error message.

Image of user facing error message
User-facing error example

Developer-facing error message

Developers will be able to see additional error information when testing user flows for their applications. They can get more information about the error by clicking on the “see error details” link, including its root cause and links to instructions on how to resolve the error.

Image of developer facing error message
Developer-facing error example

Related content