Tag Archives: Samsung

AllTrails gains over 1 million downloads after implementing its Wear OS app

Posted by Kseniia Shumelchyk – Developer Relations Engineer

With more than 65 million global users, AllTrails is one of the world’s most popular and trusted platforms for outdoor exploration. The app is designed to be the ultimate adventure companion, so the AllTrails team always works to improve users’ outdoor experience using the latest technology. Recently, its developers created a new Wear OS application. Now, users can access their favorite AllTrails features using their favorite Android wearables.

Growing the AllTrails ecosystem

AllTrails has had a great deal of growth from its Android users, and the app’s developers wanted to meet the needs of this growing segment by delivering new ways to get outside. That meant creating an ecosystem of connected experiences, and Wear OS was the perfect starting point. The team started by building essential functions for controlling the app, like pausing, resuming, and finishing hikes, straight from wearables.

“We know that the last thing you want as you’re pulling into the trailhead is to fumble with your phone and look for the trail, so we wanted to bring the trails to your fingertips,” said Sydney Cho, director of product management at AllTrails. “There’s so much cool stuff we want to do with our Wear OS app, but we decided to start by focusing on the fundamentals.”

After implementing core controls, AllTrails developers added more features to take advantage of the watch screen, like a circular progress ring to show users how far they are on their current route. Implementing new user interfaces is efficient since Compose for Wear OS provides built-in Material components for developers, like a CircularProgressIndicator.

AllTrails’ mobile app warns users when they start to wander off-trail with wrong-turn alerts. AllTrails developers incorporated these alerts into the new Wear OS app, so users can get notified straight from their wrists and keep their phones in their pockets.

The new AllTrails Wear OS application has been super popular among its user base, and the team has received substantial positive feedback on the new wearable experience. AllTrails Wear OS app has had over 1 million downloads since implementing the Wear OS app.

'We’re seeing a lot of growth from Android users, and we want to provide them an ecosystem of connected experiences. Wearables are a core part of that experience.'— Sydney Cho, Director of product management at AllTrails

Streamlined development with Compose for Wear OS

To build the new wearable experience, AllTrails developers used Jetpack Compose for Wear OS. The modern declarative toolkit simplifies UI development by letting developers create reusable code blocks for basic functions, allowing for fast and efficient wearable app development.

“Compose for Wear OS definitely sped up development,” said Sydney. “It also gave our dev team exposure to the toolkit, which we’re obviously huge fans of and use for the majority of our new development.”

This was the first app AllTrails developers created entirely using Jetpack Compose, even though they currently use it for parts of the mobile app. Even with their brief experience using the toolkit, they knew it would greatly improve development, so it was an obvious choice for the Wear OS integration.

“Jetpack Compose allowed us to iterate much more quickly,” said Sydney. “It’s incredibly simple to create composables, and the simplicity of previewing the app in various states is extremely helpful.”



Connecting health and fitness via Health Connect

AllTrails developers saw another opportunity to improve the user experience while building the new Wear OS application by integrating Health Connect. Health Connect is one of Android’s latest API offerings that gives users a simpler way to consolidate and share their health and fitness data across applications.

When users opt-in for Health Connect, they can share their various health and fitness data between applications, giving them a more comprehensive understanding of their activity regardless of the apps tracking it.

“Health Connect allows our users to sync their AllTrails activity recordings, like hiking, biking, running, and so on, directly on their phone,” said Sydney. “This activity can then be viewed within Health Connect or from other apps, giving users more freedom to see all their physical activity data, regardless of which app it was recorded on.”

Health Connect streamlines health data management using simple APIs and a straightforward data model. It acts as a centralized repository, consolidating health and fitness data from various apps, simply by having each app write its data to Health Connect. This means that even partial adoption of the API can yield benefits.

AllTrails developers enjoyed how easy it was to integrate Health Connect, thanks to its straightforward and well-documented APIs that were “very simple but extremely powerful.”

moving asset of 3D Droid figure on the right gesticulating toward tect on the left that reads 'AllTrails +1million downloads since implementing the Wear OS app'

What’s ahead with Wear OS

Implementing a new Wear OS application did more than give AllTrails’ users a new way to interact with the app. It lets them put their phones back in their pockets so they can enjoy more of what’s on the trail. By prioritizing core functionalities like nearby trail access, recording control, and real-time alerts, AllTrails delivered a seamless and intuitive wearable experience, enriching UX with impressive user adoption and retention rates.

Get started

Learn more about building wearable apps with design and developer guidance for Wear OS.

Android Device Streaming: Announcing Early Access to Samsung, Xiaomi, and Oppo Device Labs

Posted by Grant Yang (Product Manager for OmniLab) & Adarsh Fernando (Product Manager for Android Studio)

At Google I/O 2024, we announced Android Device Streaming in open beta, which allows you as a developer to more easily access and interactively test your app on real physical devices located in Google data centers and streamed directly to Android Studio. This enables teams in any location to access a variety of devices across top Android device manufacturers, including the latest family of Google Pixel and Samsung Galaxy series devices.

We’re significantly expanding on the diversity of devices available in this service by working closely with Android device manufacturers (also known as original equipment manufacturers, or OEMs)—such as Samsung, Xiaomi, and Oppo—to connect their device labs to Android Device Streaming, so you can access even more physical devices directly in your workflow in Android Studio. This integration is offered with the same performance, stability, and security benefits you get with devices provided by Google. Keep reading for more details below, as well as how you can sign up for the early access and take advantage of these new devices.

screen grab of Device Streaming in Android Studio
Access devices hosted by Google and other OEMs, such as Samsung, with Android Device Streaming, powered by Firebase

Signup for Early Access to OEM Lab Devices

If you haven’t already done so, follow the steps to get up and running with the beta release of Android Device Streaming, which will give you access to all the Google-hosted devices to test with directly from Android Studio. Later this year, we will start an Early Access Program that allows participants to use Android Device Streaming to connect to devices hosted by our OEM partners. This expands the catalog of test devices available to you with Android Device Streaming.

To kick off this program, we’re first partnering with Samsung, Xiaomi, and Oppo. These labs will be situated in various locations around the world, and you will be able to use the Firebase project you’re already using with Android Device Streaming in Android Studio to access them. Your Firebase project’s administrator will have control to enable or disable individual OEM labs.

If you’d like to participate in the EAP for accessing OEM device labs, fill out this form, and we will let you know if you and your team have been accepted. During the EAP, OEM-provided devices will not be billed or counted against your promotional monthly quota.

We look forward to sharing more details during Google’s I/O Connect Beijing in early August 2024.

In the meantime, we encourage you to try out the devices currently available in Android Device Streaming. Currently, the Android Device Streaming program is in a promotional period, with a higher amount of monthly minutes offered at no cost, which will last until approximately February 2025.

OEM Labs powered by OmniLab

Omnilab Logo

Some of you may wonder how these devices are being connected through to Android Studio. Under the hood, Android Device Streaming is built on top of the device platform for Google, OmniLab. OmniLab, the same device platform that powers all internal device labs, is also powering the OEM labs. Omnilab did this by open sourcing their Android Test Station (ATS) framework available to its open source.

OmniLab provides a framework to ensure that your Android Device Streaming session is secure and performant. You’re able to deploy, debug, and interact with your app on these remote devices through a direct ADB over SSL connection, all without having to leave the IDE. And when the session ends, the device data is fully wiped and factory reset before it’s made available to another developer.


In summary, if you’d like to participate in the EAP for accessing OEM device labs, fill out this form, and we will let you know if you and your team have been accepted. During the EAP, OEM-provided devices will not be billed or counted against your promotional monthly quota.

Be part of our vibrant community on LinkedIn, Medium, YouTube, or X and share your experiences on using Android Device streaming in Android Studio.

Build apps for the new Samsung devices

Posted by Diana Wong (Android Product Manager), Kseniia Shumelchyk (Developer Relations Engineer) and Sara Vickerman (Android Developer Marketing)

This week, Samsung launched the latest devices to come to the Android ecosystem at their Galaxy Unpacked event. If you haven’t already, check out their two new foldables, the Galaxy Z Fold4 and Z Flip4, and their new lineup of watches running on Wear OS, the Galaxy Watch5 series. You can learn more about their announcements here.

With the excitement around these new devices, there's never been a better time to invest in making sure your app has an amazing experience for users, on large screens or Wear OS! Here’s what you need to know to get started:

Get your apps ready for foldables, like the Galaxy Z Fold4 and Z Flip4

With their unique foldable experience, the Galaxy Z Flip4 and Z Fold4 are great examples of how Android devices come in all shapes and sizes. The Z Fold4 is the latest in large screen devices, a category that continues to see impressive growth. Active large screen users are approaching 270 million, making it a great time to optimize your apps for tablets, foldables and Chrome OS.

Last year, we launched Android 12L, a feature drop designed to make Android 12 even better on tablets and foldable devices, and Samsung’s Galaxy Z Fold4 will be the first device to run 12L out of the box! Android 12L includes UI updates tailor-made for large screens, improvements to the multitasking experience, and enhancements to compatibility mode so your app looks better out of the box. Since 12L, we also launched Android 13, which includes all these large screen updates and more.

Get started building for foldables by checking out the documentation. The Z Fold4 and Z Flip4 can be used in multiple different folded states, like Samsung’s “flex mode” where you can go hands-free when doing anything from watching a show to taking a photo. To get your app looking great however it’s folded, you can use the Jetpack WindowManager library to make your app fold aware and test your app on foldables. And finally, the large screen app quality guidelines is a comprehensive set of checklists to help make your app the best it can be across an ever expanding ecosystem of large screen devices.

Developers who put in this work are starting to see results; eBay increased their app rating to 4.7 stars on Google Play after optimizing for large screens. Chrome's multitasking usage increased 18x for large screens with 12L.


Build exceptional Wear OS apps

The Wear OS platform expanded this week with the new and improved Galaxy Watch5 series. This lineup of devices builds on Samsung’s commitment to the wearable platform, which we saw last year when they launched Wear OS Powered by Samsung on the Galaxy Watch4 series.

If you’re looking to get started building for the latest Galaxy Watch 5 series, or any other Wear OS device, now is a great time to check out version 1.0 of Compose for Wear OS. This is the first stable release of our modern declarative UI toolkit designed to make building apps for Wear OS easier, faster, and more intuitive. The toolkit brings the best of Jetpack Compose to Wear OS, accelerating the development process so you can create beautiful apps with fewer lines of code.

The 1.0 release streamlines UI development by following the declarative approach and offering powerful Kotlin syntax. It also provides a rich set of UI components optimized for the watch experience and is accompanied by many powerful tools in Android Studio to streamline UI iteration. That’s why Compose for Wear OS is our recommended approach for building user interfaces for Wear OS apps.

We’ve built a set of materials to help you get started with Compose for Wear OS! Check out our curated learning pathway for a step-by-step journey, documentation including a quick start guide, the Compose for Wear OS codelab for hands-on experience, and samples available on Github.

Similarly to Compose for Wear OS, we’re building Wear OS Tile Components to make it faster and easier to build tiles. Tiles provide Wear OS users glanceable access to the information and actions they need in order to get things done quickly and they are one of the most used features on Wear OS. This update brings material components and layouts so you can create Tiles that embrace the latest Material design for Wear OS. Right now this is in beta, but keep a lookout for the launch announcement!

Another launch announcement to watch out for is Android Studio Dolphin, the latest release from Android Studio. Check out these features designed to make wearable app development easier:
  • Updated Wear OS emulator toolbar which now includes buttons and gestures available on Wear OS devices, such as palm and tilting and simulating two physical buttons.
  • Emulator pairing assistant to pair multiple Wear OS devices with a single virtual or physical phone. Android Studio remembers pairings after being closed and allows you to see Wear devices in the Device Manager.
  • Direct surface launch that allows you to create run/debug configurations for Wear OS tiles, watch faces, and complications, and launch them directly from Android Studio.
Between Jetpack Compose, Tile Components and Android Studio Dolphin, we are simplifying Wear OS app development. And, with the addition of the Galaxy Watch5 series to the Wear OS ecosystem, there are even more reasons to build an exceptional Wear OS app.


There’s never been a better time to start optimizing!

Form factors are having a major moment this year and Google is committed to helping you optimize and build across form factors with new content and tools, including sessions and workshops from this year’s Google I/O and new Android Studio features. Plus, we have Material Design guidance for large screens and Wear OS to help you in your optimization journey.

From the Watch5 series to the Z Fold4, Samsung’s Galaxy Unpacked brought us innovations across screen sizes and types. Prepare your app so it looks great across the entire Android device ecosystem!

Build apps for the new Samsung devices

Posted by Diana Wong (Android Product Manager), Kseniia Shumelchyk (Developer Relations Engineer) and Sara Vickerman (Android Developer Marketing)

This week, Samsung launched the latest devices to come to the Android ecosystem at their Galaxy Unpacked event. If you haven’t already, check out their two new foldables, the Galaxy Z Fold4 and Z Flip4, and their new lineup of watches running on Wear OS, the Galaxy Watch5 series. You can learn more about their announcements here.

With the excitement around these new devices, there's never been a better time to invest in making sure your app has an amazing experience for users, on large screens or Wear OS! Here’s what you need to know to get started:

Get your apps ready for foldables, like the Galaxy Z Fold4 and Z Flip4

With their unique foldable experience, the Galaxy Z Flip4 and Z Fold4 are great examples of how Android devices come in all shapes and sizes. The Z Fold4 is the latest in large screen devices, a category that continues to see impressive growth. Active large screen users are approaching 270 million, making it a great time to optimize your apps for tablets, foldables and Chrome OS.

Last year, we launched Android 12L, a feature drop designed to make Android 12 even better on tablets and foldable devices, and Samsung’s Galaxy Z Fold4 will be the first device to run 12L out of the box! Android 12L includes UI updates tailor-made for large screens, improvements to the multitasking experience, and enhancements to compatibility mode so your app looks better out of the box. Since 12L, we also launched Android 13, which includes all these large screen updates and more.

Get started building for foldables by checking out the documentation. The Z Fold4 and Z Flip4 can be used in multiple different folded states, like Samsung’s “flex mode” where you can go hands-free when doing anything from watching a show to taking a photo. To get your app looking great however it’s folded, you can use the Jetpack WindowManager library to make your app fold aware and test your app on foldables. And finally, the large screen app quality guidelines is a comprehensive set of checklists to help make your app the best it can be across an ever expanding ecosystem of large screen devices.

Developers who put in this work are starting to see results; eBay increased their app rating to 4.7 stars on Google Play after optimizing for large screens. Chrome's multitasking usage increased 18x for large screens with 12L.


Build exceptional Wear OS apps

The Wear OS platform expanded this week with the new and improved Galaxy Watch5 series. This lineup of devices builds on Samsung’s commitment to the wearable platform, which we saw last year when they launched Wear OS Powered by Samsung on the Galaxy Watch4 series.

If you’re looking to get started building for the latest Galaxy Watch 5 series, or any other Wear OS device, now is a great time to check out version 1.0 of Compose for Wear OS. This is the first stable release of our modern declarative UI toolkit designed to make building apps for Wear OS easier, faster, and more intuitive. The toolkit brings the best of Jetpack Compose to Wear OS, accelerating the development process so you can create beautiful apps with fewer lines of code.

The 1.0 release streamlines UI development by following the declarative approach and offering powerful Kotlin syntax. It also provides a rich set of UI components optimized for the watch experience and is accompanied by many powerful tools in Android Studio to streamline UI iteration. That’s why Compose for Wear OS is our recommended approach for building user interfaces for Wear OS apps.

We’ve built a set of materials to help you get started with Compose for Wear OS! Check out our curated learning pathway for a step-by-step journey, documentation including a quick start guide, the Compose for Wear OS codelab for hands-on experience, and samples available on Github.

Similarly to Compose for Wear OS, we’re building Wear OS Tile Components to make it faster and easier to build tiles. Tiles provide Wear OS users glanceable access to the information and actions they need in order to get things done quickly and they are one of the most used features on Wear OS. This update brings material components and layouts so you can create Tiles that embrace the latest Material design for Wear OS. Right now this is in beta, but keep a lookout for the launch announcement!

Another launch announcement to watch out for is Android Studio Dolphin, the latest release from Android Studio. Check out these features designed to make wearable app development easier:
  • Updated Wear OS emulator toolbar which now includes buttons and gestures available on Wear OS devices, such as palm and tilting and simulating two physical buttons.
  • Emulator pairing assistant to pair multiple Wear OS devices with a single virtual or physical phone. Android Studio remembers pairings after being closed and allows you to see Wear devices in the Device Manager.
  • Direct surface launch that allows you to create run/debug configurations for Wear OS tiles, watch faces, and complications, and launch them directly from Android Studio.
Between Jetpack Compose, Tile Components and Android Studio Dolphin, we are simplifying Wear OS app development. And, with the addition of the Galaxy Watch5 series to the Wear OS ecosystem, there are even more reasons to build an exceptional Wear OS app.


There’s never been a better time to start optimizing!

Form factors are having a major moment this year and Google is committed to helping you optimize and build across form factors with new content and tools, including sessions and workshops from this year’s Google I/O and new Android Studio features. Plus, we have Material Design guidance for large screens and Wear OS to help you in your optimization journey.

From the Watch5 series to the Z Fold4, Samsung’s Galaxy Unpacked brought us innovations across screen sizes and types. Prepare your app so it looks great across the entire Android device ecosystem!