Author Archives: Open Source Programs Office

A sizzling open source release for the Australian Election site

Originally posted on the Geo Developers Blog

One of the best parts of my job at Google is 20 percent time. While I was hired to help developers use Google’s APIs, I value the time I'm afforded to be a student myself—to learn new technologies and solve real-world problems. A few weeks prior to the recent Australian election an opportunity presented itself. A small team in Sydney set their sights on helping the 15 million voters stay informed of how to participate, track real-time results, and (of course) find the closest election sausage sizzle!


Our team of designers, engineers and product managers didn't have an immediate sense of how to attack the problem. What we did have was the power of Google’s APIs, programming languages, and Cloud hosting with Firebase and Google Cloud Platform.



The result is a mish-mash of some technologies we'd been wanting to learn more about. We're open sourcing the ausvotes.withgoogle.com repository to give developers a sense of what happens when you get a handful of engineers in a room with a clear goal and a immovable deadline.

The Election AU 2016 repository uses:

  • Go from Google App Engine instances to serve the appropriate level of detail for users' viewport queries from memory at very low latency, and
  • Dart to render the live result maps on top of Google Maps JavaScript API using Firebase real time database updates.

A product is only as good as the attention and usage is receives. Our team was really happy with the results of our work:

  • 406,000 people used our maps, including 217,000 on election day.
  • We had 139 stories in the media.
  • Our map was also embedded in major news websites, such as Sky News.

Complete setup and installation instructions are available in the GitHub README.

By Brett Morgan, Developer Programs Engineer

Google Open Source Peer Bonus Program

Five years ago the Open Source Programs Office established the Open Source Peer Bonus Program to remind Googlers of the importance of the myriad developers outside of Google who keep open source healthy and growing.

The program works like this: we invite Googlers to nominate open source developers outside of the company who deserve recognition for their contributions to open source used at or relied on by Google. After review by a team of volunteer engineers, the recipients receive our heartfelt thanks and a small token of our appreciation.

We have recognized more than 500 open source developers from 30+ countries who have contributed their time and talent to over 400 open source projects.

Having just finished the latest round of the program, we’d like to recognize the individuals and the projects they worked on. Here’s everyone who gave us permission to thank them publicly:

NameProjectNameProject
Olli Etuaho ANGLEAlexander Morozov Golang
Minko Gechev AngularJoel Sing LibreSSL
Georgios Kalpakas AngularDaniel Borkmann Linux kernel
Spencer Low AOSP (Android)Michael Ellerman Linux kernel
Holden Karau Apache SparkHeiko Stuebner Linux kernel
Dave Taht BufferbloatJonathan Garbee Material Design Lite
Leon Han ChromiumChris Sullo Nikto
Yoav Weiss ChromiumCarl Friedrich Bolz PyPy
Rob Wu ChromiumBrett Cannon Python
Faisal Vali ClangRaymond Hettinger Python
Matt Godbolt Compiler ExplorerTim Peters Python
Paul Kocialkowski corebootTully Foote ROS
Jonathan Kollasch corebootIgor Babushkin TensorFlow
Nicolas Reinecke corebootYuan Tang TensorFlow
Werner Zeh corebootHanno Boeck The Fuzzing Project
Daniel Greenfeld DjangoKhaled Hosny TruFont
Eric Whitney ext4Tom Rini U-Boot
Ben Martin FontForgeCaitlin Potter V8
Dmitri Shuralyov go-githubBrian Behlendorf ZFS on Linux

Congratulations all and thank you so much for your contributions to the open source community!

By Helen Hu, Open Source Programs Office

Angular, version 2: proprioception-reinforcement

Originally posted on the Angular Blog

Today, at a special meetup at Google HQ, we announced the final release version of Angular 2, the full-platform successor to Angular 1.

What does "final" mean? Stability that's been validated across a wide range of use cases, and a framework that's been optimized for developer productivity, small payload size, and performance. With ahead-of-time compilation and built-in lazy-loading, we’ve made sure that you can deploy the fastest, smallest applications across the browser, desktop, and mobile environments. This release also represents huge improvements to developer productivity with the Angular CLI and styleguide.

Angular 1 first solved the problem of how to develop for an emerging web. Six years later, the challenges faced by today’s application developers, and the sophistication of the devices that applications must support, have both changed immensely. With this release, and its more capable versions of the Router, Forms, and other core APIs, today you can build amazing apps for any platform. If you prefer your own approach, Angular is also modular and flexible, so you can use your favorite third-party library or write your own.

From the beginning, we built Angular in collaboration with the open source development community. We are grateful to the large number of contributors who dedicated time to submitting pull requests, issues, and repro cases, who discussed and debated design decisions, and validated (and pushed back on) our RCs. We wish we could have brought every one of you in person to our meetup so you could celebrate this milestone with us tonight!


What’s next?

Angular is now ready for the world, and we’re excited for you to join the thousands of developers already building with Angular 2.  But what’s coming next for Angular?

A few of the things you can expect in the near future from the Angular team:

  • Bug fixes and non-breaking features for APIs marked as stable
  • More guides and live examples specific to your use cases
  • More work on animations
  • Angular Material 2
  • Moving WebWorkers out of experimental
  • More features and more languages for Angular Universal
  • Even more speed and payload size improvements

Semantic Versioning

We heard loud and clear that our RC labeling was confusing. To make it easy to manage dependencies on stable Angular releases, starting today with Angular 2.0.0, we will move to semantic versioning.  Angular versioning will then follow the MAJOR.MINOR.PATCH scheme as described by semver:

  1. the MAJOR version gets incremented when incompatible API changes are made to stable APIs,
  2. the MINOR version gets incremented when backwards-compatible functionality are added,
  3. the PATCH version gets incremented when backwards-compatible bug are fixed.

Moving Angular to semantic versioning ensures rapid access to the newest features for our component and tooling ecosystem, while preserving a consistent and reliable development environment for production applications that depend on stability between major releases, but still benefit from bug fixes and new APIs.

Contributors

Aaron Frost, Aaron (Ron) Tsui, Adam Bradley, Adil Mourahi, agpreynolds, Ajay Ambre, Alberto Santini, Alec Wiseman, Alejandro Caravaca Puchades, Alex Castillo, Alex Eagle, Alex Rickabaugh, Alex Wolfe, Alexander Bachmann, Alfonso Presa, Ali Johnson, Aliaksei Palkanau, Almero Steyn, Alyssa Nicoll, Alxandr, André Gil, Andreas Argelius, Andreas Wissel, Andrei Alecu, Andrei Tserakhau, Andrew, Andrii Nechytailov, Ansel Rosenberg, Anthony Zotti, Anton Moiseev, Artur Meyster, asukaleido, Aysegul Yonet, Aziz Abbas, Basarat Ali Syed, BeastCode, Ben Nadel, Bertrand Laporte, Blake La Pierre, Bo Guo, Bob Nystrom, Borys Semerenko, Bradley Heinz, Brandon Roberts, Brendan Wyse, Brian Clark, Brian Ford, Brian Hsu, dozingcat, Brian Yarger, Bryce Johnson, CJ Avilla, cjc343, Caitlin Potter, Cédric Exbrayat, Chirayu Krishnappa, Christian Weyer, Christoph Burgdorf, Christoph Guttandin, Christoph Hoeller, Christoffer Noring, Chuck Jazdzewski, Cindy, Ciro Nunes, Codebacca, Cody Lundquist, Cody-Nicholson, Cole R Lawrence, Constantin Gavrilete, Cory Bateman, Craig Doremus, crisbeto, Cuel, Cyril Balit, Cyrille Tuzi, Damien Cassan, Dan Grove, Dan Wahlin, Daniel Leib, Daniel Rasmuson, dapperAuteur, Daria Jung, David East, David Fuka, David Reher, David-Emmanuel Divernois, Davy Engone, Deborah Kurata, Derek Van Dyke, DevVersion, Dima Kuzmich, Dimitrios Loukadakis, Dmitriy Shekhovtsov, Dmitry Patsura, Dmitry Zamula, Dmytro Kulyk, Donald Spencer, Douglas Duteil, dozingcat, Drew Moore, Dylan Johnson, Edd Hannay, Edouard Coissy, eggers, elimach, Elliott Davis, Eric Jimenez, Eric Lee Carraway, Eric Martinez, Eric Mendes Dantas, Eric Tsang, Essam Al Joubori, Evan Martin, Fabian Raetz, Fahimnur Alam, Fatima Remtullah, Federico Caselli, Felipe Batista, Felix Itzenplitz, Felix Yan, Filip Bruun, Filipe Silva, Flavio Corpa, Florian Knop, Foxandxss, Gabe Johnson, Gabe Scholz, GabrielBico, Gautam krishna.R, Georgii Dolzhykov, Georgios Kalpakas, Gerd Jungbluth, Gerard Sans, Gion Kunz, Gonzalo Ruiz de Villa, Grégory Bataille, Günter Zöchbauer, Hank Duan, Hannah Howard, Hans Larsen, Harry Terkelsen, Harry Wolff, Henrique Limas, Henry Wong, Hiroto Fukui, Hongbo Miao, Huston Hedinger, Ian Riley, Idir Ouhab Meskine, Igor Minar, Ioannis Pinakoulakis, The Ionic Team, Isaac Park, Istvan Novak, Itay Radotzki, Ivan Gabriele, Ivey Padgett, Ivo Gabe de Wolff, J. Andrew Brassington, Jack Franklin, Jacob Eggers, Jacob MacDonald, Jacob Richman, Jake Garelick, James Blacklock, James Ward, Jason Choi, Jason Kurian, Jason Teplitz, Javier Ros, Jay Kan, Jay Phelps, Jay Traband, Jeff Cross, Jeff Whelpley, Jennifer Bland, jennyraj, Jeremy Attali, Jeremy Elbourn, Jeremy Wilken, Jerome Velociter, Jesper Rønn-Jensen, Jesse Palmer, Jesús Rodríguez, Jesús Rodríguez, Jimmy Gong, Joe Eames, Joel Brewer, John Arstingstall, John Jelinek IV, John Lindquist, John Papa, John-David Dalton, Jonathan Miles, Joost de Vries, Jorge Cruz, Josef Meier, Josh Brown, Josh Gerdes, Josh Kurz, Josh Olson, Josh Thomas, Joseph Perrott, Joshua Otis, Josu Guiterrez, Julian Motz, Julie Ralph, Jules Kremer, Justin DuJardin, Kai Ruhnau, Kapunahele Wong, Kara Erickson, Kathy Walrath, Keerti Parthasarathy, Kenneth Hahn, Kevin Huang, Kevin Kirsche, Kevin Merckx, Kevin Moore, Kevin Western, Konstantin Shcheglov, Kurt Hong, Levente Morva, laiso, Lina Lu, LongYinan, Lucas Mirelmann, Luka Pejovic, Lukas Ruebbelke, Marc Fisher, Marc Laval, Marcel Good, Marcy Sutton, Marcus Krahl, Marek Buko, Mark Ethan Trostler, Martin Gontovnikas, Martin Probst, Martin Staffa, Matan Lurey, Mathias Raacke, Matias Niemelä, Matt Follett, Matt Greenland, Matt Wheatley, Matteo Suppo, Matthew Hill, Matthew Schranz, Matthew Windwer, Max Sills, Maxim Salnikov, Melinda Sarnicki Bernardo, Michael Giambalvo, Michael Goderbauer, Michael Mrowetz, Michael-Rainabba Richardson, Michał Gołębiowski, Mikael Morlund, Mike Ryan, Minko Gechev, Miško Hevery, Mohamed Hegazy, Nan Schweiger, Naomi Black, Nathan Walker, The NativeScript Team, Nicholas Hydock, Nick Mann, Nick Raphael, Nick Van Dyck, Ning Xia, Olivier Chafik, Olivier Combe, Oto Dočkal, Pablo Villoslada Puigcerber, Pascal Precht, Patrice Chalin, Patrick Stapleton, Paul Gschwendtner, Pawel Kozlowski, Pengfei Yang, Pete Bacon Darwin, Pete Boere, Pete Mertz, Philip Harrison, Phillip Alexander, Phong Huynh, Polvista, Pouja, Pouria Alimirzaei, Prakal, Prayag Verma, Rado Kirov, Raul Jimenez, Razvan Moraru, Rene Weber, Rex Ye, Richard Harrington, Richard Kho, Richard Sentino, Rob Eisenberg, Rob Richardson, Rob Wormald, Robert Ferentz, Robert Messerle, Roberto Simonetti, Rodolfo Yabut, Sam Herrmann, Sam Julien, Sam Lin, Sam Rawlins, Sammy Jelin, Sander Elias, Scott Hatcher, Scott Hyndman, Scott Little, ScottSWu, Sebastian Hillig, Sebastian Müller, Sebastián Duque, Sekib Omazic, Shahar Talmi, Shai Reznik, Sharon DiOrio, Shannon Ayres, Shefali Sinha, Shlomi Assaf, Shuhei Kagawa, Sigmund Cherem, Simon Hürlimann (CyT), Simon Ramsay, Stacy Gay, Stephen Adams, Stephen Fluin, Steve Mao, Steve Schmitt, Suguru Inatomi, Tamas Csaba, Ted Sander, Tero Parviainen, Thierry Chatel, Thierry Templier, Thomas Burleson, Thomas Henley, Tim Blasi, Tim Ruffles, Timur Meyster, Tobias Bosch, Tony Childs, Tom Ingebretsen, Tom Schoener, Tommy Odom, Torgeir Helgevold, Travis Kaufman, Trotyl Yu, Tycho Grouwstra, The Typescript Team, Uli Köhler, Uri Shaked, Utsav Shah, Valter Júnior, Vamsi V, Vamsi Varikuti, Vanga Sasidhar, Veikko Karsikko, Victor Berchet, Victor Mejia, Victor Savkin, Vinci Rufus, Vijay Menon, Vikram Subramanian, Vivek Ghaisas, Vladislav Zarakovsky, Vojta Jina, Ward Bell, Wassim Chegham, Wenqian Guo, Wesley Cho, Will Ngo, William Johnson, William Welling, Wilson Mendes Neto, Wojciech Kwiatek, Yang Lin, Yegor Jbanov, Zach Bjornson, Zhicheng Wang, and many more...

With gratitude and appreciation, and anticipation to see what you'll build next, welcome to the next stage of Angular.

By Jules Kremer, Angular Team

Introducing OpenType Font Variations

Cześć and hello from the ATypI conference in Warsaw! Together with Microsoft, Apple and Adobe, we’re happy to announce the launch of variable fonts as part of OpenType 1.8, the newest version of the font standard. With variable fonts, your device can display text in myriads of weights, widths, or other stylistic variations from a single font file with less space and bandwidth.
 OpenType variable fonts support OpenType Layout variation.
To prevent that the $ sign becomes a black blob,
the stroke disappears at a certain weight.


At Google, we started tinkering with variable fonts about two years ago. We were fascinated by the typographic opportunities, and we got really excited when we realized that variable fonts would also help to save space and bandwidth. We proposed reviving Apple’s TrueType GX variations in OpenType, and started experimenting with it in our tools. The folks at Microsoft then started a four-way collaboration between Microsoft, Apple, Adobe, and Google, together with experts from type foundries and tool makers. Microsoft did the spec work; Apple brought their existing technology and expertise; Adobe updated their CFF format into CFF2; and we brought the tools and testing we’d been developing.  After months of intense polishing, the specification is now finished.

On the Google end, we did a lot of work to build, edit and display variable fonts:
As always, all our font tools are free and open source for everyone to use and contribute.

Now that the spec is public, we can finish the work by merging the changes upstream so that our code will soon flow into products. We’ll also update Noto to support variations (for many writing systems, the sources are already there — the rest will follow). Much more work lies ahead, for example, implementing variations in Google Fonts. Together with other browser makers, we’re already working on a proposal to extend CSS fonts with variations. Once everyone agrees on the format, we’ll support it in Google Chrome. And there are many other challenges ahead, like incorporating font variations into other Google products—so it will be a busy time for us!  We are incredibly excited that an amazing technology from 23 years ago is coming back to life again today. Huge thanks to our friends at Adobe, Apple, and Microsoft for a great collaboration!

To learn more, read Introducing OpenType Variable Fonts, or talk to us at the FontTools group.

By Behdad Esfahbod and Sascha Brawer, Fonts and Text Rendering, Google Internationalization

Google Summer of Code 2016 statistics: celebrating our mentors

Our final statistics post of the year is dedicated to to the incredible Google Summer of Code (GSoC) 2016 mentors. There were a total of 2,524 mentors, but today we'll look at the 1,500+ mentors who were assigned to an active project. Mentors are the lifeblood of our program. Without their hard work and dedication to the success of our students, there would be no GSoC. A merry band of volunteers, mentors work with students for more than 12 weeks — remotely, across multiple time zones, giving their time, expertise and guidance in addition to a regular full-time job for an average of 7.45 hours a week. Today we’ll take a closer look at our 2016 team.

GSoC 2016 mentors reside all over the world and represent 66 countries.




Want to see the data? Here’s the breakdown of the countries our mentors come from.



We have many mentors who participate in GSoC year after year. In 2016, we have six mentors who have participated since the program’s inception in 2005! GSoC “lifer” Bart Massey, who participated as a mentor for Portland State University and X.Org had this to say about his time with GSoC:

“I'm not sure which is more astonishing, that I am 12 years older with GSoC or that GSoC is 12 years old with me. Some of the most fantastic, interesting, brilliant and hardworking folks on the planet have gotten together every year for 12 years to change the world: Google folks and open source leadership and skilled, special students. It's been great to get to be part of it all, both as Portland State University and during my time with X.Org...I hope I get to keep working with and hanging out with these people I love every year forever.” 

Awww, we love you too Bart!

There are also plenty of newbies to the program each year and 2016 is no exception. We’d like to welcome 528 (33%) new mentors to the GSoC family.

Some fun facts:
  • Average age: 32
  • Youngest: 14
  • Oldest: 78
  • Most common mentor first name: David
At the end of each program year, we invite two mentors from each participating organization to join us at the Mentor Summit, a three day unconference at Google HQ in Northern California. There they enjoy a weekend with their peers to talk about all things open source-y (a technical term) and have some fun.

A huge thanks to each and every Google Summer of Code mentor. We salute you.

By Mary Radomile, Open Source Programs

Google Summer of Code 2016 is a wrap

soc_horizontal500.png

As school in much of the world begins, Google Summer of Code 2016 winds down. The last three months have seen a whirlwind of activity on over 178 open source projects. University students from around the globe have been working with their mentors to contribute their technical skills to the common good.

Student participants submitted their completed work late last month, mentors evaluated the submissions, and the results have been announced.

We accepted 1,206 university students from 67 countries in April and we are excited to announce that 1,032 students (85.6%) successfully completed the program. To learn more about how that compares to previous years, check out our statistics from the last eleven years.

Google Summer of Code isn’t over though. In October we’ll be hosting our annual mentor summit in Sunnyvale, California where mentors and organization administrations will meet and exchange ideas. 

Thank you to all of the students, mentors and organization administrators for your contributions to open source and for making the 12th year of Google Summer of Code such a great success!


By Josh Simmons, Open Source Programs Office

From Summer of Code to Game of Thrones on the back of a JavaScript Dragon (Part 3)

This guest post is a part of a short series about Tatyana Goldberg, Guy Yachdav and Christian Dallago and the journey that was inspired by their participation as Google Summer of Code mentors for the BioJS project. Check out the first and second posts in the series.

This blog post marks the end of our short series following our adventures in open source. As you may recall, it all started thanks to Google Summer of Code (GSoC) which brought our team together. The GSoC collaboration spurred us to start a class Technical University of Munich (TUM) that eventually took on the Game of Thrones data science project and became an international sensation.

The success of our Game of Thrones project opened a lot of doors which is what we discuss in this post. First, we were invited to participate in the Morpheus Cup which is a prestigious university olympiad that brings together students from all over Europe to compete in digital challenges.

Our team rocked the competition winning two challenges and making it to the finalist stage in the third challenge. We were honored to represent our university and grateful for Google’s sponsorship of our team.
WhatsApp-Image-20160510 (1).jpeg
The students and mentors of the Game of Thrones project at the Morpheus Cup challenge in May 2016. From left to right: Georgi Anastasov, Emiliyana Kalinova, Maximilian Bandle (all students), Guy Yachdav (mentor), Christian Dallago (mentor), Tobias Piffrader, Theodor Chesleran (both students) and Tatyana Goldberg (mentor).
Another opportunity that followed was an invitation to speak at a TEDx event at TUM on July 28th, 2016. In the event, titled “The Common Extraordinary,” Guy presented our work with data mining as bioinformaticians, sharing how we’ve made the field of data science accessible to our students and how we helped popularize it through the Game of Thrones project.

More speaking engagements are already scheduled: at meetups, coffee talks and conferences where we plan to keep evangelizing data mining and tell the story of our open source adventure.

What’s next? We’re excited to continue as mentors and org admins in GSoC and to carry on teaching data science and JavaScript at the university. A recent trade media report pointed out that the “out-of-the-box” thinking demonstrated in our course may revolutionize entire industries. In fact, we are currently signing up industry collaborators to work together on data mining projects.

It’s also extremely rewarding to see how our project resonated with so many people with diverse backgrounds and interests. Friends, family members, colleagues and even strangers ask us whether we can help them use data mining to answer questions on subjects ranging from politics, science, sports and even their personal lives.

Just the other day we were approached with the idea of developing an app that would take in a set of personality traits, process them along with social network data and help in suggesting life decisions: Should I date that person? Should I really take this job? Is Baltimore the city for me?

In the near future we dream of starting our own consultancy, as we already have requests from companies that want our help with upcoming data science projects. It seems our team has found its entrepreneurial bent!

We hope enjoyed this trilogy of blog posts, that our story has inspired you and that you too will continue to adventure in open source and collaborative development. If you’re not involved with Google Summer of Code, consider joining. It’s a great way to build up your project and share it with the world. More importantly, it lets you work with amazing people with whom, as we learned, it is possible to reach the sky.

By Tatyana Goldberg, Christian Dallago, and Guy Yachdav, BioJS

Stories from Google Code-in: OpenMRS and SCoRe

Google Code-in is our annual contest that gives students age 13 to 17 experience in computer science through contributions to open source projects. This blog post is the third installment in our series reflecting on the experiences of Google Code-in 2015 grand prize winners. Be sure to check out the first and second posts in the series, too.

In this post we look at the stories of three more Google Code-in (GCI) grand prize winners. Our grand prize winners come from a pool of 980 students from 65 countries who, all told, completed 4,776 tasks for 14 open source projects.

We were lucky enough to host many of these extraordinary young coders at Google HQ for a few days this summer. Over that time, we learned more about where they came from, what they gained by participating in GCI and what they plan to do as new members of the open source community.

Google Code-in 2015 Grand Prize Winners explore the SF Bay Area in this immersive Google Street View display with fellow open source program managers Stephanie Taylor and Cat Allman who run GCI.
Our first story today is that of Břetislav Hájek from the Czech Republic, who chose to work with the OpenMRS project because he sees their work as important. OpenMRS is an open source medical record system that improves healthcare delivery in resource-constrained regions.

Břetislav got into computer science through web development, so he started by working on tasks related to HTML and CSS. This gave him confidence to take on more challenging tasks. His favorite task was creating a web application for searching through patients. While he didn’t find it hard, he learned a lot and was proud to have made something useful. Reflecting on Google Code-in, Břetislav said: “That's the thing I like about GCI. I always treat tasks as opportunities to learn something new. And the learning is more entertaining since I work on real problems.”

IRC communication proved to be an important part of Břetislav’s success. Other students were there and tried to help each other out as best they could, and there were always mentors available to help guide them. He enjoyed the friendly environment. The community motivated him to work harder and try new things. In the end, Břetislav was glad to have participated and is motivated to continue his work.

Next we have Vicente Bermudez from Uruguay who discovered Google Code-in through a story in the local news celebrating a Uruguayan grand prize winner from a previous year. Like Břetislav, Vicente chose to work on the OpenMRS project because the cause spoke to him.

He got into programming through his love of video games and his desire to create his own. He hadn’t heard about programming before but initial research piqued his interest. Following his curiosity, he learned Java and expanded his knowledge from there. Conveniently, much of OpenMRS is built with Java!

The task-based structure worked well for Vicente. He was unsure of some tasks, recognizing that he didn’t know much about what they required. For instance, he hesitated to take on one that involved creating a Windows Phone app because he had never created a mobile app. But he persisted and, five days later, he had completed it and learned a lot about mobile development.

It surprised Vicente how much he learned in such a short time span. He had this to say: “During the contest I gained knowledge in a variety of fields such as programming, testing, video editing, and graphic design. The mentors encouraged us to think about quality instead of quantity, and I learned a lot from that.”

Vicente loved his Google Code-in experience and plans to continue contributing to open source projects, especially OpenMRS.

The last student story we’ll share today is that of Anesu Mafuvadze, a student from the US who worked with the Sustainable Computing Research Group (SCoRe). His introduction to computer science came through robotics in one of his high school classes which used a language similar to C++.

Anesu was thrilled by the experience of bringing the robots to life with code. He described his introduction this way: “The more I programmed the more captivated I became; I loved how easily I could convert my wildest ideas into fully functioning programs; I loved the thrill of working in an environment that demands minute precision; above all, I loved creating programs that other people found useful.”

Online documentation and YouTube tutorials fueled Anesu’s education for several years as he picked up multiple languages and began participating in programming contests. But he knew something was missing, Anesu lacked real world coding experience and had never collaborated with others. As such, he didn’t pay much attention to the readability of his code, wasn’t aware of version control, didn’t write extensive tests and had never built something for the common good.

Enter Google Code-in. Working with mentors helped Anesu deliver quality and building open source software required him to learn collaboration tools and value readability. The contest also gave him an opportunity to build on skills that he hadn’t developed, such as web development. Anesu says the experience made him a better programmer and that the introduction to open source has motivated him to use his skills on projects that benefit society.

Thank you to Břetislav, Vicente and Anesu for their hard work contributing to open source projects and for sharing their stories with us. We have one more blog post coming with more student stories so stay tuned!

By Josh Simmons, Open Source Programs Office

Opening up Science Journal

Science Journal is an app that turns your Android phone into a mobile science tool, allowing you to use the sensors in your phone to explore the world around you. The Making & Science team launched Science Journal a few months ago at Bay Area Maker Faire 2016 and have been excited to see different projects people have done with it all over the world!

Today we are happy to announce that we are releasing Science Journal 1.1 on the Google Play Store and also publishing the core source for the app. Open source software and hardware has been hugely beneficial to the science education ecosystem. By open sourcing, we’ll be able to improve the app faster and also to provide the community with an example of a modern Android app built with Material Design principles.

One important feature in Science Journal is the ability to connect to external devices over Bluetooth LE. We have open source firmware which runs on several Arduino microcontrollers already. In the near future, we will provide alternate ways to get your sensor data into Science Journal: stay tuned (or follow along with our commits)!

We believe that anyone can be a scientist anywhere. Science doesn’t just happen in the classroom or lab. Tools like Science Journal let you see how the world works with just your phone and now you can explore how Science Journal itself works, too. Give it a try and let us know what you think!

By Justin Koh, Software Engineer

A Google Santa Tracker update from Santa’s Elves


Originally posted on the Google Developers Blog

By Sam Thorogood, Developer Programs Engineer


Today, we're announcing that the open source version of Google's Santa Tracker has been updated with the Android and web experiences that ran in December 2015. We extended, enhanced and upgraded our code, and you can see how we used our developer products - including Firebase and Polymer - to build a fun, educational and engaging experience.


To get started, you can check out the code on GitHub at google/santa-tracker-weband google/santa-tracker-android. Both repositories include instructions so you can build your own version.
Santa Tracker isn’t just about watching Santa’s progress as he delivers presents on December 24. Visitors can also have fun with the winter-inspired experiences, games and educational content by exploring Santa's Village while Santa prepares for his big journey throughout the holidays.
Below is a summary of what we’ve released as open source.

Android app

  • The Santa Tracker Android app is a single APK, supporting all devices, such as phones, tablets and TVs, running Ice Cream Sandwich (4.0) and up. The source code for the app can be found here.
  • Santa Tracker leverages Firebase features, including Remote Config API, App Invites to invite your friends to play along, and Firebase Analytics to help our elves better understand users of the app.
  • Santa’s Village is a launcher for videos, games and the tracker that responds well to multiple devices such as phones and tablets. There's even an alternative launcher based on the Leanback user interface for Android TVs.


  • Games on Santa Tracker Android are built using many technologies such as JBox2D (gumball game), Android view hierarchy (memory match game) and OpenGL with special rendering engine (jetpack game). We've also included a holiday-themed variation of Pie Noon, a fun game that works on Android TV, your phone, and inside Google Cardboard's VR.

Android Wear



  • The custom watch faces on Android Wear provide a personalized touch. Having Santa or one of his friendly elves tell the time brings a smile to all. Building custom watch faces is a lot of fun but providing a performant, battery friendly watch face requires certain considerations. The watch face source code can be found here.
  • Santa Tracker uses notifications to let users know when Santa has started his journey. The notifications are further enhanced to provide a great experience on wearables using custom backgrounds and actions that deep link into the app.

On the web



  • Santa Tracker is mobile-first: this year's experience was built for the mobile web, including an amazing brand new, interactive - yet fully responsive, village: with three breakpoints, touch gesture support and support for the Web App Manifest.
  • To help us develop Santa at scale, we've upgraded to Polymer 1.0+. Santa Tracker's use of Polymer demonstrates how easy it is to package code into reusable components. Every housein Santa's Village is a custom element, only loaded when needed, minimizing the startup cost of Santa Tracker.


  • Many of the amazing new games (like Present Bounce) were built with the latest JavaScript standards (ES6) and are compiled to support older browsers via the Google Closure Compiler.
  • Santa Tracker's interactive and fun experience is enhanced using the Web Animations API, a standardized JavaScript APIfor unifying animated content.
  • We simplified the Chromecast support this year, focusing on a great screensaver that would countdown to the big event on December 24th - and occasionally autoplay some of the great video content from around Santa's Village.
We hope that this update inspires you to make your own magical experiences based on all the interesting and exciting components that came together to make Santa Tracker!