Tag Archives: student programs

Google Summer of Code 2018 statistics part 2

Now that Google Summer of Code (GSoC) 2018 is underway and students are wrapping up their first month of coding, we wanted to bring you some more statistics on the 2018 program. Lots and lots of numbers follow:

Organizations

Students are working with 206 organizations (the most we’ve ever had!), 41 of which are participating in GSoC for the first time.

Student Registrations

25,873 students from 147 countries registered for the program, which is a 25.3% increase over the previous high for the program back in 2017. There are 9 new countries with students registering for the first time: Angola, Bahamas, Burundi, Cape Verde, Chad, Equatorial Guinea, Kosovo, Maldives, and Mali.

Project Proposals

5,199 students from 101 countries submitted a total of 7,209 project proposals. 70.5% of the students submitted 1 proposal, 18.1% submitted 2 proposals, and 11.4% submitted 3 proposals (the max allowed).

Gender Breakdown

11.63% of accepted students are women, a 0.25% increase from last year. We are always working toward making our programs and open source more inclusive, and we collaborate with organizations and communities that help us improve every year.

Universities

The 1,268 students accepted into the GSoC 2018 program hailed from 613 universities, of which 216 have students participating for the first time in GSoC.

Schools with the most accepted students for GSoC 2018:
University Country Students
Indian Institute of Technology, Roorkee India 35
International Institute of Information Technology - Hyderabad India 32
Birla Institute of Technology and Science, Pilani (BITS Pilani) India 23
Indian Institute of Technology, Kharagpur India 22
Birla Institute of Technology and Science Pilani, Goa campus / BITS-Pilani - K.K.Birla Goa Campus India 18
Indian Institute of Technology, Kanpur India 16
University of Moratuwa Sri Lanka 16
Indian Institute of Technology, Patna India 14
Amrita University India 13
Indian Institute of Technology, Mandi India 11
Indraprastha Institute of Information and Technology, New Dehli India 11
University of Buea Cameroon 11
BITS Pilani, Hyderabad Campus India 11
Another post with stats on our awesome GSoC mentors will be coming soon!

By Stephanie Taylor, Google Open Source

Google Summer of Code 2018 statistics part 1

Since 2005, Google Summer of Code (GSoC) has been bringing new developers into the open source community every year. This year we accepted 1,264 students from 62 countries into the 2018 GSoC program to work with a record 206 open source organizations this summer.

Students are currently participating in the Community Bonding phase of the program where they become familiar with the open source projects they will be working with. They also spend time learning the codebase and the community’s best practices so they can start their 12 week coding projects on May 14th.

Each year we like to share program statistics about the GSoC program and the accepted students and mentors involved in the program. Here are a few stats:
  • 88.2% of the accepted students are participating in their first GSoC
  • 74.4% of the students are first time applicants

Degrees

  • 76.18% of accepted students are undergraduates, 17.5% are masters students, and 6.3% are getting their PhDs.
  • 73% are Computer Science majors, 4.2% are mathematics majors, 17% are other engineering majors (electrical, mechanical, aerospace, etc.)
  • We have students in a variety of majors including neuroscience, linguistics, typography, and music technologies.

Countries

This year there are four students that are the first to be accepted into GSoC from their home countries of Kosovo (three students) and Senegal. A complete list of accepted students and their countries is below:
CountryStudentsCountryStudentsCountryStudents
Argentina5Hungary7Russian Federation35
Australia10India605Senegal1
Austria14Indonesia3Serbia1
Bangladesh3Ireland1Singapore8
Belarus3Israel2Slovak Republic2
Belgium3Italy24South Africa1
Brazil19Japan7South Korea2
Bulgaria2Kosovo3Spain21
Cameroon14Latvia1Sri Lanka41
Canada31Lithuania5Sweden6
China52Malaysia2Switzerland5
Croatia3Mauritius1Taiwan3
Czech Republic4Mexico4Trinidad and Tobago1
Denmark1Morocco2Turkey8
Ecuador4Nepal1Uganda1
Egypt12Netherlands6Ukraine6
Finland3Nigeria6United Kingdom28
France22Pakistan5United States104
Germany53Poland3Venezuela1
Greece16Portugal10Vietnam4
Hong Kong3Romania10Venezuela1
There were a record number of students submitting proposals for the program this year -- 5,199 students from 101 countries.

In our next GSoC statistics post we will delve deeper into the schools, gender breakdown, mentors, and registration numbers for the 2018 program.

By Stephanie Taylor, Google Open Source

Rolling out the red carpet for GSoC 2018 students!

Congratulations to our 2018 Google Summer of Code (GSoC) students and a big thank you to everyone who applied! Our 206 mentoring organizations have chosen the 1,264 students that they'll be working with during the 14th Google Summer of Code. This year’s students come from 64 different countries!

The next step for participating students is the Community Bonding period which runs from April 23rd through May 15th. During this time, students will get up to speed on the culture and code base of their new community. They’ll also get acquainted with their mentor(s) and learn more about the languages or tools they will need to complete their projects. Coding begins May 15th and will continue throughout the summer until August 14th.

To the more than 3,800 students who were not chosen this year - don’t be discouraged! Many students apply at least once to GSoC before being accepted. You can improve your odds for next time by contributing to the open source project of your choice directly; organizations are always eager for new contributors! Look around GitHub and elsewhere on the internet for a project that interests you and get started.

Happy coding, everyone!

By Stephanie Taylor, GSoC Program Lead

My first open source project and Google Code-in

This is a guest post from a mentor with coala, an open source tool for linting and fixing code in many different languages, which participated in Google Code-in 2017.

About two years ago, my friend Gyan and I built a small web app which checked whether or not a given username was available on a few popular social media websites. The idea was simple: judge availability of the username on the basis of an HTTP response. Here’s a pseudo-code example:
website_url = form_website_url(website, username)
# Eg: form_website_url('github', 'manu-chroma') returns 'github.com/manu-chroma'

if website_url_response.http_code == 404:
username available
else:
username taken
Much to our delight, it worked! Well, almost. It had a lot of bugs but we didn’t care much at the time. It was my first Python project and the first time I open sourced my work. I always look back on it as a cool idea, proud that I made it and learned a lot in the process.

But the project had been abandoned until John from coala approached me. John suggested we use it for Google Code-in because one of coala’s tasks for the students was to create accounts on a few common coding related websites. Students could use the username availability tool to find a good single username–people like their usernames to be consistent across websites–and coala could use it to verify that the accounts were created.

I had submitted a few patches to coala in the past, so this sounded good to me! The competition clashed with my vacation plans, but I wanted to get involved, so I took the opportunity to become a mentor.

Over the course of the program, students not only used the username availability tool but they also began making major improvements. We took the cue and began adding tasks specifically about the tool. Here are just a few of the things students added:
  • Regex to determine whether a given username was valid for any given website
  • More websites, bringing it to a total of 13
  • Tests (!)
The web app is online so you can check username availability too!

I had such a fun time working with students in Google Code-in, their enthusiasm and energy was amazing. Special thanks to students Andrew, Nalin, Joshua, and biscuitsnake for all the time and effort you put into the project. You did really useful work and I hope you learned from the experience!

I want to thank John for approaching me in the first place and suggesting we use and improve the project. He was an unstoppable force throughout the competition, helping both students and fellow mentors. John even helped me with code reviews to really refine the work students submitted, and help them improve based on the feedback.

Kudos to the Google Open Source team for organizing it so well and lowering the barriers of entry to open source for high school students around the world.

By Manvendra Singh, coala mentor

A galactic experience in Google Code-in 2017

This is a guest post from Liquid Galaxy, one of the organizations that participated in both Google Summer of Code and Google Code-in 2017.

Liquid Galaxy, an open source project that powers panoramic views spanning multiple computers and displays, has been participating in Google Summer of Code (GSoC) since 2011. However, we never applied to participate in Google Code-in (GCI) because we heard stories from other projects about long hours and interrupted holidays in service of mentoring eager young students.

That changed in 2017! And, while the stories are true, we have to say it’s also an amazing and worthwhile experience.

It was hard for our small project to recruit the number of mentors needed. Thankfully, our GSoC mentors stepped up, as did many former GSoC students. We even had forward thinking students who were interested in participating in GSoC 2018 volunteer to mentor! While it was challenging, our team of mentors helped us have a nearly flawless GCI experience.

The Google Open Source team only had to nudge us once, when a student’s task had been pending review for more than 36 hours. We’re pretty happy with that considering we had nearly 500 tasks completed over the 50 days of the contest.

More important than our experience, though, is the student experience. We learned a lot, seeing how they chose tasks, the attention to detail some of them put into their work, and the level of interaction between the students and the mentors. Considering these were young students, ranging in age from 13 to 17, they far exceeded our expectations.

There was one piece of advice the Google Open Source team gave us that we didn’t understand as GCI newbies: have a large number of tasks ready from day one, and leave some unpublished until the halfway point. That ended up being key, it ensured we had enough tasks for the initial flood of students and some in reserve for the second flood around the holidays. Our team of mentors worked hard from the moment we were accepted into GCI to the moment we began to create over 150 tasks in five different categories. Students seemed to think we did a good job and told us they enjoyed the variety of tasks and level of difficulty.

We’re glad we finally participated in Google Code-in and we’ll definitely be applying next time! You can learn more about the project and the students who worked with us on our blog.

By Andreu Ibáñez, Liquid Galaxy org admin

Celebrating open source mentorship with Joomla

Let’s marvel for a moment: as Google Summer of Code (GSoC) 2018 begins, 46 of the participating open source organizations are celebrating a decade or more with the program. There are 586 collective years of mentorship between them, and that’s just through GSoC.

Free and open source software projects have been doing outreach and community building since the beginning. The free software movement has been around for 35 years, and open source has been around for 20.

Bringing new people into open source is necessary for project health and sustainability, but it’s not easy. It takes time and effort to prepare onboarding materials and mentor people. It takes personal dedication, a welcoming culture, and a commitment to institutional knowledge. Sustained volunteerism at this scale is worthy of celebration!

Joomla is one open source project that exemplifies this and Puneet Kala is one such person. Joomla, a web content management system (CMS) that was first released in 2005, is now on their 11th year of GSoC. More than 80 students have participated over the years. Most students are still actively contributing, and many have gone on to become mentors.

Puneet, now Joomla’s GSoC team lead, began with the project as a student five years ago. He sent along this article celebrating their 10th anniversary, which includes links to interviews with other students who have become mentors, and this panel discussion from Joomla World Conference.

It’s always great to hear from the people who have participated in Google Summer of Code. The stories are inspiring and educational. They know a thing or two about building open source communities, so we share what they have to say: you can find guest posts here.

We’d like to extend our heartfelt thanks to the 608 open source organizations and 12,000 organization administrators and mentors who have been a part of GSoC so far. We’d also like to applaud the 46 organizations that have 10+ years under their belts!

Your tireless investment in the future of people and open source is a testament to generosity.

By Josh Simmons, Google Open Source

Coding your way into cinemas

This is a guest post from apertus° and TimVideos.us, open source organizations that participated in Google Summer of Code last year and are back for 2018!

The apertus° AXIOM project is bringing the world’s first open hardware/free software digital motion picture production camera to life. The project has a rich history, exercises a steadfast adherence to the open source ethos, and all aspects of development have always revolved around supporting and utilising free technologies. The challenge of building a sophisticated digital cinema camera was perfect for Google Summer of Code 2017. But let’s start at the beginning: why did the team behind the project embark on their journey?

Modern Cinematography

For over a century film was dominated by analog cameras and celluloid, but in the late 2000’s things changed radically with the adoption of digital projection in cinemas. It was a natural next step, then, for filmmakers to shoot and produce films digitally. Certain applications in science, large format photography and fine arts still hold onto 35mm film processing, but the reduction in costs and improved workflows associated with digital image capture have revolutionised how we create and consume visual content.

The DSLR revolution

Photo by Matthew Pearce
licensed CC SA 2.0.
Filmmaking has long been considered an expensive discipline accessible only to a select few. This all changed with the adoption of movie recording capabilities in digital single-lens reflex (DSLR) cameras. For multinational corporations this “new” feature was a relatively straightforward addition to existing models as most compact digital photo cameras could already record video clips. This was the first time that a large diameter image sensor, a vital component for creating the typical shallow depth of field we consider cinematic, appeared in consumer cameras. In recent times, user groups have stepped up to contribute to the DSLR revolution first-hand, including groups like the Magic Lantern community.

Magic Lantern

Photo by Dave Dugdale licensed CC BY-SA 2.0.
Magic Lantern is a free and open source software add-on that runs from a camera’s SD/CF card. It adds a host of new features to Canon’s DSLRs that weren't included from the factory, such as allowing users to record high-dynamic range (HDR) video or 14-bit uncompressed RAW video. It’s a community project and many filmmakers simply wouldn’t have bought a Canon camera if it weren’t for the features that Magic Lantern pioneered. Because installing Magic Lantern doesn’t replace the stock Canon firmware or modify the read-only memory (ROM) but runs alongside it, it is both easy to remove and carries little risk. Originally developed for filmmaking, Magic Lantern’s feature base has expanded to include tools useful for still photography as well.

Starting the revolution for real 

Of course, Magic Lantern has been held back by the underlying proprietary hardware routines on existing camera models. So, in 2014 a team of developers and filmmakers around the apertus° project joined forces with the Magic Lantern team to lay the foundation for a totally independent, open hardware, free software, digital cinema camera. They ran a successful crowdfunding campaign for initial development, and they completed hardware development of the first developer kits in 2016. Unlike traditional cameras, the AXIOM is designed to be completely modular, and so continuously evolve, thereby preventing it from ever becoming obsolete. How the camera evolves is determined by its user community, with its design files and source code freely available and users encouraged to duplicate, modify and redistribute anything and everything related to the camera.

While the camera is primarily for use in motion picture production, there are many suitable applications where AXIOM can be useful. Individuals in science, astronomy, medicine, aerial mapping, industrial automation, and those who record events or talks at conferences have expressed interest in the camera. A modular and open source device for digital imaging allows users to build a system that meets their unique requirements. One such company for instance, Mavrx Inc, who use aerial imagery to provide actionable insight for the agriculture industry, used the camera because it enabled them to not only process the data more efficiently than comparable camera equivalents, but also to re-configure its form factor so that it could be installed alongside existing equipment configurations.

Google Summer of Code 2017

Continuing their journey, apertus° participated in Google Summer of Code for the first time in 2017. They received about 30 applications from interested students, from which they needed to select three. Projects ranged from field programmable gate array (FPGA) centered video applications to creating Linux kernel drivers for specific camera hardware. Similarly TimVideos.us, an open hardware project for live event streaming and conference recording, is working on FPGA projects around video interfaces and processing.

After some preliminary work, the students came to grips with the camera’s operating processes and all three dove in enthusiastically. One student failed the first evaluation and another failed the second, but one student successfully completed their work.

That student, Vlad Niculescu, worked on defining control loops for a voltage controller using VHSIC Hardware Description Language (VHDL) for a potential future AXIOM Beta Power Board, an FPGA-driven smart switching regulator for increasing the power efficiency and improving flexibility around voltage regulation.
Left: The printed circuit board (PCB) (printed circuit board) for testing the switching regulator FPGA logic. Right: After final improvements the fluctuation ripple in the voltages was reduced to around 30mV at 2V target voltage.
Vlad had this to say about his experience:

“The knowledge I acquired during my work with this project and apertus° was very satisfying. Besides the electrical skills gained I also managed to obtain other, important universal skills. One of the things I learned was that the key to solving complex problems can often be found by dividing them into small blocks so that the greater whole can be easily observed by others. Writing better code and managing the stages of building a complex project have become lessons that will no doubt become valuable in the future. I will always be grateful to my mentor as he had the patience to explain everything carefully and teach me new things step by step, and also to apertus° and Google’s Summer of Code program, without which I may not have gained the experience of working on a project like this one.”

We are grateful for Vlad’s work and congratulate him for successfully completing the program. If you find open hardware and video production interesting, we encourage you to reach out and join the community–both apertus° and TimVideos.us are back for Google Summer of Code 2018.

By Sebastian Pichelhofer, apertus°, and Tim 'mithro' Ansell, TimVideos.us

Student applications open for Google Summer of Code 2018

Originally posted by Josh Simmons from the Google Open Source Team on the Google Open Source Blog.

Ready, set, go! Today we begin accepting applications from university students who want to participate in Google Summer of Code (GSoC) 2018. Are you a university student? Want to use your software development skills for good? Read on.

Now entering its 14th year, GSoC gives students from around the globe an opportunity to learn the ins and outs of open source software development while working from home. Students receive a stipend for successful contribution to allow them to focus on their project for the duration of the program. A passionate community of mentors help students navigate technical challenges and monitor their progress along the way.

Past participants say the real-world experience that GSoC provides sharpened their technical skills, boosted their confidence, expanded their professional network and enhanced their resume.

Interested students can submit proposals on the program site between now and Tuesday, March 27, 2018 at 16:00 UTC.

While many students began preparing in February when we announced the 212 participating open source organizations, it's not too late to start! The first step is to browse the list of organizations and look for project ideas that appeal to you. Next, reach out to the organization to introduce yourself and determine if your skills and interests are a good fit. Since spots are limited, we recommend writing a strong proposal and submitting a draft early so you can get feedback from the organization and increase the odds of being selected.

You can learn more about how to prepare in the video below and in the Student Guide.

You can find more information on our website, including a full timeline of important dates. We also highly recommend perusing the FAQ and Program Rules, as well as joining the discussion mailing list.

Remember to submit your proposals early as you only have until Tuesday, March 27 at 16:00 UTC. Good luck to all who apply!

Student applications open for Google Summer of Code 2018

Ready, set, go! Today we begin accepting applications from university students who want to participate in Google Summer of Code (GSoC) 2018. Are you a university student? Want to use your software development skills for good? Read on.

Now entering its 14th year, GSoC gives students from around the globe an opportunity to learn the ins and outs of open source software development while working from home. Students receive a stipend for successful contribution to allow them to focus on their project for the duration of the program. A passionate community of mentors help students navigate technical challenges and monitor their progress along the way.

Past participants say the real-world experience that GSoC provides sharpened their technical skills, boosted their confidence, expanded their professional network and enhanced their resume.

Interested students can submit proposals on the program site between now and Tuesday, March 27, 2018 at 16:00 UTC.

While many students began preparing in February when we announced the 212 participating open source organizations, it’s not too late to start! The first step is to browse the list of organizations and look for project ideas that appeal to you. Next, reach out to the organization to introduce yourself and determine if your skills and interests are a good fit. Since spots are limited, we recommend writing a strong proposal and submitting a draft early so you can get feedback from the organization and increase the odds of being selected.

You can learn more about how to prepare in the video below and in the Student Guide.


You can find more information on our website, including a full timeline of important dates. We also highly recommend perusing the FAQ and Program Rules, as well as joining the discussion mailing list.

Remember to submit your proposals early as you only have until Tuesday, March 27 at 16:00 UTC. Good luck to all who apply!

By Josh Simmons, Google Open Source

A year full of new open source at Catrobat

This is a guest post from Catrobat, an open source organization that participated in both Google Summer of Code and Google Code-in last year.


Catrobat was selected to participate in Google Summer of Code (GSoC) for the sixth time and Google Code-in (GCI) for the first time in 2017, which helped us reach new students and keep our mentors busy.

We tried something new in 2017 by steering GSoC students toward refactoring and performance, rather than developing new features. Implementing a crash tracking and analysis system, modularizing existing code, and rewriting our tests resulted in more lines of code being deleted than added – and we’re really happy about that!

This improved the quality and stability of oursoftware and both students and mentors could see progress immediately. The immediacy of the results kept students engaged - some weeks it almost seemed as if they had been working 24/7 (they weren’t :)! And we’re happy to say that most are still motivated to contribute after GSoC, and now they’re adding code more often than they are deleting it.

Although new features are exciting, we found that working on existing code offers a smooth entry for GSoC students. This approach helped students assimilate into the community and project more quickly, as well as receive rapid rewards for their work.

The quality improvements made by GSoC students also made things smoother for the younger, often less experienced GCI students. Several dozen students completed hundreds of tasks, spreading the love of open source and coding in their communities. It was our first time working with so many young contributors and it was fun!

We faced challenges in the beginning – such as language barriers and students’ uncertainty in their work – and quickly learned how to adapt our processes to meet the needs (and extraordinary motivation) of these new young contributors. We introduced them to open source through our project’s app Pocket Code, allowing them to program games and apps with a visual mobile coding framework and then share them under an open license. Students had a lot of fun starting this way and mentors enjoyed reviewing so many colorful and exciting games.

Students even asked how they could improve on quality work that we had already accepted, if they could do more work on it, and if they could share their projects with their friends. This was a great first experience of GCI for our organization and, as one of our mentors mentioned in the final evaluation phase, we would totally be up for doing it again!

By Matthias Mueller, Catrobat Org Admin