Tag Archives: KDD

Google at KDD’17: Graph Mining and Beyond



The 23rd ACM conference on Knowledge Discovery and Data Mining (KDD’17), a main venue for academic and industry research in data science, information retrieval, data mining and machine learning, was held last week in Halifax, Canada. Google has historically been an active participant in KDD, and this year was no exception, with Googlers’ contributing numerous papers and participating in workshops.

In addition to our overall participation, we are happy to congratulate fellow Googler Bryan Perozzi for receiving the SIGKDD 2017 Doctoral Dissertation Award, which serves to recognize excellent research by doctoral candidates in the field of data mining and knowledge discovery. This award was given in recognition of his thesis on the topic of machine learning on graphs performed at Stony Brook University, under the advisorship of Steven Skiena. Part of his thesis was developed during his internships at Google. The thesis dealt with using a restricted set of local graph primitives (such as ego-networks and truncated random walks) to effectively exploit the information around each vertex for classification, clustering, and anomaly detection. Most notably, the work introduced the random-walk paradigm for graph embedding with neural networks in DeepWalk.

DeepWalk: Online Learning of Social Representations, originally presented at KDD'14, outlines a method for using a series of local information obtained from truncated random walks to learn latent representations of nodes in a graph (e.g. users in a social network). The core idea was to treat each segment of a random walk as a sentence “in the language of the graph.” These segments could then be used as input for neural network models to learn representations of the graph’s nodes, using sequence modeling methods like word2vec (which had just been developed at the time). This research continues at Google, most recently with Learning Edge Representations via Low-Rank Asymmetric Projections.

The full list of Google contributions at KDD’17 is listed below (Googlers highlighted in blue).

Organizing Committee
Panel Chair: Andrew Tomkins
Research Track Program Chair: Ravi Kumar
Applied Data Science Track Program Chair: Roberto J. Bayardo
Research Track Program Committee: Sergei Vassilvitskii, Alex Beutel, Abhimanyu Das, Nan Du, Alessandro Epasto, Alex Fabrikant, Silvio Lattanzi, Kristen Lefevre, Bryan Perozzi, Karthik Raman, Steffen Rendle, Xiao Yu
Applied Data Science Program Track Committee: Edith Cohen, Ariel Fuxman, D. Sculley, Isabelle Stanton, Martin Zinkevich, Amr Ahmed, Azin Ashkan, Michael Bendersky, James Cook, Nan Du, Balaji Gopalan, Samuel Huston, Konstantinos Kollias, James Kunz, Liang Tang, Morteza Zadimoghaddam

Awards
Doctoral Dissertation Award: Bryan Perozzi, for Local Modeling of Attributed Graphs: Algorithms and Applications.

Doctoral Dissertation Runner-up Award: Alex Beutel, for User Behavior Modeling with Large-Scale Graph Analysis.

Papers
Ego-Splitting Framework: from Non-Overlapping to Overlapping Clusters
Alessandro Epasto, Silvio Lattanzi, Renato Paes Leme

HyperLogLog Hyperextended: Sketches for Concave Sublinear Frequency Statistics
Edith Cohen

Google Vizier: A Service for Black-Box Optimization
Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley

Quick Access: Building a Smart Experience for Google Drive
Sandeep Tata, Alexandrin Popescul, Marc Najork, Mike Colagrosso, Julian Gibbons, Alan Green, Alexandre Mah, Michael Smith, Divanshu Garg, Cayden Meyer, Reuben KanPapers

TFX: A TensorFlow­ Based Production ­Scale Machine Learning Platform
Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens MewaldAkshay Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy, Steven Whang, Martin Wicke Jarek Wilkiewicz, Xin Zhang, Martin Zinkevich

Construction of Directed 2K Graphs
Balint Tillman, Athina Markopoulou, Carter T. Butts, Minas Gjoka

A Practical Algorithm for Solving the Incoherence Problem of Topic Models In Industrial Applications
Amr Ahmed, James Long, Dan Silva, Yuan Wang

Train and Distribute: Managing Simplicity vs. Flexibility in High-­Level Machine Learning Frameworks
Heng-Tze Cheng, Lichan Hong, Mustafa Ispir, Clemens Mewald, Zakaria Haque, Illia Polosukhin, Georgios Roumpos, D Sculley, Jamie Smith, David Soergel, Yuan Tang, Philip Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie

Learning to Count Mosquitoes for the Sterile Insect Technique
Yaniv Ovadia, Yoni Halpern, Dilip Krishnan, Josh Livni, Daniel Newburger, Ryan Poplin, Tiantian Zha, D. Sculley

Workshops
13th International Workshop on Mining and Learning with Graphs
Keynote Speaker: Vahab Mirrokni - Distributed Graph Mining: Theory and Practice
Contributed talks include:
HARP: Hierarchical Representation Learning for Networks
Haochen Chen, Bryan Perozzi, Yifan Hu and Steven Skiena

Fairness, Accountability, and Transparency in Machine Learning
Contributed talks include:
Fair Clustering Through Fairlets
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
Alex Beutel, Jilin Chen, Zhe Zhao, Ed H. Chi

Tutorial
TensorFlow
Rajat Monga, Martin Wicke, Daniel ‘Wolff’ Dobson, Joshua Gordon

KDD 2015 Best Research Paper Award: “Algorithms for Public-Private Social Networks”



The 21st ACM conference on Knowledge Discovery and Data Mining (KDD’15), a main venue for academic and industry research in data management, information retrieval, data mining and machine learning, was held last week in Sydney, Australia. In the past several years, Google has been actively participating in KDD, with several Googlers presenting work at the conference in the research and industrial tracks. This year Googlers presented 12 papers at KDD (listed below, with Googlers in blue), all of which are freely available at the ACM Digital Library.

One of these papers, Efficient Algorithms for Public-Private Social Networks, co-authored by Googlers Ravi Kumar, Silvio Lattanzi, Vahab Mirrokni, former Googler intern Alessandro Epasto and research visitor Flavio Chierichetti, was awarded Best Research Paper. The inspiration for this paper comes from studying social networks and the importance of addressing privacy issues in analyzing such networks.

Privacy issues dictate the way information is shared among the members of the social network. In the simplest case, a user can mark some of her friends as private; this would make the connections (edges) between this user and these friends visible only to the user. In a different instantiation of privacy, a user can be a member of a private group; in this case, all the edges among the group members are to be considered private. Thus, each user in the social network has her own view of the link structure of the network. These privacy issues also influence the way in which the network itself can be viewed and processed by algorithms. For example, one cannot use the list of private friends of user X for suggesting potential friends or public news items to another user on the network, but one can use this list for the purpose of suggesting friends for user X.

As a result, enforcing these privacy guarantees translates to solving a different algorithmic problem for each user in the network, and for this reason, developing algorithms that process these social graphs and respect these privacy guarantees can become computationally expensive. In a recent study, Dey et al. crawled a snapshot of 1.4 million New York City Facebook users and reported that 52.6% of them hid their friends list. As more users make a larger portion of their social neighborhoods private, these computational issues become more important.

Motivated by the above, this paper introduces the public-private model of graphs, where each user (node) in the public graph has an associated private graph. In this model, the public graph is visible to everyone, and the private graph at each node is visible only to each specific user. Thus, any given user sees their graph as a union of their private graph and the public graph.

From algorithmic point of view, the paper explores two powerful computational paradigms for efficiently studying large graphs, namely, sketching and sampling, and focuses on some key problems in social networks such as similarity ranking, and clustering. In the sketching model, the paper shows how to efficiently approximate the neighborhood function, which in turn can be used to approximate various notions of centrality scores for each node - such centrality scores like the PageRank score have important applications in ranking and recommender systems. In the sampling model, the paper focuses on all-pair shortest path distances, node similarities, and correlation clustering, and develop algorithms that computes these notions on a given public-private graph and at the same time. The paper also illustrates the effectiveness of this model and the computational efficiency of the algorithms by performing experiments on real-world social networks.

The public-private model is an abstraction that can be used to develop efficient social network algorithms. This work leaves a number of open interesting research directions such as: obtaining efficient algorithms for the densest subgraph/community detection problems, influence maximization, computing other pairwise similarity scores, and most importantly, recommendation systems.

KDD’15 Papers, co-authored by Googlers:

Efficient Algorithms for Public-Private Social Networks (Best Paper Award)
Flavio Chierichetti, Alessandro Epasto, Ravi Kumar, Silvio Lattanzi, Vahab Mirrokni

Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC
Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, Max Welling

TimeMachine: Timeline Generation for Knowledge-Base Entities
Tim Althoff, Xin Luna Dong, Kevin Murphy, Safa Alai, Van Dang, Wei Zhang

Algorithmic Cartography: Placing Points of Interest and Ads on Maps
Mohammad Mahdian, Okke Schrijvers, Sergei Vassilvitskii

Stream Sampling for Frequency Cap Statistics
Edith Cohen

Dirichlet-Hawkes Processes with Applications to Clustering Continuous-Time Document Streams
Nan Du, Mehrdad Farajtabar, Amr Ahmed, Alexander J.Smola, Le Song

Adaptation Algorithm and Theory Based on Generalized Discrepancy
Corinna Cortes, Mehryar Mohri, Andrés Muñoz Medina (now at Google)

Estimating Local Intrinsic Dimensionality
Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E. Houle Ken-ichi Kawarabayashi, Michael Nett

Unified and Contrasting Cuts in Multiple Graphs: Application to Medical Imaging Segmentation
Chia-Tung Kuo, Xiang Wang, Peter Walker, Owen Carmichael, Jieping Ye, Ian Davidson

Going In-depth: Finding Longform on the Web
Virginia Smith, Miriam Connor, Isabelle Stanton

Annotating needles in the haystack without looking: Product information extraction from emails
Weinan Zhang, Amr Ahmed, Jie Yang, Vanja Josifovski, Alexander Smola

Focusing on the Long-term: It's Good for Users and Business
Diane Tang, Henning Hohnhold, Deirdre O'Brien