Tag Archives: ACM

Google at KDD’17: Graph Mining and Beyond

The 23rd ACM conference on Knowledge Discovery and Data Mining (KDD’17), a main venue for academic and industry research in data science, information retrieval, data mining and machine learning, was held last week in Halifax, Canada. Google has historically been an active participant in KDD, and this year was no exception, with Googlers’ contributing numerous papers and participating in workshops.

In addition to our overall participation, we are happy to congratulate fellow Googler Bryan Perozzi for receiving the SIGKDD 2017 Doctoral Dissertation Award, which serves to recognize excellent research by doctoral candidates in the field of data mining and knowledge discovery. This award was given in recognition of his thesis on the topic of machine learning on graphs performed at Stony Brook University, under the advisorship of Steven Skiena. Part of his thesis was developed during his internships at Google. The thesis dealt with using a restricted set of local graph primitives (such as ego-networks and truncated random walks) to effectively exploit the information around each vertex for classification, clustering, and anomaly detection. Most notably, the work introduced the random-walk paradigm for graph embedding with neural networks in DeepWalk.

DeepWalk: Online Learning of Social Representations, originally presented at KDD'14, outlines a method for using a series of local information obtained from truncated random walks to learn latent representations of nodes in a graph (e.g. users in a social network). The core idea was to treat each segment of a random walk as a sentence “in the language of the graph.” These segments could then be used as input for neural network models to learn representations of the graph’s nodes, using sequence modeling methods like word2vec (which had just been developed at the time). This research continues at Google, most recently with Learning Edge Representations via Low-Rank Asymmetric Projections.

The full list of Google contributions at KDD’17 is listed below (Googlers highlighted in blue).

Organizing Committee
Panel Chair: Andrew Tomkins
Research Track Program Chair: Ravi Kumar
Applied Data Science Track Program Chair: Roberto J. Bayardo
Research Track Program Committee: Sergei Vassilvitskii, Alex Beutel, Abhimanyu Das, Nan Du, Alessandro Epasto, Alex Fabrikant, Silvio Lattanzi, Kristen Lefevre, Bryan Perozzi, Karthik Raman, Steffen Rendle, Xiao Yu
Applied Data Science Program Track Committee: Edith Cohen, Ariel Fuxman, D. Sculley, Isabelle Stanton, Martin Zinkevich, Amr Ahmed, Azin Ashkan, Michael Bendersky, James Cook, Nan Du, Balaji Gopalan, Samuel Huston, Konstantinos Kollias, James Kunz, Liang Tang, Morteza Zadimoghaddam

Doctoral Dissertation Award: Bryan Perozzi, for Local Modeling of Attributed Graphs: Algorithms and Applications.

Doctoral Dissertation Runner-up Award: Alex Beutel, for User Behavior Modeling with Large-Scale Graph Analysis.

Ego-Splitting Framework: from Non-Overlapping to Overlapping Clusters
Alessandro Epasto, Silvio Lattanzi, Renato Paes Leme

HyperLogLog Hyperextended: Sketches for Concave Sublinear Frequency Statistics
Edith Cohen

Google Vizier: A Service for Black-Box Optimization
Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley

Quick Access: Building a Smart Experience for Google Drive
Sandeep Tata, Alexandrin Popescul, Marc Najork, Mike Colagrosso, Julian Gibbons, Alan Green, Alexandre Mah, Michael Smith, Divanshu Garg, Cayden Meyer, Reuben KanPapers

TFX: A TensorFlow­ Based Production ­Scale Machine Learning Platform
Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens MewaldAkshay Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy, Steven Whang, Martin Wicke Jarek Wilkiewicz, Xin Zhang, Martin Zinkevich

Construction of Directed 2K Graphs
Balint Tillman, Athina Markopoulou, Carter T. Butts, Minas Gjoka

A Practical Algorithm for Solving the Incoherence Problem of Topic Models In Industrial Applications
Amr Ahmed, James Long, Dan Silva, Yuan Wang

Train and Distribute: Managing Simplicity vs. Flexibility in High-­Level Machine Learning Frameworks
Heng-Tze Cheng, Lichan Hong, Mustafa Ispir, Clemens Mewald, Zakaria Haque, Illia Polosukhin, Georgios Roumpos, D Sculley, Jamie Smith, David Soergel, Yuan Tang, Philip Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie

Learning to Count Mosquitoes for the Sterile Insect Technique
Yaniv Ovadia, Yoni Halpern, Dilip Krishnan, Josh Livni, Daniel Newburger, Ryan Poplin, Tiantian Zha, D. Sculley

13th International Workshop on Mining and Learning with Graphs
Keynote Speaker: Vahab Mirrokni - Distributed Graph Mining: Theory and Practice
Contributed talks include:
HARP: Hierarchical Representation Learning for Networks
Haochen Chen, Bryan Perozzi, Yifan Hu and Steven Skiena

Fairness, Accountability, and Transparency in Machine Learning
Contributed talks include:
Fair Clustering Through Fairlets
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
Alex Beutel, Jilin Chen, Zhe Zhao, Ed H. Chi

Rajat Monga, Martin Wicke, Daniel ‘Wolff’ Dobson, Joshua Gordon

And the award goes to…

Today, Google's Andrei Broder, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins, along with their coauthors, Farzin Maghoul, Raymie Stata, and Janet Wiener, have received the prestigious 2017 Seoul Test of Time Award for their classic paper “Graph Structure in the Web”. This award is given to the authors of a previous World Wide Web conference paper that has demonstrated significant scientific, technical, or social impact over the years. The first award, introduced in 2015, was given to Google founders Larry Page and Sergey Brin.

Originally presented in 2000 at the 9th WWW conference in Amsterdam, “Graph Structure in the Web” represents the seminal study of the structure of the World Wide Web. At the time of publication, it received the Best Paper Award from the WWW conference, and in the following 17 years proved to be highly influential, accumulating over 3,500 citations.

The paper made two major contributions to the study of the structure of the Internet. First, it reported the results of a very large scale experiment to confirm that the indegree of Web nodes is distributed according to a power law. To wit, the probability that a node of the Web graph has i incoming links is roughly proportional to 1/i2.1. Second, in contrast to previous research that assumed the Web to be almost fully connected, “Graph Structure in the Web” described a much more elaborate structure of the Web, which since then has been depicted with the iconic “bowtie” shape:
Original “bowtie” schematic from “Graph Structure in the Web”
The authors presented a refined model of the Web graph, and described several characteristic classes of Web pages:
  • the strongly connected core component, where each page is reachable from any other page,
  • the so-called IN and OUT clusters, which only have unidirectional paths to or from the core,
  • tendrils dangling from the two clusters, and tubes connecting the clusters while bypassing the core, and finally
  • disconnected components, which are isolated from the rest of the graph.
Whereas the core component is fully connected and each node can be reached from any other node, Broder et al. discovered that as a whole the Web is much more loosely connected than previously believed, while the probability that any two given pages can be reached from one another is just under 1/4.
Ravi Kumar, presenting the original paper in Amsterdam at WWW 2000
Curiously, the original study was done back in 1999 on two Altavista crawls having 200 million pages and 1.5 billion links. Today, Google indexes over 100 billion links merely within apps, and overall processes over 130 trillion web addresses in its web crawls.

Over the years, the power law was found to be characteristic of many other Web-related phenomena, including the structure of social networks and the distribution of search query frequencies. The description of the macroscopic structure of the Web graph proposed by Broder et al. provided a solid mathematical foundation for numerous subsequent studies on crawling and searching the Web, which profoundly influenced the architecture of modern search engines.

Hearty congratulations to all the authors on the well-deserved award!

Four years of Schema.org – Recent Progress and Looking Forward

In 2011, we announced schema.org, a new initiative from Google, Bing and Yahoo! to create and support a common vocabulary for structured data markup on web pages. Since that time, schema.org has been a resource for webmasters looking to add markup to their pages so that search engines can use that data to index content better and surface it in new experiences like rich snippets, GMail, and the Google App.

Schema.org, which provides a growing vocabulary for describing various kinds of entity in terms of properties and relationships, has become increasingly important as the Web transitions to a multi-device, mobile-oriented world. We are now seeing schema.org being used on many millions of Web sites, defining data types and properties common across applications, platforms and products, in order to enhance the user experience by delivering the most relevant information they need, when they need it.
Schema.org in Google Rich Snippets
Schema.org in Google Knowledge Graph panels
Schema.org in Recipe carousels
In Schema.org: Evolution of Structured Data on the Web, an overview article published this week on ACM, we report some key schema.org adoption metrics from a sample of 10 billion pages from a combination of the Google index and Web Data Commons. In this sample, 31.3% of pages have schema.org markup, up from 22% one year ago. Structured data markup is now a core part of the modern web.

The schema.org group at W3C is now amongst the largest active W3C communities, serving as a hub for diverse groups exploring schemas covering diverse topics such as sports, healthcare, e-commerce, food packaging, bibliography and digital archive management. Other companies, also make use of the same data to build different applications, and as new use cases arise further schemas are integrated via community discussion at W3C. Each of these topics in turn have subtle inter-relationships - for example schemas for food packaging, for flight reservations, for recipes and for restaurant menus, each have different approaches to describing food restrictions and allergies. Rather than try to force a common unified approach across these domains, schema.org's evolution is pragmatic, driven by the combination of available Web data, and the likelihood of mainstream consuming applications.

Schema.org is also finding new kinds of uses. One exciting line of work is the use of schema.org marked up pages as training corpus for machine learning. John Foley, Michael Bendersky and Vanja Josifovski used schema.org data to build a system that can learn to recognize events that may be geographically local to a particular user. Other researchers are looking at using schema.org pages with similar markup, but in different languages, to automatically create parallel corpora for machine translation.

Four years after its launch, Schema.org is entering its next phase, with more of the vocabulary development taking place in a more distributed fashion, as extensions. As schema.org adoption has grown, a number groups with more specialized vocabularies have expressed interest in extending schema.org with their terms. Examples of this include real estate, product, finance, medical and bibliographic information. A number of extensions, for topics ranging from automobiles to product details, are already underway. In such a model, schema.org itself is just the core, providing a unifying vocabulary and congregation forum as necessary.