
How fashion designer Phillip Lim stays creative with his Pixel

User safety is at the heart of everything we do at Google. Our mission to make technology helpful for everyone means building features that protect you while keeping your privacy top of mind. From Gmail’s defenses that stop more than 99.9% of spam, phishing and malware, to Google Messages’ advanced security that protects users from 2 billion suspicious messages a month and beyond, we're constantly developing and expanding protection features that help keep you safe.
We're introducing two new real-time protection features that enhance your safety, all while safeguarding your privacy: Scam Detection in Phone by Google to protect you from scams and fraud, and Google Play Protect live threat detection with real-time alerts to protect you from malware and dangerous apps.
These new security features are available first on Pixel, and are coming soon to more Android devices.
Scammers steal over $1 trillion dollars a year from people, and phone calls are their favorite way to do it. Even more alarming, scam calls are evolving, becoming increasingly more sophisticated, damaging and harder to identify. That’s why we’re using the best of Google AI to identify and stop scams before they can do harm with Scam Detection.
Real-time protection, built with your privacy in mind.
We’re now rolling out Scam Detection to English-speaking Phone by Google public beta users in the U.S. with a Pixel 6 or newer device.
To provide feedback on your experience, please click on Phone by Google App -> Menu -> Help & Feedback -> Send Feedback. We look forward to learning from this beta and your feedback, and we’ll share more about Scam Detection in the months ahead.
Google Play Protect works non-stop to protect you in real-time from malware and unsafe apps. Play Protect analyzes behavioral signals related to the use of sensitive permissions and interactions with other apps and services.
With live threat detection, if a harmful app is found, you'll now receive a real-time alert, allowing you to take immediate action to protect your device. By looking at actual activity patterns of apps, live threat detection can now find malicious apps that try extra hard to hide their behavior or lie dormant for a time before engaging in suspicious activity.
At launch, live threat detection will focus on stalkerware, code that may collect personal or sensitive data for monitoring purposes without user consent, and we will explore expanding its detection to other types of harmful apps in the future. All of this protection happens on your device in a privacy preserving way through Private Compute Core, which allows us to protect users without collecting data.
Live threat detection with real-time alerts in Google Play Protect are now available on Pixel 6+ devices and will be coming to additional phone makers in the coming months.
Pixel phones have earned a well-deserved reputation for being security-conscious. In this blog, we'll take a peek under the hood to see how Pixel mitigates common exploits on cellular basebands.
Smartphones have become an integral part of our lives, but few of us think about the complex software that powers them, especially the cellular baseband – the processor on the device responsible for handling all cellular communication (such as LTE, 4G, and 5G). Most smartphones use cellular baseband processors with tight performance constraints, making security hardening difficult. Security researchers have increasingly exploited this attack vector and routinely demonstrated the possibility of exploiting basebands used in popular smartphones.
The good news is that Pixel has been deploying security hardening mitigations in our basebands for years, and Pixel 9 represents the most hardened baseband we've shipped yet. Below, we’ll dive into why this is so important, how specifically we’ve improved security, and what this means for our users.
The Cellular Baseband
The cellular baseband within a smartphone is responsible for managing the device's connectivity to cellular networks. This function inherently involves processing external inputs, which may originate from untrusted sources. For instance, malicious actors can employ false base stations to inject fabricated or manipulated network packets. In certain protocols like IMS (IP Multimedia Subsystem), this can be executed remotely from any global location using an IMS client.
The firmware within the cellular baseband, similar to any software, is susceptible to bugs and errors. In the context of the baseband, these software vulnerabilities pose a significant concern due to the heightened exposure of this component within the device's attack surface. There is ample evidence demonstrating the exploitation of software bugs in modem basebands to achieve remote code execution, highlighting the critical risk associated with such vulnerabilities.
The State of Baseband Security
Baseband security has emerged as a prominent area of research, with demonstrations of software bug exploitation featuring in numerous security conferences. Many of these conferences now also incorporate training sessions dedicated to baseband firmware emulation, analysis, and exploitation techniques.
Recent reports by security researchers have noted that most basebands lack exploit mitigations commonly deployed elsewhere and considered best practices in software development. Mature software hardening techniques that are commonplace in the Android operating system, for example, are often absent from cellular firmwares of many popular smartphones.
There are clear indications that exploit vendors and cyber-espionage firms abuse these vulnerabilities to breach the privacy of individuals without their consent. For example, 0-day exploits in the cellular baseband are being used to deploy the Predator malware in smartphones. Additionally, exploit marketplaces explicitly list baseband exploits, often with relatively low payouts, suggesting a potential abundance of such vulnerabilities. These vulnerabilities allow attackers to gain unauthorized access to a device, execute arbitrary code, escalate privileges, or extract sensitive information.
Recognizing these industry trends, Android and Pixel have proactively updated their Vulnerability Rewards Program in recent years, placing a greater emphasis on identifying and addressing exploitable bugs in connectivity firmware.
Building a Fortress: Proactive Defenses in the Pixel Modem
In response to the rising threat of baseband security attacks, Pixel has incrementally incorporated many of the following proactive defenses over the years, with the Pixel 9 phones (Pixel 9, Pixel 9 Pro, Pixel 9 Pro XL and Pixel 9 Pro Fold) showcasing the latest features:
We also leverage a number of bug detection tools, such as address sanitizer, during our testing process. This helps us identify software bugs and patch them prior to shipping devices to our users.
The Pixel Advantage: Combining Protections for Maximum Security
Security hardening is difficult and our work is never done, but when these security measures are combined, they significantly increase Pixel 9’s resilience to baseband attacks.
Pixel's proactive approach to security demonstrates a commitment to protecting its users across the entire software stack. Hardening the cellular baseband against remote attacks is just one example of how Pixel is constantly working to stay ahead of the curve when it comes to security.
Special thanks to our colleagues who supported our cellular baseband hardening efforts: Dominik Maier, Shawn Yang, Sami Tolvanen, Pirama Arumuga Nainar, Stephen Hines, Kevin Deus, Xuan Xing, Eugene Rodionov, Stephan Somogyi, Wes Johnson, Suraj Harjani, Morgan Shen, Valery Wu, Clint Chen, Cheng-Yi He, Estefany Torres, Hungyen Weng, Jerry Hung, Sherif Hanna