Tag Archives: releases

Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source

Originally posted on the Google Research Blog

By Slav Petrov, Senior Staff Research Scientist

At Google, we spend a lot of time thinking about how computer systems can read and understand human language in order to process it in intelligent ways. Today, we are excited to share the fruits of our research with the broader community by releasing SyntaxNet, an open-source neural network framework implemented in TensorFlow that provides a foundation for Natural Language Understanding (NLU) systems. Our release includes all the code needed to train new SyntaxNet models on your own data, as well as Parsey McParseface, an English parser that we have trained for you and that you can use to analyze English text.

Parsey McParseface is built on powerful machine learning algorithms that learn to analyze the linguistic structure of language, and that can explain the functional role of each word in a given sentence. Because Parsey McParseface is the most accurate such model in the world, we hope that it will be useful to developers and researchers interested in automatic extraction of information, translation, and other core applications of NLU.

How does SyntaxNet work?

SyntaxNet is a framework for what’s known in academic circles as a syntactic parser, which is a key first component in many NLU systems. Given a sentence as input, it tags each word with a part-of-speech (POS) tag that describes the word's syntactic function, and it determines the syntactic relationships between words in the sentence, represented in the dependency parse tree. These syntactic relationships are directly related to the underlying meaning of the sentence in question. To take a very simple example, consider the following dependency tree for Alice saw Bob:


This structure encodes that Alice and Bob are nouns and saw is a verb. The main verb saw is the root of the sentence and Alice is the subject (nsubj) of saw, while Bob is its direct object (dobj). As expected, Parsey McParseface analyzes this sentence correctly, but also understands the following more complex example:


This structure again encodes the fact that Alice and Bob are the subject and object respectively of saw, in addition that Alice is modified by a relative clause with the verb reading, that saw is modified by the temporal modifier yesterday, and so on. The grammatical relationships encoded in dependency structures allow us to easily recover the answers to various questions, for example whom did Alice see?, who saw Bob?, what had Alice been reading about? or when did Alice see Bob?.

Why is Parsing So Hard For Computers to Get Right?

One of the main problems that makes parsing so challenging is that human languages show remarkable levels of ambiguity. It is not uncommon for moderate length sentences - say 20 or 30 words in length - to have hundreds, thousands, or even tens of thousands of possible syntactic structures. A natural language parser must somehow search through all of these alternatives, and find the most plausible structure given the context. As a very simple example, the sentence Alice drove down the street in her car has at least two possible dependency parses:


The first corresponds to the (correct) interpretation where Alice is driving in her car; the second corresponds to the (absurd, but possible) interpretation where the street is located in her car. The ambiguity arises because the preposition in can either modify drove or street; this example is an instance of what is called prepositional phrase attachment ambiguity.

Humans do a remarkable job of dealing with ambiguity, almost to the point where the problem is unnoticeable; the challenge is for computers to do the same. Multiple ambiguities such as these in longer sentences conspire to give a combinatorial explosion in the number of possible structures for a sentence. Usually the vast majority of these structures are wildly implausible, but are nevertheless possible and must be somehow discarded by a parser.

SyntaxNet applies neural networks to the ambiguity problem. An input sentence is processed from left to right, with dependencies between words being incrementally added as each word in the sentence is considered. At each point in processing many decisions may be possible—due to ambiguity—and a neural network gives scores for competing decisions based on their plausibility. For this reason, it is very important to use beam search in the model. Instead of simply taking the first-best decision at each point, multiple partial hypotheses are kept at each step, with hypotheses only being discarded when there are several other higher-ranked hypotheses under consideration. An example of a left-to-right sequence of decisions that produces a simple parse is shown below for the sentence I booked a ticket to Google.
Furthermore, as described in our paper, it is critical to tightly integrate learning and search in order to achieve the highest prediction accuracy. Parsey McParseface and other SyntaxNet models are some of the most complex networks that we have trained with the TensorFlow framework at Google. Given some data from the Google supported Universal Treebanks project, you can train a parsing model on your own machine.

So How Accurate is Parsey McParseface?

On a standard benchmark consisting of randomly drawn English newswire sentences (the 20 year old Penn Treebank), Parsey McParseface recovers individual dependencies between words with over 94% accuracy, beating our own previous state-of-the-art results, which were already better than any previous approach. While there are no explicit studies in the literature about human performance, we know from our in-house annotation projects that linguists trained for this task agree in 96-97% of the cases. This suggests that we are approaching human performance—but only on well-formed text. Sentences drawn from the web are a lot harder to analyze, as we learned from the Google WebTreebank (released in 2011). Parsey McParseface achieves just over 90% of parse accuracy on this dataset.

While the accuracy is not perfect, it’s certainly high enough to be useful in many applications. The major source of errors at this point are examples such as the prepositional phrase attachment ambiguity described above, which require real world knowledge (e.g. that a street is not likely to be located in a car) and deep contextual reasoning. Machine learning (and in particular, neural networks) have made significant progress in resolving these ambiguities. But our work is still cut out for us: we would like to develop methods that can learn world knowledge and enable equal understanding of natural language across all languages and contexts.

To get started, see the SyntaxNet code and download the Parsey McParseface parser model. Happy parsing from the main developers, Chris Alberti, David Weiss, Daniel Andor, Michael Collins & Slav Petrov.

XRay: a function call tracing system

At Google we spend a lot of time debugging and tuning the performance of our production systems. Some standard practices when doing this involves using profilers, debuggers, and analysis of logs and execution traces. Doing this at scale, in production, is difficult. One of the ways for getting high fidelity data from production systems is to build applications with instrumentation, and then reconstruct the instrumentation data into a form humans can consume (summary statistics, reports, etc.). Instrumentation comes at a cost though, sometimes too high to make it feasible to deploy in production.

Getting this balance right is hard. This is why we've developed XRay, a function call tracing system that has very little overhead when not enabled, but can be dynamically turned on and only impose moderate costs. XRay works as a combination of compiler-inserted instrumentation points which functionally do nothing (called "nop sleds") and a library that can be enabled and disabled at runtime which replaces the nop sleds with the appropriate instrumentation instructions.

We've been using XRay to debug internal systems, from core infrastructure services like Bigtable to ad serving systems. XRay's detailed function tracing has enabled several teams in Google to debug issues that would be really hard to solve without XRay.

We think XRay is an important piece of technology, not only at Google, but for developers around the world. It's because of this that we're working on making XRay opensource. To kick-start that process, we're releasing a white paper describing the technical details of XRay. In the following weeks, we will be engaging the LLVM community, where we are committed to making XRay available for wide use and distribution.

We hope that by open-sourcing XRay we can contribute to the advancement of debugging real-world applications. We're looking forward to working with the LLVM community and other projects to make the data XRay generates useful for debugging a wide variety of applications.

By Dean Michael Berris, Google Engineering

Go 1.5 is released

(Cross-posted from the Go Blog)

Today the Go project is proud to release Go 1.5, the sixth major stable release of Go.

This release includes significant changes to the implementation. The compiler tool chain was translated from C to Go, removing the last vestiges of C code from the Go code base. The garbage collector was completely redesigned, yielding a dramatic reduction in garbage collection pause times. Related improvements to the scheduler allowed us to change the default GOMAXPROCS value (the number of concurrently executing goroutines) from 1 to the number of available CPUs. Changes to the linker enable distributing Go packages as shared libraries to link into Go programs, and building Go packages into archives or shared libraries that may be linked into or loaded by C programs (design doc).

The release also includes improvements to the developer tools. Support for "internal" packages permits sharing implementation details between packages. Experimental support for "vendoring" external dependencies is a step toward a standard mechanism for managing dependencies in Go programs. The new "go tool trace" command enables the visualisation of  program traces generated by new tracing infrastructure in the runtime. The new "go doc" command is a substitute for the original "godoc" that provides an improved command-line interface.

There are also several new operating system and architecture ports. The more mature new ports are darwin/arm, darwin/arm64 (Apple's iPhone and iPad devices), and linux/arm64. There is also experimental support for ppc64 and ppc64le (IBM PowerPC 64-bit, big and little endian).
The new darwin/arm64 port and external linking features fuel the Go mobile project, an experiment to see how Go might be used for building apps on Android and iOS devices. (The Go mobile work itself is not part of this release.)

The only language change was the lifting of a restriction in the map literal syntax to make them more succinct and consistent with slice literals.

The standard library saw many additions and improvements, too. The flag package now shows cleaner usage messages. The math/big package now provides a Float type for computing with arbitrary-precision floating point numbers. An improvement to the DNS resolver on Linux and BSD systems has removed the cgo requirement for programs that do name lookups. The go/types package has been moved to the standard library from the golang.org/x/tools repository. (The new go/constant and go/importer packages are also a result of this move.) The reflect package provides the new ArrayOf and FuncOf functions, analogous to the existing SliceOf function. And, of course, there is the usual list of smaller fixes and improvements.

For the full story, see the detailed release notes. Or if you just can't wait to get started, head over to the downloads page to get Go 1.5 now.

by Andrew Gerrand, Go team

Announcing Shaderc: tools for compiling graphics shaders

Over the weekend, we released Shaderc: a library and command-line tool for translating graphics shaders from GLSL into SPIR-V.  It is a wrapper around Glslang, the open source reference compiler for GLSL published by the Khronos Group.

Shaderc is designed to be as developer-friendly as possible and encourage the widest adoption of best-in-class open GLSL compiler technology. It offers:

  • A C API that is portable, thread-safe, and easy to use.
  • An idiomatic object-based C++ API.  This is a headers-only wrapper around the C API, to minimize the impact of potential changes in the environment's C++ ABI.
  • glslc, a command-line shader compiler.  Its arguments and file handling are similar to Clang and GCC, for easy integration with standard build systems.

Shaderc works on Linux, and there is an initial port to Windows.

The Shaderc project is released under the Apache License, Version 2.0, and is available immediately on GitHub at http://github.com/google/shaderc. Contributions from the community are welcome.

By David Neto and Dejan Mircevski, Google Engineering