Tag Archives: watch faces

What’s new in Watch Faces

Posted by Garan Jenkin – Developer Relations Engineer

Wear OS has a thriving watch face ecosystem featuring a variety of designs that also aims to minimize battery impact. Developers have embraced the simplicity of creating watch faces using Watch Face Format – in the last year, the number of published watch faces using Watch Face Format has grown by over 180%*.

Today, we’re continuing our investment and announcing version 4 of the Watch Face Format, available as part of Wear OS 6. These updates allow developers to express even greater levels of creativity through the new features we’ve added. And we’re supporting marketplaces, which gives flexibility and control to developers and more choice for users.

In this blog post we'll cover key new features, check out the documentation for more details of changes introduced in recent versions.

Supporting marketplaces with Watch Face Push

We’re also announcing a completely new API, the Watch Face Push API, aimed at developers who want to create their own watch face marketplaces.

Watch Face Push, available on devices running Wear OS 6 and above, works exclusively with watch faces that use the Watch Face Format watch faces.

We’ve partnered with well-known watch face developers – including Facer, TIMEFLIK, WatchMaker, Pujie, and Recreative – in designing this new API. We’re excited that all of these developers will be bringing their unique watch face experiences to Wear OS 6 using Watch Face Push.

Three mobile devices representing watch face marketplace apps for watches running Wear OS 6
From left to right, Facer, Recreative and TIMEFLIK watch faces have been developing marketplace apps to work with watches running Wear OS 6.

Watch faces managed and deployed using Watch Face Push are all written using Watch Face Format. Developers publish these watch faces in the same way as publishing through Google Play, though there are some additional checks the developer must make which are described in the Watch Face Push guidance.

A flow diagram demonstrating the flow of information from Cloud-based storage to the user's phone where the app is installed, then transferred to be installed on a wearable device using the Wear OS App via the Watch Face Push API

The Watch Face Push API covers only the watch part of this typical marketplace system diagram - as the app developer, you have control and responsibility for the phone app and cloud components, as well as for building the Wear OS app using Watch Face Push. You’re also in control of the phone-watch communications, for which we recommend using the Data Layer APIs.

Adding Watch Face Push to your project

To start using Watch Face Push on Wear OS 6, include the following dependency in your Wear OS app:

// Ensure latest version is used by checking the repository
implementation("androidx.wear.watchface:watchface-push:1.3.0-alpha07")

Declare the necessary permission in your AndroidManifest.xml:

<uses-permission android:name="com.google.wear.permission.PUSH_WATCH_FACES" />

Obtain a Watch Face Push client:

val manager = WatchFacePushManagerFactory.createWatchFacePushManager(context)

You’re now ready to start using the Watch Face Push API, for example to list the watch faces you have already installed, or add a new watch face:

// List existing watch faces, installed by this app
val listResponse = manager.listWatchFaces()

// Add a watch face
manager.addWatchFace(watchFaceFileDescriptor, validationToken)

Understanding Watch Face Push

While the basics of the Watch Face Push API are easy to understand and access through the WatchFacePushManager interface, it’s important to consider several other factors when working with the API in practice to build an effective marketplace app, including:

To learn more about using Watch Face Push, see the guidance and reference documentation.

Updates to Watch Face Format

Photos

Available from Watch Face Format v4

The new Photos element allows the watch face to contain user-selectable photos. The element supports both individual photos and a gallery of photos. For a gallery of photos, developers can choose whether the photos advance automatically or when the user taps the watch face.

a wearable device and small screen mobile device side by side demonstrating how a user may configure photos for the watch face through the Companion app on the mobile device
Configuring photos through the watch Companion app

The user is able to select the photos of their choice through the companion app, making this a great way to include true personalization in your watch face. To use this feature, first add the necessary configuration:

<UserConfigurations>
  <PhotosConfiguration id="myPhoto" configType="SINGLE"/>
</UserConfigurations>

Then use the Photos element within any PartImage, in the same way as you would for an Image element:

<PartImage ...>
  <Photos source="[CONFIGURATION.myPhoto]"
          defaultImageResource="placeholder_photo"/>
</PartImage>

For details on how to support multiple photos, and how to configure the different change behaviors, refer to the Photos section of the guidance and reference, as well as the GitHub samples.

Transitions

Available from Watch Face Format v4

Watch Face Format now supports transitions when exiting and entering ambient mode.

moving image demonstrating an overshoot effect adjusting the time on a watch face to reveal the seconds digit
State transition animation: Example using an overshoot effect in revealing the seconds digits

This is achieved through the existing Variant tag. For example, the hours and minutes in the above watch face are animated as follows:

<DigitalClock ...>
  <Variant mode="AMBIENT" target="x" value="100" interpolation="OVERSHOOT" />

   <!-- Rest of "hh:mm" clock definition here -->
</DigitalClock>

By default, the animation takes the full extent of allowed time for the transition. The new interpolation attribute controls the animation effect - in this case the use of OVERSHOOT adds a playful experience.

The seconds are implemented in a separate DigitalClock element, which shows the use of the new duration attribute:

<DigitalClock ...>
  <Variant mode="AMBIENT" target="alpha" value="0" duration="0.5"/>
   <!-- Rest of "ss" clock definition here -->
</DigitalClock>

The duration attribute takes a value between 0.0 and 1.0, with 1.0 representing the full extent of the allowed time. In this example, by using a value of 0.5, the seconds animation is quicker - taking half the allowed time, in comparison to the hours and minutes, which take the entire transition period.

For more details on using transitions, see the guidance documentation, as well as the reference documentation for Variant.

Color Transforms

Available from Watch Face Format v4

We’ve extended the usefulness of the Transform element by allowing color to be transformed on the majority of elements where it is an attribute, and also allowing tintColor to be transformed on Group and Part* elements such as PartDraw and PartText.

The main exceptions to this addition are the clock elements, DigitalClock and AnalogClock, and also ComplicationSlot, which do not currently support Transform.

In addition to extending the list of transformable attributes to include colors, we’ve also added a handful of useful functions for manipulating color:

To see these in action, let’s consider an example.

The Weather data source provides the current UV index through [WEATHER.UV_INDEX]. When representing the UV index, these values are typically also assigned a color:

moving image demonstrating an overshoot effect adjusting the time on a watch face to reveal the seconds digit

We want to represent this information as an Arc, not only showing the value, but also using the appropriate color. We can achieve this as follows:

<Arc centerX="0" centerY="0" height="420" width="420"
  startAngle="165" endAngle="165" direction="COUNTER_CLOCKWISE">
  <Transform target="endAngle"
    value="165 - 40 * (clamp(11, 0.0, 11.0) / 11.0)" />
  <Stroke thickness="20" color="#ffffff" cap="ROUND">
    <Transform target="color"
      value="extractColorFromWeightedColors(#97d700 #FCE300 #ff8200 #f65058 #9461c9, 3 3 2 3 1, false, clamp([WEATHER.UV_INDEX] + 0.5, 0.0, 12.0) / 12.0)" />
  </Stroke>
</Arc>

Let’s break this down:

    • The first Transform restricts the UV index to the range 0.0 to 11.0 and adjusts the sweep of the Arc according to that value.
    • The second Transform uses the new extractColorFromWeightedColors function.
        • The first argument is our list of colors
        • The second argument is a list of weights - you can see from the chart above that green covers 3 values, whereas orange only covers 2, so we use weights to represent this.
        • The third argument is whether or not to interpolate the color values. In this case we want to stick strictly to the color convention for UV index, so this is false.
        • Finally in the fourth argument we coerce the UV value into the range 0.0 to 1.0, which is used as an index into our weighted colors.

The result looks like this:

side by side quadrants of watch face examples showing using the new color functions in applying color transforms to a Stroke in an Arc
Using the new color functions in applying color transforms to a Stroke in an Arc.

As well as being able to provide raw colors and weights to these functions, they can also be used with values from complications, such as HR, temperature or steps goal. For example, to use the color range specified in a goal complication:

<Transform target="color"
    value="extractColorFromColors(
        [COMPLICATION.GOAL_PROGRESS_COLORS],
        [COMPLICATION.GOAL_PROGRESS_COLOR_INTERPOLATE],
        [COMPLICATION.GOAL_PROGRESS_VALUE] /    
            [COMPLICATION.GOAL_PROGRESS_TARGET_VALUE]
)"/>

Introducing the Reference element

Available from Watch Face Format v4

The new Reference element allows you to refer to any transformable attribute from one part of your watch face scene in other parts of the scene tree.

In our UV index example above, we’d also like the text labels to use the same color scheme.

We could perform the same color transform calculation as on our Arc, using [WEATHER.UV_INDEX], but this is duplicative work which could lead to inconsistencies, for example if we change the exact color hues in one place but not the other.

Returning to the Arc definition, let’s create a Reference to the color:

<Arc centerX="0" centerY="0" height="420" width="420"
  startAngle="165" endAngle="165" direction="COUNTER_CLOCKWISE">
  <Transform target="endAngle"
    value="165 - 40 * (clamp(11, 0.0, 11.0) / 11.0)" />
  <Stroke thickness="20" color="#ffffff" cap="ROUND">
    <Reference source="color" name="uv_color" defaultValue="#ffffff" />
    <Transform target="color"
      value="extractColorFromWeightedColors(#97d700 #FCE300 #ff8200 #f65058 #9461c9, 3 3 2 3 1, false, clamp([WEATHER.UV_INDEX] + 0.5, 0.0, 12.0) / 12.0)" />
  </Stroke>
</Arc>

The color of the Arc is calculated from the relatively complex extractColorFromWeightedColors function. To avoid repeating this elsewhere in our watch face, we have added a Reference element, which takes as its source the Stroke color.

Let’s now look at how we can consume this value in a PartText elsewhere in the watch face. We gave the Reference the name uv_color, so we can simply refer to this in any expression:

<PartText x="0" y="225" width="450" height="225">
  <TextCircular centerX="225" centerY="0" width="420" height="420"
    startAngle="120" endAngle="90"
    align="START" direction="COUNTER_CLOCKWISE">
    <Font family="SYNC_TO_DEVICE" size="24">
      <Transform target="color" value="[REFERENCE.uv_color]" />
      <Template>%d<Parameter expression="[WEATHER.UV_INDEX]" /></Template>
    </Font>
  </TextCircular>
</PartText>
<!-- Similar PartText here for the "UV:" label -->

As a result, the color of the Arc and the UV numeric value are now coordinated:

side by side quadrants of watch face examples showing Coordinating colors across elements using the Reference element
Coordinating colors across elements using the Reference element

For more details on how to use the Reference element, refer to the Reference guidance.

Text autosizing

Available from Watch Face Format v3

Sometimes the exact length of the text to be shown on the watch face can vary, and as a developer you want to balance being able to display text that is both legible, but also complete.

Auto-sizing text can help solve this problem, and can be enabled through the isAutoSize attribute introduced to the Text element:

<Text align="CENTER" isAutoSize="true">

Having set this attribute, text will then automatically fit the available space, starting at the maximum size specified in your Font element, and with a minimum size of 12.

As an example, step count could range from tens or hundreds through to many thousands, and the new isAutoSize attribute enables best use of the available space for every possible value:

side by side examples of text sizing adjustments on watch face using isAutosize
Making the best use of the available text space through isAutoSize

For more details on isAutoSize, see the Text reference.

Android Studio support

For developers working in Android Studio, we’ve added support to make working with Watch Face Format easier, including:

    • Run configuration support
    • Auto-complete and resource reference
    • Lint checking

This is available from Android Studio Canary version 2025.1.1 Canary 10.

Learn More

To learn more about building watch faces, please take a look at the following resources:

We’ve also recently launched a codelab for Watch Face Format and have updated samples on GitHub to showcase new features. The issue tracker is available for providing feedback.

We're excited to see the watch face experiences that you create and share!

Explore this announcement and all Google I/O 2025 updates on io.google starting May 22.


* Google Play data for period 2025-03-24 to 2025-03-23

Build kids app experiences for Wear OS

Posted by John Zoeller – Developer Relations Engineer, and Caroline Vander Wilt – Group Product Manager

New Wear OS features enable ‘standalone’ watches for kids, unlocking new possibilities for Wear OS app developers

In collaboration with Samsung, Wear OS is introducing Galaxy Watch for Kids, a new kids experience enabling kids to explore while staying connected with their families from their smartwatch, no phone necessary. This launch unlocks new opportunities for Wear OS developers to reach younger audiences.

Galaxy Watch for Kids is rolling out to Galaxy Watch7 LTE models , with features including:

    • No phone ownership required: This experience enables the watch and its associated apps to operate on a fully standalone basis using LTE, and when available, Wifi connectivity. This includes calling, texting, games, and more.
    • Selection of kid-friendly apps: From gaming to health, kids can browse and request installs of Teacher Approved apps and watch faces onGoogle Play. In addition to approving and blocking apps, parents can also monitor app usage from Google Family Link.
    • Stay in touch with parent-managed contacts: Parents can ensure safer communications by limiting text and calling to approved contacts.
    • Location sharing: Offers peace of mind with location sharing and geofencing notifications when kids leave or arrive at designated areas.
    • School time: Limits watch functionality during scheduled hours of the day, so kids can focus while in school or studying.

Building kids experiences with standalone functionality enables you to reach both standalone and tethered watches for kids. Apps like Math Tango have already created great Wear OS experiences for kids. Check out the video below to learn how they built a rich and engaging Wear OS app.

Our new kids-focused design and content principles and developer guidance are also available today. Check out some of the highlights in the next section.

New principles and guidelines for development

We've created new design principles and guidelines to help developers take advantage of this opportunity to build and improve apps and watch faces for kids.

Design principle: Active and fun

Build engaging healthy experiences for children by including activity-based features.

A great example of this is the Odd Squad Time Unit app from PBS KIDS that encourages children to get up and be physically active. By using the on-device sensors and power-efficient platform APIs, the app is able to provide a fun experience all day and still maintain battery life of the watch from wakeup to bed time.

A circular timer display with a hexagonal background 'JUMP!' and '5 SECONDS REMAIN'. A gold hand points to the number 5.  A colorful segmented ring surrounds the center of the timer.

Note that while experiences should be catered to kids, they must also follow the Wear OS quality requirements related to the visual experience of your app, especially when crafting touch targets and font sizes.

Content principle: Thoughtfully crafted

Consider adjusting your content to make it not only appropriate, but also consumable and intuitive for younger kids (including those as young as 6). This includes both audio and visual app components.

Tinkercast’s Two Whats?! And a Wow! app uses age-appropriate vocabulary and fun characters to aid in their teaching. It’s a great example of how a developer should account for reading comprehension.

A smartwatch face displays a cartoon bird with a speech bubble that says 'SWIPE TO VIEW YOUR OPTIONS!'. Yellow arrows point left and right with a large letter 'A' between them.

Development guidelines

New Wear OS kids apps must adhere to the Wear OS app quality guidelines, the guidelines for standalone apps, and the new Kids development guide.


Minimize impact on device battery

Minimize events that affect battery life over the course of one session. Kids use watches that provide important safety features for their parents or guardians, which depend on the device having enough battery life. Below are best practices for reducing battery impact.

      DO design for offline use cases so that kids can play without incurring network-related battery costs

      DO minimize tasks that require an internet or GPS connection

      🚫 DO NOT use direct sensor tracking as this will significantly reduce the battery life

      🚫 DO NOT include long-running animations


Choose a development environment

To develop kid-friendly apps and games you can use Compose for Wear OS, our recommended approach for building UI for Wear OS, as well as Unity for Android.

We recommend Unity for developing games on Wear OS if you’re familiar and comfortable with its workflows and capabilities. However, for games with only a few animations, Compose Animation should be sufficient and is better supported within the Android environment.

Be sure to consider that some Wear OS quality requirements may require custom Unity implementations, such as support for Rotary Input.

Originator’s MathTango showcases the flexibility and richness of developing with Unity:

A purple cartoon moose-like character with large antlers is displayed on a round smartwatch face. The name 'ISAAC' is shown below the character, along with the label 'NEW!'. A green arrow is visible in the top left corner of the screen.

Creating Watch Faces

Developing watch faces for kids requires the use of Watch Face Format. Watch faces should adhere to our content and design principles mentioned above, as well as our quality standards, including our ambient mode requirement.

The following examples demonstrate our Content Principle: Appealing. The content is relevant, engaging, and fun for kids, sparking their interest and imagination.

The Crayola Pets Watch Face comes with a great variety of customization options, and demonstrates an informative and pleasant watch face:

A circular watch face shows a cartoon character, the time (3:30), the date (Feb 10), and a battery indicator (89%).

The Marvel Watch Faces (Captain America shown) provide a fun and useful step tracking feature:

A round smartwatch face displays a cartoon Captain America, his shield, and the time (12:30). A step counter shows 650 steps. The Marvel logo is visible.

Kids experience publishing requirements

Developers looking to get started on a new kids experience will need to keep a few things in mind when publishing on the Play Store.

Expand your reach with Wear OS

Get ready to reach a new generation of Wear OS users! We've created all-new guidelines to help you build engaging experiences for kids. Here’s a quick recap:

With the Wear for Kids experience, developers can reach an entirely new audience of users and be part of the next generation of learning and enrichment on Wear OS.

Check out all of the new experiences on the Play Store!

Latest updates for watch faces on Wear OS

Posted by Anna Bernbaum – Product Manager, and Garan Jenkin – Developer Relations Engineer

At last year’s Google I/O, we launched the Watch Face Format for Wear OS. This year, as part of our continued partnership with Samsung, we are excited to share some new features that you can use to create exciting new watch face designs! These features are now supported in XML definitions, and later in the year, you’ll also see an update to Watch Face Studio to take advantage of them.

The Watch Face Format is the recommended way to create watch faces for Wear OS. The format makes it easier to create customizable and more power-efficient watch faces for devices that run Wear OS 4 or higher. The Watch Face Format is a declarative XML format, so there is no executable code involved in creating a watch face, and there is no code embedded in your watch face APK.

Additionally, in our move toward the Watch Face Format for watch face creation, we have also made some changes to watch face development.

New features in the Watch Face Format

Flavors

Flavors represent preset configurations for your watch face, available in the companion app:

Watch gallery

They allow the watch face developer to configure useful and attractive combinations of the watch face’s configuration options, and allow the user to visualize and select from these with ease.

We’ve now brought flavors to the Watch Face Format. For a full guide on adding them to your watch face, see the flavors reference.

Complications

We’re adding support for both “goal progress” and “weighted elements” complication types to the Watch Face Format:

circle chart with data saying 60% of goal progress and weight elements circle chart

    • Goal progress is perfect for data where the user has a target, but that target can be exceeded. A good example is step count.
    • Weighted elements can represent discrete subsets of data, showing their relative sizes, where you might otherwise use something like a pie chart.

Both of these complication types can be accessed through the [COMPLICATION.*] expression object. For full details, see the complication guidance.

Weather

Knowing at-a-glance what the weather will be like for the next hour, day, and beyond can make all the difference to a user’s plans! Unsurprisingly, having weather data as a data source in the Watch Face Format has been a common request, and we’re delighted to be able to introduce it in this latest version. You’ll now be able make watch faces like this:

circle chart with data saying 60% of goal progress and weight elements circle chart

Weather Basics

Weather in the Watch Face Format is accessed via the [WEATHER.*] expression object. You can use it in Condition and text Template statements and anywhere where expressions are supported.

For example, to show the current weather condition, use this template and expression:

<Template>Current weather conditions: %s
    <Parameter expression="[WEATHER.CONDITION_NAME]"/>
</Template>

The weather provider in the Watch Face Format supports a range of different metric types for the current day, including the following:

    • Current conditions
    • Temperature - current, minimum (low), and maximum (high)
    • UV index
    • Chance of rain

For the full range of data types and conditions, see the weather guide.

Forecasts

In addition to the current weather, you can access forecast data, both by hour and by day. For example, to access the forecast maximum temperature for tomorrow, use a template and set of expressions similar to the following:

<Template>Tomorrow max temp: %d°%s
    <Parameter expression="[WEATHER.DAYS.1.TEMPERATURE_HIGH]" />
    <Parameter expression="[WEATHER.TEMPERATURE_UNIT] == 1 ? &quot;C&quot; : &quot;F&quot;" />
</Template>

When using weather in the Watch Face Format, there are some further details to be aware of, such as checking for forecast availability or loading errors. For all of this and more, take a look at the weather guide.

Changes to Watch Face development

As we gather momentum behind the Watch Face Format, we’re announcing some changes to existing watch face development options.

We announced recently that only some complications will be available on Wear OS 5, for watch faces built with AndroidX or the Wearable Support Library. This restriction does not apply to watch faces that use the Watch Face Format.

Additionally, starting in early 2025 (specific date to be announced in Q4 2024), all new watch faces published on Google Play must use the Watch Face Format. Existing watch faces that use other libraries, such as AndroidX or the Wearable Support Library, can continue to receive updates without transitioning to the new format.

New resources

To make it easier to create watch faces using the Watch Face Format, we’ve published some more resources on GitHub.

You now have full access to the XSD specification, to help you build your own watch face generating tools.

We’ve also provided validators to check your XML for correctness and memory usage. These are the same checks run by Google Play, so it allows you to run these checks even before you submit your watch face for publishing.

Learn more

Get started with the latest version of the Watch Face Format.

Be sure to check out Building for the future of Wear OS technical session and What’s new in Wear OS at I/O 2024 blog post to learn more about all the latest updates for Wear OS!

Code snippets license:

Copyright 2023 Google LLC.
SPDX-License-Identifier: Apache-2.0