Tag Archives: multi-device

Google I/O 2025: Build adaptive Android apps that shine across form factors

Posted by Fahd Imtiaz – Product Manager, Android Developer

If your app isn’t built to adapt, you’re missing out on the opportunity to reach a giant swath of users across 500 million devices! At Google I/O this year, we are exploring how adaptive development isn’t just a good idea, but essential to building apps that shine across the expanding Android device ecosystem. This is your guide to meeting users wherever they are, with experiences that are perfectly tailored to their needs.

The advantage of building adaptive

In today's multi-device world, users expect their favorite applications to work flawlessly and intuitively, whether they're on a smartphone, tablet, or Chromebook. This expectation for seamless experiences isn't just about convenience; it's an important factor for user engagement and retention.

For example, entertainment apps (including Prime Video, Netflix, and Hulu) users on both phone and tablet spend almost 200% more time in-app (nearly 3x engagement) than phone-only users in the US*.

Peacock, NBCUniversal’s streaming service has seen a trend of users moving between mobile and large screens and building adaptively enables a single build to work across the different form factors.

“This allows Peacock to have more time to innovate faster and deliver more value to its customers.”
– Diego Valente, Head of Mobile, Peacock and Global Streaming

Adaptive Android development offers the strategic solution, enabling apps to perform effectively across an expanding array of devices and contexts through intelligent design choices that emphasize code reuse and scalability. With Android's continuous growth into new form factors and upcoming enhancements such as desktop windowing and connected displays in Android 16, an app's ability to seamlessly adapt to different screen sizes is becoming increasingly crucial for retaining users and staying competitive.

Beyond direct user benefits, designing adaptively also translates to increased visibility. The Google Play Store actively helps promote developers whose apps excel on different form factors. If your application delivers a great experience on tablets or is excellent on ChromeOS, users on those devices will have an easier time discovering your app. This creates a win-win situation: better quality apps for users and a broader audience for you.

examples of form factors across small phones, tablets, laoptops, and auto

Latest in adaptive Android development from Google I/O

To help you more effectively build compelling adaptive experiences, we shared several key updates at I/O this year.

Build for the expanding Android device ecosystem

Your mobile apps can now reach users beyond phones on over 500 million active devices, including foldables, tablets, Chromebooks, and even compatible cars, with minimal changes. Android 16 introduces significant advancements in desktop windowing for a true desktop-like experience on large screens and when devices are connected to external displays. And, Android XR is opening a new dimension, allowing your existing mobile apps to be available in immersive virtual environments.

The mindset shift to Adaptive

With the expanding Android device ecosystem, adaptive app development is a fundamental strategy. It's about how the same mobile app runs well across phones, foldables, tablets, Chromebooks, connected displays, XR, and cars, laying a strong foundation for future devices and differentiating for specific form factors. You don't need to rebuild your app for each form factor; but rather make small, iterative changes, as needed, when needed. Embracing this adaptive mindset today isn't just about keeping pace; it's about leading the charge in delivering exceptional user experiences across the entire Android ecosystem.

examples of form factors including vr headset

Leverage powerful tools and libraries to build adaptive apps:

    • Compose Adaptive Layouts library: This library makes adaptive development easier by allowing your app code to fit into canonical layout patterns like list-detail and supporting pane, that automatically reflow as your app is resized, flipped or folded. In the 1.1 release, we introduced pane expansion, allowing users to resize panes. The Socialite demo app showcased how one codebase using this library can adapt across six form factors. New adaptation strategies like "Levitate" (elevating a pane, e.g., into a dialog or bottom sheet) and "Reflow" (reorganizing panes on the same level) were also announced in 1.2 (alpha). For XR, component overrides can automatically spatialize UI elements.

    • Jetpack Navigation 3 (Alpha): This new navigation library simplifies defining user journeys across screens with less boilerplate code, especially for multi-pane layouts in Compose. It helps handle scenarios where list and detail panes might be separate destinations on smaller screens but shown together on larger ones. Check out the new Jetpack Navigation library in alpha.

    • Jetpack Compose input enhancements: Compose's layered architecture, strong input support, and single location for layout logic simplify creating adaptive UIs. Upcoming in Compose 1.9 are right-click context menus and enhanced trackpad/mouse functionality.

    • Window Size Classes: Use window size classes for top-level layout decisions. AndroidX.window 1.5 introduces two new width size classes – "large" (1200dp to 1600dp) and "extra-large" (1600dp and larger) – providing more granular breakpoints for large screens. This helps in deciding when to expand navigation rails or show three panes of content. Support for these new breakpoints was also announced in the Compose adaptive layouts library 1.2 alpha, along with design guidance.

    • Compose previews: Get quick feedback by visualizing your layouts across a wide variety of screen sizes and aspect ratios. You can also specify different devices by name to preview your UI on their respective sizes and with their inset values.

    • Testing adaptive layouts: Validating your adaptive layouts is crucial and Android Studio offers various tools for testing – including previews for different sizes and aspect ratios, a resizable emulator to test across different screen sizes with a single AVD, screenshot tests, and instrumental behavior tests. And with Journeys with Gemini in Android Studio, you can define tests using natural language for even more robust testing across different window sizes.

Ensuring app availability across devices

Avoid unnecessarily declaring required features (like specific cameras or GPS) in your manifest, as this can prevent your app from appearing in the Play Store on devices that lack those specific hardware components but could otherwise run your app perfectly.

Handling different input methods

Remember to handle various input methods like touch, keyboard, and mouse, especially with Chromebook detachables and connected displays.

Prepare for orientation and resizability API changes in Android 16

Beginning in Android 16, for apps targeting SDK 36, manifest and runtime restrictions on orientation, resizability, and aspect ratio will be ignored on displays that are at least 600dp in both dimensions. To meet user expectations, your apps will need layouts that work for both portrait and landscape windows, and support resizing at runtime. There's a temporary opt-out manifest flag at both the application and activity level to delay these changes until targetSdk 37, and these changes currently do not apply to apps categorized as "Games". Learn more about these API changes.

Adaptive considerations for games

Games need to be adaptive too and Unity 6 will add enhanced support for configuration handling, including APIs for screenshots, aspect ratio, and density. Success stories like Asphalt Legends Unite show significant user retention increases on foldables after implementing adaptive features.

examples of form factors including vr headset

Start building adaptive today

Now is the time to elevate your Android apps, making them intuitively responsive across form factors. With the latest tools and updates we’re introducing, you have the power to build experiences that seamlessly flow across all devices, from foldables to cars and beyond. Implementing these strategies will allow you to expand your reach and delight users across the Android ecosystem.

Get inspired by the “Adaptive Android development makes your app shine across devices” talk, and explore all the resources you’ll need to start your journey at developer.android.com/adaptive-apps!

Explore this announcement and all Google I/O 2025 updates on io.google starting May 22.


*Source: internal Google data

Alpha Release of Telecom Library

Posted by Luke Hopkins - Developer Relations Engineer

Today we’re thrilled to announce that the Telecom jetpack library is now in alpha for developers who already have or are interested in creating voice and/or video calling applications. Our aim with this library is to simplify the developer integration process and improve VoIP calling across Android surfaces.

androidx.core:core-telecom:1.0.0-alpha02

What’s in the Public Alpha release

This release supports a variety of Telecom features, including:

Platform synchronization

For surfaces like watches, this library allows the user to answer, decline, hang up and mute your call through a simple API, as well as displaying useful information such as who the caller is.

ALT TEXT

This is also beneficial because if the device is aware of your call, should other calls such a PTSN/SIM based call come through, you can give the user a chance to hold the call they are currently on.

Dedicated foreground support

With the changes to Android 14, which require applications to specify foreground service types, this library takes care of the requirements for you. For more information, please refer to the foreground service documentation.

Foreground support allows users to stay connected to their calls even after the user has navigated away from your app... You won’t need to build your own foreground services or worry about the background state of your application.

Audio Routing

Instead of using the audio manager to track state, focus and obtain a list of audio devices, this Telecom library will list all available endpoints to your application for streaming audio to/from Bluetooth hearables, hearing aids, wired headphones, and other surfaces, thus giving users access and control to a wide range of hearable devices.

Backwards Compatibility

Backwards compatibility works all the way down to Android O (API Level 26) on devices which support the Telecom stack which means implementing the simple API surface below supports a wide range of devices.

callsManager.addCall(
        attributes,
        onIsCallAnswered,
        onIsCallDisconnected,
        onIsCallActive,
        onIsCallInactive
       ){


        val callScope=this

}

You can also query the packagemanager to know if the device supports Telecom.

packagemanager.hasSystemFeature(PackageManager.FEATURE_TELECOM)

Why use this library over Platform API

You might be thinking, why make this move to a new library when I could just similarly migrate the deprecated APIs to the new APIs added in Android 14. Well this library offers:

New Features

We will have more exciting additions coming to the Telecom library in the coming months which are exclusive to the jetpack library. These included expanded support for VoIP Call actions such as being able to locally mute the VoIP app for the specific call and being able to display the name of the speaker on another surface such as Android Auto. We also have a new feature coming soon that will allow users to transfer their ongoing VoIP calls between their phones and tablets.

Backward Compatibility

As previously stated, this library supports backward compatibility, which means that your app will not only be supported on a wider range of devices, but we can resolve interoperability issues with older Android versions.

A simple API surface and a large coverage of devices, means this library is the goto solution for calling applications.

Migrating from ConnectionService to CallsManager

Even if you already have an existing ConnectionService integration for your VoIP app, you should consider migrating to CallsManager, as mentioned above we have a lot of exciting features coming to this library and using the jetpack library will give you a simple and complete solution moving forward.

Migrating from ConnectionService to CallManager is fairly straightforward to implement but is not a simple case of changing namespace. You can think of CallManager representing ConnectionService and CallControlScope representing ConnectionService.

Below shows the difference between how to switch audio using connection service to CallControlScope.

You can also query the packagemanager to know if the device supports Telecom.

cconnectionService.setAudioRoute (int route)

InCallService- Android 13

when (requestEndpointChange(newEndpoint)) { 

     is CallControlResult.Success -> { 
                                      // Device changed 
          } 

          is CallControlResult.Error -> { 

          } 
  }

Jetpack Library

Another example showing how simple this API is to use, you can add a call to the platform and define you call attributes with the code below:

val attributes = CallAttributesCompat( 
       displayName = displayName, 
              address = address,
       direction = CallAttributesCompat.DIRECTION_INCOMING,
       callType = CallAttributesCompat.CALL_TYPE_AUDIO_CALL,
       callCapabilities = (CallAttributesCompat.SUPPORTS_SET_INACTIVE
                or CallAttributesCompat.SUPPORTS_STREAM 
                               or CallAttributesCompat.SUPPORTS_TRANSFER), 
)
callsManager.addCall(
        attributes
      ) { 
                // Call control scope 

}


From here you will have a call control scope and this scope you can answer, hold, disconnect and get a list of hearable devices.

//call control scope 
launch { 
            availableEndpoints.collect { 

             ..... 

            }

          }

Getting started

Head over to our updated developer guide to get started and try out the Public Alpha release of the Telecom library. Make sure to check out our sample app found on GitHub for a demonstration on how to work with the various APIs.

This sample application implements all the latest features for the Telecom library showing how to do:

  • Audio Routing
  • Foreground Services
  • Accept, Disconnect, Reject and Hold calls
  • Watch integration
  • CallStyle notification

Feedback

We’d love to hear from you during this Alpha launch to help us shape the library and influence future roadmapping, so please share your feedback and let us know your experience with the library!