Tag Archives: Security

Final removal of trust in WoSign and StartCom Certificates



As previously announced, Chrome has been in the process of removing trust from certificates issued by the CA WoSign and its subsidiary StartCom, as a result of several incidents not in keeping with the high standards expected of CAs.

We started the phase out in Chrome 56 by only trusting certificates issued prior to October 21st 2016, and subsequently restricted trust to a set of whitelisted hostnames based on the Alexa Top 1M. We have been reducing the size of the whitelist over the course of several Chrome releases.

Beginning with Chrome 61, the whitelist will be removed, resulting in full distrust of the existing WoSign and StartCom root certificates and all certificates they have issued.

Based on the Chromium Development Calendar, this change is visible in the Chrome Dev channel now, the Chrome Beta channel around late July 2017, and will be released to Stable around mid September 2017.

Sites still using StartCom or WoSign-issued certificates should consider replacing these certificates as a matter of urgency to minimize disruption for Chrome users.

New security protections to reduce risk from unverified apps

Originally posted by Naveen Agarwal, Identity team and Wesley Chun (@wescpy), Developer Advocate, G Suite on the G Suite Developers Blog

We're constantly working to secure our users and their data. Earlier this year, we detailed some of our latest anti-phishing tools and rolled-out developer-focused updates to our app publishing processes, risk assessment systems, and user-facing consent pages. Most recently, we introduced OAuth apps whitelisting in G Suite to enable admins to choose exactly which third-party apps can access user data.

Over the past few months, we've required that some new web applications go through a verification process prior to launch based upon a dynamic risk assessment.

Today, we're expanding upon that foundation, and introducing additional protections: bolder warnings to inform users about newly created web apps and Apps Scripts that are pending verification. Additionally, the changes we're making will improve the developer experience. In the coming months, we will begin expanding the verification process and the new warnings to existing apps as well.

Protecting against unverified apps

Beginning today, we're rolling out an "unverified app" screen for newly created web applications and Apps Scripts that require verification. This new screen replaces the "error" page that developers and users of unverified web apps receive today.

The "unverified app" screen precedes the permissions consent screen for the app and lets potential users know that the app has yet to be verified. This will help reduce the risk of user data being phished by bad actors.

The "unverified app" consent flow

This new notice will also help developers test their apps more easily. Since users can choose to acknowledge the 'unverified app' alert, developers can now test their applications without having to go through the OAuth client verification process first (see our earlier post for details).

Developers can follow the steps laid out in this help center article to begin the verification process to remove the interstitial and prepare your app for launch.

Extending security protections to Google Apps Script

We're also extending these same protections to Apps Script. Beginning this week, new Apps Scripts requesting OAuth access to data from consumers or from users in other domains may also see the "unverified app" screen. For more information about how these changes affect Apps Script developers and users, see the verification documentation page.

Apps Script is proactively protecting users from abusive apps in other ways as well. Users will see new cautionary language reminding them to "consider whether you trust" an application before granting OAuth access, as well as a banner identifying web pages and forms created by other users.

Updated Apps Script pre-OAuth alert with cautionary language
Apps Script user-generated content banner

Extending protections to existing apps

In the coming months, we will continue to enhance user protections by extending the verification process beyond newly created apps, to existing apps as well. As a part of this expansion, developers of some current apps may be required to go through the verification flow.

To help ensure a smooth transition, we recommend developers verify that their contact information is up-to-date. In the Google Cloud Console, developers should ensure that the appropriate and monitored accounts are granted either the project owner or billing account admin IAM role. For help with granting IAM roles, see this help center article.

In the API manager, developers should ensure that their OAuth consent screen configuration is accurate and up-to-date. For help with configuring the consent screen, see this help center article.

We're committed to fostering a healthy ecosystem for both users and developers. These new notices will inform users automatically if they may be at risk, enabling them to make informed decisions to keep their information safe, and will make it easier to test and develop apps for developers.

New security protections to reduce risk from unverified apps



We’re constantly working to secure our users and their data. Earlier this year, we detailed some of our latest anti-phishing tools and rolled-out developer-focused updates to our app publishing processes, risk assessment systems, and user-facing consent pages. Most recently, we introduced OAuth apps whitelisting in G Suite to enable admins to choose exactly which third-party apps can access user data.

Over the past few months, we’ve required that some new web applications go through a verification process prior to launch based upon a dynamic risk assessment.

Today, we’re expanding upon that foundation, and introducing additional protections: bolder warnings to inform users about newly created web apps and Apps Scripts that are pending verification. Additionally, the changes we're making will improve the developer experience. In the coming months, we will begin expanding the verification process and the new warnings to existing apps as well.

Protecting against unverified apps 

Beginning today, we’re rolling out an “unverified app” screen for newly created web applications and Apps Scripts that require verification. This new screen replaces the “error” page that developers and users of unverified web apps receive today.

The “unverified app” screen precedes the permissions consent screen for the app and lets potential users know that the app has yet to be verified. This will help reduce the risk of user data being phished by bad actors.

The "unverified app" consent flow

This new notice will also help developers test their apps more easily. Since users can choose to acknowledge the ‘unverified app’ alert, developers can now test their applications without having to go through the OAuth client verification process first (see our earlier post for details).

Developers can follow the steps laid out in this help center article to begin the verification process to remove the interstitial and prepare your app for launch.

Extending security protections to Google Apps Script 

We’re also extending these same protections to Apps Script. Beginning this week, new Apps Scripts requesting OAuth access to data from consumers or from users in other domains may also see the "unverified app" screen. For more information about how these changes affect Apps Script developers and users, see the verification documentation page.

Apps Script is proactively protecting users from abusive apps in other ways as well. Users will see new cautionary language reminding them to “consider whether you trust” an application before granting OAuth access, as well as a banner identifying web pages and forms created by other users.
Updated Apps Script pre-OAuth alert with cautionary language
Apps Script user-generated content banner

Extending protections to existing apps 

In the coming months, we will continue to enhance user protections by extending the verification process beyond newly created apps, to existing apps as well. As a part of this expansion, developers of some current apps may be required to go through the verification flow.

To help ensure a smooth transition, we recommend developers verify that their contact information is up-to-date. In the Google Cloud Console, developers should ensure that the appropriate and monitored accounts are granted either the project owner or billing account admin IAM role. For help with granting IAM roles, see this help center article.

In the API manager, developers should ensure that their OAuth consent screen configuration is accurate and up-to-date. For help with configuring the consent screen, see this help center article

We’re committed to fostering a healthy ecosystem for both users and developers. These new notices will inform users automatically if they may be at risk, enabling them to make informed decisions to keep their information safe, and will make it easier to test and develop apps for developers.

Identifying Intrusive Mobile Apps Using Peer Group Analysis


Mobile apps entertain and assist us, make it easy to communicate with friends and family, and provide tools ranging from maps to electronic wallets. But these apps could also seek more device information than they need to do their job, such as personal data and sensor data from components, like cameras and GPS trackers.

To protect our users and help developers navigate this complex environment, Google analyzes privacy and security signals for each app in Google Play. We then compare that app to other apps with similar features, known as functional peers. Creating peer groups allows us to calibrate our estimates of users’ expectations and set adequate boundaries of behaviors that may be considered unsafe or intrusive. This process helps detect apps that collect or send sensitive data without a clear need, and makes it easier for users to find apps that provide the right functionality and respect their privacy. For example, most coloring book apps don’t need to know a user’s precise location to function and this can be established by analyzing other coloring book apps. By contrast, mapping and navigation apps need to know a user’s location, and often require GPS sensor access.

One way to create app peer groups is to create a fixed set of categories and then assign each app into one or more categories, such as tools, productivity, and games. However, fixed categories are too coarse and inflexible to capture and track the many distinctions in the rapidly changing set of mobile apps. Manual curation and maintenance of such categories is also a tedious and error-prone task.

To address this, Google developed a machine-learning algorithm for clustering mobile apps with similar capabilities. Our approach uses deep learning of vector embeddings to identify peer groups of apps with similar functionality, using app metadata, such as text descriptions, and user metrics, such as installs. Then peer groups are used to identify anomalous, potentially harmful signals related to privacy and security, from each app’s requested permissions and its observed behaviors. The correlation between different peer groups and their security signals helps different teams at Google decide which apps to promote and determine which apps deserve a more careful look by our security and privacy experts. We also use the result to help app developers improve the privacy and security of their apps.
[UNSET] (27).png
Apps are split into groups of similar functionality, and in each cluster of similar apps the established baseline is used to find anomalous privacy and security signals.

These techniques build upon earlier ideas, such as using peer groups to analyze privacy-related signals, deep learning for language models to make those peer groups better, and automated data analysis to draw conclusions.

Many teams across Google collaborated to create this algorithm and the surrounding process. Thanks to several, essential team members including Andrew Ahn, Vikas Arora, Hongji Bao, Jun Hong, Nwokedi Idika, Iulia Ion, Suman Jana, Daehwan Kim, Kenny Lim, Jiahui Liu, Sai Teja Peddinti, Sebastian Porst, Gowdy Rajappan, Aaron Rothman, Monir Sharif, Sooel Son, Michael Vrable, and Qiang Yan.

For more information on Google’s efforts to detect and fight potentially harmful apps (PHAs) on Android, see Google Android Security Team’s Classifications for Potentially Harmful Applications.
References

S. Jana, Ú. Erlingsson, I. Ion (2015). Apples and Oranges: Detecting Least-Privilege Violators with Peer Group Analysis. arXiv:1510.07308 [cs.CR].

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems 26 (NIPS 2013).

Ú. Erlingsson (2016). Data-driven software security: Models and methods. Proceedings of the 29th IEEE Computer Security Foundations Symposium (CSF'16), Lisboa, Portugal.

Identifying Intrusive Mobile Apps using Peer Group Analysis

Posted by Martin Pelikan, Giles Hogben, and Ulfar Erlingsson of Google's Security and Privacy team

Mobile apps entertain and assist us, make it easy to communicate with friends and family, and provide tools ranging from maps to electronic wallets. But these apps could also seek more device information than they need to do their job, such as personal data and sensor data from components, like cameras and GPS trackers.

To protect our users and help developers navigate this complex environment, Google analyzes privacy and security signals for each app in Google Play. We then compare that app to other apps with similar features, known as functional peers. Creating peer groups allows us to calibrate our estimates of users' expectations and set adequate boundaries of behaviors that may be considered unsafe or intrusive. This process helps detect apps that collect or send sensitive data without a clear need, and makes it easier for users to find apps that provide the right functionality and respect their privacy. For example, most coloring book apps don't need to know a user's precise location to function and this can be established by analyzing other coloring book apps. By contrast, mapping and navigation apps need to know a user's location, and often require GPS sensor access.

One way to create app peer groups is to create a fixed set of categories and then assign each app into one or more categories, such as tools, productivity, and games. However, fixed categories are too coarse and inflexible to capture and track the many distinctions in the rapidly changing set of mobile apps. Manual curation and maintenance of such categories is also a tedious and error-prone task.

To address this, Google developed a machine-learning algorithm for clustering mobile apps with similar capabilities. Our approach uses deep learning of vector embeddings to identify peer groups of apps with similar functionality, using app metadata, such as text descriptions, and user metrics, such as installs. Then peer groups are used to identify anomalous, potentially harmful signals related to privacy and security, from each app's requested permissions and its observed behaviors. The correlation between different peer groups and their security signals helps different teams at Google decide which apps to promote and determine which apps deserve a more careful look by our security and privacy experts. We also use the result to help app developers improve the privacy and security of their apps.

Apps are split into groups of similar functionality, and in each cluster of similar apps the established baseline is used to find anomalous privacy and security signals.

These techniques build upon earlier ideas, such as using peer groups to analyze privacy-related signals, deep learning for language models to make those peer groups better, and automated data analysis to draw conclusions.

Many teams across Google collaborated to create this algorithm and the surrounding process. Thanks to several, essential team members including Andrew Ahn, Vikas Arora, Hongji Bao, Jun Hong, Nwokedi Idika, Iulia Ion, Suman Jana, Daehwan Kim, Kenny Lim, Jiahui Liu, Sai Teja Peddinti, Sebastian Porst, Gowdy Rajappan, Aaron Rothman, Monir Sharif, Sooel Son, Michael Vrable, and Qiang Yan.

For more information on Google's efforts to detect and fight potentially harmful apps (PHAs) on Android, see Google Android Security Team's Classifications for Potentially Harmful Applications.

References

S. Jana, Ú. Erlingsson, I. Ion (2015). Apples and Oranges: Detecting Least-Privilege Violators with Peer Group Analysis. arXiv:1510.07308 [cs.CR].

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems 26 (NIPS 2013).

Ú. Erlingsson (2016). Data-driven software security: Models and methods. Proceedings of the 29th IEEE Computer Security Foundations Symposium (CSF'16), Lisboa, Portugal.

What’s new in WebView security

Posted by Xiaowen Xin and Renu Chaudhary, Android Security Team

The processing of external and untrusted content is often one of the most important functions of an app. A newsreader shows the top news articles and a shopping app displays the catalog of items for sale. This comes with associated risks as the processing of untrusted content is also one of the main ways that an attacker can compromise your app, i.e. by passing you malformed content.

Many apps handle untrusted content using WebView, and we've made many improvements in Android over the years to protect it and your app against compromise. With Android Lollipop, we started delivering WebView as an independent APK, updated every six weeks from the Play store, so that we can get important fixes to users quickly. With the newest WebView, we've added a couple more important security enhancements.

Isolating the renderer process in Android O

Starting with Android O, WebView will have the renderer running in an isolated process separate from the host app, taking advantage of the isolation between processes provided by Android that has been available for other applications.

Similar to Chrome, WebView now provides two levels of isolation:

  1. The rendering engine has been split into a separate process. This insulates the host app from bugs or crashes in the renderer process and makes it harder for a malicious website that can exploit the renderer to then exploit the host app.
  2. To further contain it, the renderer process is run within an isolated process sandbox that restricts it to a limited set of resources. For example, the rendering engine cannot write to disk or talk to the network on its own.
    It is also bound to the same seccomp filter (blogpost on seccomp is coming soon) as used by Chrome on Android. The seccomp filter reduces the number of system calls the renderer process can access and also restricts the allowed arguments to the system calls.

Incorporating Safe Browsing

The newest version of WebView incorporates Google's Safe Browsing protections to detect and warn users about potentially dangerous sites.. When correctly configured, WebView checks URLs against Safe Browsing's malware and phishing database and displays a warning message before users visit a dangerous site. On Chrome, this helpful information is displayed more than 250 million times a month, and now it's available in WebView on Android.

Enabling Safe Browsing

To enable Safe Browsing for all WebViews in your app, add in a manifest tag:

<manifest>
     <meta-data android:name="android.webkit.WebView.EnableSafeBrowsing"
                android:value="true" />
      . . .
     <application> . . . </application>
</manifest>

Because WebView is distributed as a separate APK, Safe Browsing for WebView is available today for devices running Android 5.0 and above. With just one added line in your manifest, you can update your app and improve security for most of your users immediately.

Making the Internet safer and faster: Introducing reCAPTCHA Android API


When we launched reCAPTCHA ten years ago, we had a simple goal: enable users to visit the sites they love without worrying about spam and abuse. Over the years, reCAPTCHA has changed quite a bit. It evolved from the distorted text to street numbers and names, then No CAPTCHA reCAPTCHA in 2014 and Invisible reCAPTCHA in March this year.
ezgif.com-gif-maker (3).gif
By now, more than a billion users have benefited from reCAPTCHA and we continue to work to refine our protections.

reCAPTCHA protects users wherever they may be online. As the use of mobile devices has grown rapidly, it’s important to keep the mobile applications and data safe. Today, on reCAPTCHA’s tenth birthday, we’re glad to announce the first reCAPTCHA Android API as part of Google Play Services.

With this API, reCAPTCHA can better tell human and bots apart to provide a streamlined user experience on mobile. It will use our newest Invisible reCAPTCHA technology, which runs risk analysis behind the scene and has enabled millions of human users to pass through with zero click everyday. Now mobile users can enjoy their apps without being interrupted, while still staying away from spam and abuse.
reCAPTCHA Android API is included with Google SafetyNet, which provides services like device attestation and safe browsing to protect mobile apps. Mobile developers can do both the device and user attestations in the same API to mitigate security risks of their apps more efficiently. This adds to the diversity of security protections on Android: Google Play Protect to monitor for potentially harmful applications, device encryption, and regular security updates. Please visit our site to learn more about how to integrate with the reCAPTCHA Android API, and keep an eye out for our iOS library.

The journey of reCAPTCHA continues: we’ll make the Internet safer and easier to use for everyone (except bots).

Announcing Google Capture the Flag 2017



On 00:00:01 UTC of June 17th and 18th, 2017 we’ll be hosting the online qualification round of our second annual Capture The Flag (CTF) competition. In a ‘Capture the Flag’ competition we create security challenges and puzzles in which contestants can earn points for solving them. We will be inviting the top 10 finalist teams to a secret undisclosed location (spoiler alert: it’s Google) to compete onsite for a prize pool of over USD$31,337 and we’ll help subsidize travel to the venue for the finals to four participants for each of the ten finalist teams. In addition to grand prizes given at the finals, we’ll be rewarding some of the best and creative write-ups that we receive during the qualifying round. We want to give you an opportunity to share with the world the clever way you solve challenges.

Why do we host these competitions?

There are three main reasons why we host these competitions.

First, as we've seen with our Vulnerability Reward Program, the security community’s efforts help us better protect Google users, and the web as a whole. We’d like to give the people who solve a single challenge or two in a very clever way a chance to teach us and the security community, even if they don’t qualify for the finals. We also think that these challenges allows us to share with the world the types of problems our security team works on every day.

Second, we want to engage the broader security community and reach out to as many people involved as possible. At the Google CTF last year the winning team, ‘Pasten’ from Israel, earned over 4,700 points competing against 2,400 teams out of which 900 were able to solve at least one of our challenges. Thanks to the community's feedback, we used what we learned last year to make our CTF even better this time.
Lastly, we also want to grow the security community. Upon observing how last year's competition engaged new players from all over the world, we want to continue to create a safe space for people to come and learn while trying to solve challenges and having fun. Our internal security team employs several people who actively compete in CTF competitions in their spare time, so we value this activity and want to give back to and help grow our community.

We hope to virtually see you at the 2nd annual Google CTF on June 17th at 00:00:01 UTC. Check this site (g.co/ctf) for more details, as they become available.

The Big Picture

At Google, we aim to reward the hard work of hackers and security researchers. One such avenue is our Google Vulnerability Rewards Programs. Many of the best bug hunters enjoy participating in ‘Capture The Flag’ contests, and great vulnerabilities have been discovered and disclosed at them. During last year's Google CTF we also received some security bug reports in our scoreboard, for which we gave out rewards under the VRP. Another way we reward this community is with our Vulnerability Research Grants Program and our Patch Rewards Program. We look forward to the best contestants taking some time to explore our other programs for opportunities to make some money and help improve the security of the internet.

2017 Android Security Rewards



[Cross-posted from the Android Developers Blog]

Two years ago, we launched the Android Security Rewards program. In its second year, we've seen great progress. We received over 450 qualifying vulnerability reports from researchers and the average pay per researcher jumped by 52.3%. On top of that, the total Android Security Rewards payout doubled to $1.1 million dollars. Since it launched, we've rewarded researchers over $1.5 million dollars.

Here are some of the highlights from the Android Security Rewards program's second year:
  • There were no payouts for the top reward for a complete remote exploit chain leading to TrustZone or Verified Boot compromise, our highest award amount possible.
  • We paid 115 individuals with an average of $2,150 per reward and $10,209 per researcher.
  • We paid our top research team, C0RE Team, over $300,000 for 118 vulnerability reports.
  • We paid 31 researchers $10,000 or more.
Thank you to all the amazing researchers who submitted complete vulnerability reports to us last year.

Improvements to Android Security Rewards program

We’re constantly working to improve the Android Security Rewards program and today we’re making a few changes to all vulnerability reports filed after June 1, 2017.

Because every Android release includes more security protections and no researcher has claimed the top reward for an exploit chains in 2 years, we’re excited to increase our top-line payouts for these exploits.
  • Rewards for a remote exploit chain or exploit leading to TrustZone or Verified Boot compromise increase from $50,000 to $200,000.
  • Rewards for a remote kernel exploit increase from $30,000 to $150,000.
In addition to rewarding for vulnerabilities, we continue to work with the broad and diverse Android ecosystem to protect users from issues reported through our program. We collaborate with manufacturers to ensure that these issues are fixed on their devices through monthly security updates. Over 100 device models have a majority of their deployed devices running a security update from the last 90 days. This table shows the models with a majority of deployed devices running a security update from the last two months:

Manufacturer
Device
BlackBerry
PRIV
Fujitsu
F-01J
General Mobile
GM5 Plus d, GM5 Plus, General Mobile 4G Dual, General Mobile 4G
Gionee
A1
Google
Pixel XL, Pixel, Nexus 6P, Nexus 6, Nexus 5X, Nexus 9
LGE
LG G6, V20, Stylo 2 V, GPAD 7.0 LTE
Motorola
Moto Z, Moto Z Droid
Oppo
CPH1613, CPH1605
Samsung
Galaxy S8+, Galaxy S8, Galaxy S7, Galaxy S7 Edge, Galaxy S7 Active, Galaxy S6 Active, Galaxy S5 Dual SIM, Galaxy C9 Pro, Galaxy C7, Galaxy J7, Galaxy On7 Pro, Galaxy J2, Galaxy A8, Galaxy Tab S2 9.7
Sharp
Android One S1, 507SH
Sony
Xperia XA1, Xperia X
Vivo
Vivo 1609, Vivo 1601, Vivo Y55
Source: Google, May 29, 2017

Thank you to everyone who helped make Android safer and stronger in the past year. Together, we made a huge investment in security research that helps Android users everywhere. If you want to get involved to make next year even better, check out our detailed Program Rules. For tips on how to submit complete reports, see Bug Hunter University.

2017 Android Security Rewards

Posted by Mayank Jain and Scott Roberts of the Android Security team

Two years ago, we launched the Android Security Rewards program. In its second year, we've seen great progress. We received over 450 qualifying vulnerability reports from researchers and the average pay per researcher jumped by 52.3%. On top of that, the total Android Security Rewards payout doubled to $1.1 million dollars. Since it launched, we've rewarded researchers over $1.5 million dollars.

Here are some of the highlights from the Android Security Rewards program's second year:

  • There were no payouts for the top reward for a complete remote exploit chain leading to TrustZone or Verified Boot compromise, our highest award amount possible.
  • We paid 115 individuals with an average of $2,150 per reward and $10,209 per researcher.
  • We paid our top research team, C0RE Team, over $300,000 for 118 vulnerability reports.
  • We paid 31 researchers $10,000 or more.

Thank you to all the amazing researchers who submitted complete vulnerability reports to us last year.

Improvements to Android Security Rewards program

We're constantly working to improve the Android Security Rewards program and today we're making a few changes to all vulnerability reports filed after June 1, 2017.

Because every Android release includes more security protections and no researcher has claimed the top reward for an exploit chains in 2 years, we're excited to increase our top-line payouts for these exploits.

  • Rewards for a remote exploit chain or exploit leading to TrustZone or Verified Boot compromise increase from $50,000 to $200,000.
  • Rewards for a remote kernel exploit increase from $30,000 to $150,000.

In addition to rewarding for vulnerabilities, we continue to work with the broad and diverse Android ecosystem to protect users from issues reported through our program. We collaborate with manufacturers to ensure that these issues are fixed on their devices through monthly security updates. Over 100 device models have a majority of their deployed devices running a security update from the last 90 days. This table shows the models with a majority of deployed devices running a security update from the last two months:

Manufacturer
Device
BlackBerry
PRIV
Fujitsu
F-01J
General Mobile
GM5 Plus d, GM5 Plus, General Mobile 4G Dual,General Mobile 4G
Gionee
A1
Google
Pixel XL, Pixel, Nexus 6P, Nexus 6, Nexus 5X, Nexus 9
LGE
LG G6, V20, Stylo 2 V, GPAD 7.0 LTE
Motorola
Moto Z, Moto Z Droid
Oppo
CPH1613, CPH1605
Samsung
Galaxy S8+, Galaxy S8, Galaxy S7, Galaxy S7 Edge, Galaxy S7 Active, Galaxy S6 Active, Galaxy S5 Dual SIM, Galaxy C9 Pro, Galaxy C7, Galaxy J7, Galaxy On7 Pro, Galaxy J2, Galaxy A8, Galaxy Tab S2 9.7
Sharp
Android One S1, 507SH
Sony
Xperia XA1, Xperia X
Vivo
Vivo 1609, Vivo 1601, Vivo Y55
Source: Google May 29th, 2017.

Thank you to everyone who helped make Android safer and stronger in the past year. Together, we made a huge investment in security research that helps Android users everywhere. If you want to get involved to make next year even better, check out our detailed Program Rules. For tips on how to submit complete reports, see Bug Hunter University.