The Google Brain Residency Program — One Year Later

“Coming from a background in statistics, physics, and chemistry, the Google Brain Residency was my first exposure to both deep learning and serious programming. I enjoyed the autonomy that I was given to research diverse topics of my choosing: deep learning for computer vision and language, reinforcement learning, and theory. I originally intended to pursue a statistics PhD but my experience here spurred me to enroll in the Stanford CS program starting this fall!”
- Melody Guan, 2016 Google Brain Residency Alumna

This month marks the end of an incredibly successful year for our first class of the Google Brain Residency Program. This one-year program was created as an opportunity for individuals from diverse educational backgrounds and experiences to dive into research in machine learning and deep learning. Over the past year, the Residents familiarized themselves with the literature, designed and implemented experiments at Google scale, and engaged in cutting edge research in a wide variety of subjects ranging from theory to robotics to music generation.

To date, the inaugural class of Residents have published over 30 papers at leading machine learning publication venues such as ICLR (15), ICML (11), CVPR (3), EMNLP (2), RSS, GECCO, ISMIR, ISMB and Cosyne. An additional 18 papers are currently under review at NIPS, ICCV, BMVC and Nature Methods. Two of the above papers were published in Distill, exploring how deconvolution causes checkerboard artifacts and presenting ways of visualizing a generative model of handwriting.
A Distill article by residents interactively explores how a neural network generates handwriting.
A system that explores how robots can learn to imitate human motion from observation. For more details, see “Time-Contrastive Networks: Self-Supervised Learning from Multi-View Observation” (Co-authored by Resident Corey Lynch, along with P. Sermanet, , J. Hsu, S. Levine, accepted to CVPR Workshop 2017)
A model that uses reinforcement learning to train distributed deep learning networks at large scale by optimizing computations to hardware devices assignment. For more details, see “Device Placement Optimization with Reinforcement Learning” (Co-authored by Residents Azalia Mirhoseini and Hieu Pham, along with Q. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, J. Dean, submitted to ICML 2017).
An approach to automate the process of discovering optimization methods, with a focus on deep learning architectures. Final version of the paper “Neural Optimizer Search with Reinforcement Learning” (Co-authored by Residents Irwan Bello and Barret Zoph, along with V. Vasudevan, Q. Le, submitted to ICML 2017) coming soon.
Residents have also made significant contributions to the open source community with general-purpose sequence-to-sequence models (used for example in translation), music synthesis, mimicking human sketching, subsampling a sequence for model training, an efficient “attention” mechanism for models, and time series analysis (particularly for neuroscience).

The end of the program year marks our Residents embarking on the next stages in their careers. Many are continuing their research careers on the Google Brain team as full time employees. Others have chosen to enter top machine learning Ph.D. programs at schools such as Stanford University, UC Berkeley, Cornell University, Oxford University and NYU, University of Toronto and CMU. We could not be more proud to see where their hard work and experiences will take them next!

As we “graduate” our first class, this week we welcome our next class of 35 incredibly talented Residents who have joined us from a wide range of experience and education backgrounds. We can’t wait to see how they will build on the successes of our first class and continue to push the team in new and exciting directions. We look forward to another exciting year of research and innovation ahead of us!

Applications to the 2018 Residency program will open in September 2017. To learn more about the program, visit