Tag Archives: Student Empowermen

Spotlight on a Young Scientist: Anika Cheerla

Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.



Name: Anika Cheerla

Home:  California, USA

Age Category: 13-15

Project title: Automated and accurate early-diagnosis of Alzheimer's disease



While volunteering in a senior care facility, Anika was shocked to learn how many older adults suffer from Alzheimer's disease. Her curiosity led her to learn more about diagnosis of this disease, and she found that without a standard test or method for diagnosis, most doctors rely on their own opinions. She decided to create a tool that quickly and accurately diagnosed Alzheimer's and knew her brother, who loved science and coding, would be able to help her. By extracting image features from MRI scans, Anika built an interface for doctors to upload an image, enter some basic patient information and get a reliable Alzheimer's diagnosis. 

What was the inspiration behind your project? 

5.3 million Americans are currently living with Alzheimer’s. The disease has killed my great-aunt, hurting my entire family. At the senior home I volunteered at, I met the victims of this illness. With Alzheimer’s everywhere around me, I wanted to make a difference and ease the lives of patients and their loved ones. I found that the majority of patients with Alzheimer’s are not aware of their disease, and therefore don’t get the proper care or treatment. This inspired me to build a tool that gives patients an early and accurate diagnosis of Alzheimer's.

I was also inspired by research carried out by other researchers as part of the SDSS Quasar Lens Search (SQLS). Using an earlier version of the data set I utilized in this project, the SQLS researchers significantly increased the number of known lensed quasars. The success of the SQLS approach inspired me to develop my own method for identifying lensed quasars.

When and why did you become interested in science? 

My brother and I were eating dinner when he asked me the question that would change my life: how does gravity work? I didn’t know the answer, so he made me run around the galaxy (our house) and find space-time (a sheet), a planet (a big ball) and two meteors (small marbles). He stretched out the sheet and balanced the two marbles on the ends of it. Then he made me put the big ball at the center of the sheet. The big ball pushed down on the sheet, and as the smaller marbles rolled down the sheet towards the big ball, I felt omniscient.

I took the materials to school the next day, and explained how gravity works to most of 4th grade. I learned two things from this: One, teaching other people, in a simple way, how complicated matters work makes me look really smart. And two, people actually feel the same wonder and amazement I feel when I learn something new.

This might have been the experience that led me to teach later on in life. This might have been the experience that led me to keep a jar of marbles on my desk. But this was, for certain, the experience that made me question anything and everything in the universe. It was as if the big ball formed an indentation in my head, making the marbles and the tissue (the neurons and the blood) stop in their tracks and start rolling down towards the answers.

What words of advice would you share with other young scientists? 

We now live in an age where the learning process takes minutes. We get easy access to research papers, free courses and a myriad of other resources. When I started this project, I had only a basic understanding of programming and no idea what neural networks were, but from learning from the hard work of other researchers and teachers, I was able to build my tool. What I took from this project, and what people should always remember is that you can stand on the shoulders of giants when you want to touch the stars.

Spotlight on a Young Scientist: Pranav Sivakumar

Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.


Name: Pranav Sivakumar

Home: Illinois, USA

Age Category: 13-15

Project title: Automated search for gravitationally lensed quasars


Pranav’s shown interest in astronomy since looking up at the night sky at age 4. He later became interested in physics and worked in a lab focused on quasar research. Certain quasars (massive and extremely remote celestial objects, emitting exceptionally large amounts of energy ) cause an effect called gravitational lensing, which magnifies the light of distant galaxies that would otherwise be too faint to see. Compiling existing data from over 450,000 quasars, Pranav developed two algorithms to automatically find gravitationally lensed quasars and improve the accuracy and reliability of candidates identified for follow-up observations. Pranav’s most excited that his project and results might confirm the expansion of the universe, helping us determine our eventual fate. 

What was the inspiration behind your project? 

When I attended lectures at Fermi National Accelerator Laboratory, I repeatedly heard the phrases “dark matter,” “dark energy” and “future of the universe.” Curious by nature, I asked questions about these topics and eventually learned that very little is known about these two phenomena; in fact, the term “dark” literally describes our limited knowledge of them. I learned that gravitational lensing, which is caused by massive astronomical objects bending light and which results in multiple images of an astronomical light source, is an effective way to study these constituents of the universe. In particular, studying gravitational lensing of quasars, some of the brightest and most distant objects in the universe, may hold the key to understanding our future.

I was also inspired by research carried out by other researchers as part of the SDSS Quasar Lens Search (SQLS). Using an earlier version of the data set I utilized in this project, the SQLS researchers significantly increased the number of known lensed quasars. The success of the SQLS approach inspired me to develop my own method for identifying lensed quasars.

When and why did you become interested in science? 

In the age of the Internet, it’s perhaps ironic that my interest in science started with a book. At the age of seven, I found a book called “Great Physicists” in my house; I picked up the book and found it fascinating.

As my interest in physics grew, I began reading books more focused on astrophysics and cosmology by Michio Kaku. When you see a book at the library titled “Physics of the Impossible,” it’s difficult to ignore!

The lectures at Fermilab were formative in crystallizing my interest in science. Though I understood only one or two words of the science being discussed in the talks, what stayed with me was the energy and excitement of scientists challenging each other in the room.

Science feeds my curiosity by allowing me to ask complex questions, challenge assumptions and explore interesting topics without worrying about assignments or tests. It’s like a jigsaw puzzle; there’s a great amount of satisfaction when the pieces start fitting together.

The “Aha” moment is priceless – just ask Archimedes!

What words of advice would you share with other young scientists? 

I learned from experience that starting small and building up to complex questions works best for young scientists. Feel confident about connecting with professionals – initially, it may be scary, but their willingness to help and their mentorship are worth much more than those few moments of anxiety.

When I ran into a technical roadblock, I contacted the primary researcher on the SQLS team in Japan; within 24 hours, he responded with valuable suggestions that I’m still pursuing to this day.