Tag Archives: releases

How we brought the latest version of Python to App Engine and Cloud Functions

At Cloud Next 2018, we added Python 3.7 support to Cloud Functions and now we’ve announced Python 3.7 support for the App Engine standard environment. These new runtimes allow you to write Python functions and apps using the latest version of Python and the rich ecosystem of packages available on Python Packaging Index (PyPI).

This new runtime marks a significant update to App Engine and was enabled by new open source software that we recently released: gVisor and FTL.

Python, straight from the source

Running Python 3.7 on App Engine and Cloud Functions required us to fundamentally rethink our infrastructure. Traditionally, meeting Google Cloud’s security requirements meant that we had to run a modified version of the Python interpreter. However, using a modified interpreter constrained some language features and only allowed us to support a limited set of whitelisted Python libraries.

Thanks to gVisor, a container sandbox that provides improved security and process isolation, we can now run the unmodified Python 3.7.0 interpreter. We’ve done extensive testing to make sure Python 3.7 is compatible with gVisor. As part of our compatibility testing, we run Python’s full suite of language tests, and tests for Python packages that are popular on PyPI. We’re committed to ensuring that everything you’ve come to know and love about Python is supported on our platform.

Seamless deployments

Most importantly, this change in our infrastructure makes it easier to take advantage of Python’s vast ecosystem. As a developer, you just add project dependencies to a requirements.txt file and deploy.

During deployment, FTL, a tool for building containers, fetches dependencies listed in your requirements.txt file and installs them alongside your app or function. FTL also includes a short-lived dependency cache, which speeds up repeated deployments if no changes are detected in your requirements.txt file. This is particularly useful if you find just need to re-deploy because you found a typo.

Keeping up with the Pythonistas

In making these changes, we also decided to expand the list of system packages that are included with each runtime’s Ubuntu 18.04 distribution. We think that will make life just a little bit easier for developers working with the latest release of Python.

Looking forward, we’re excited about how these changes will allow us to keep up with the Python community’s progress as they release new versions and libraries. Please let us know what you think and if you run into any challenges.

You can learn more about how to get started with it on App Engine and Cloud Functions in our documentation. We can’t wait to see what you build with Python 3.7.

By Stewart Reichling, Product Manager

Introducing the new lead for Android Open Source Project

This week began with the announcement of Android 9 Pie and, as usual, the subsequent upstreaming of code to the Android Open Source Project (AOSP). But the release of Android 9 isn’t the only important Android news!

Tucked away in the announcement to the Android Building mailing list was this note:

“I also wanted to take a moment to introduce myself as the new Tech Lead / Manager for AOSP. My name is Jeff Bailey, and I’ve been involved in the Open Source community for more than two decades. Since I joined the Android team a few months ago, I’ve been learning how we do things and getting an understanding of how we could work better with the community. I’d love to hear from you: @JeffBaileyAOSP on Twitter or jeffbailey+aosp@google.com. Be well!”

As Jeff notes in his introduction, he has a history in free and open source software (FOSS). He’s been an avid user, contributor, and maintainer since before the Open Source Definition was inked!

Jeff co-founded Savannah, where GNU software is developed and distributed, spent 15 years working on Debian, and has been an Ubuntu core developer. Further, he spent some time on the Google Open Source team and was involved in open sourcing Android back in 2008.

Open source projects, even those which originate inside of companies, are powered by the community of users and contributors that surround them. And those communities thrive when they have stewards who are steeped in the traditions of free and open source software. We’re excited for AOSP as Jeff takes the reins. He brings both technical and cultural skills to the table, and he’s been involved with the project since the beginning!

Suffice it to say, AOSP is in good hands. We welcome Jeff to his new role and, as he said in his introduction, he’d love to hear from the community: you can reach Jeff on Twitter and via email.

By Josh Simmons, Google Open Source

Announcing Cirq: an open source framework for NISQ algorithms

Cross-posted from the Google AI Blog

Over the past few years, quantum computing has experienced a growth not only in the construction of quantum hardware, but also in the development of quantum algorithms. With the availability of Noisy Intermediate Scale Quantum (NISQ) computers (devices with ~50 - 100 qubits and high fidelity quantum gates), the development of algorithms to understand the power of these machines is of increasing importance. However, a common problem when designing a quantum algorithm on a NISQ processor is how to take full advantage of these limited quantum devices—using resources to solve the hardest part of the problem rather than on overheads from poor mappings between the algorithm and hardware. Furthermore some quantum processors have complex geometric constraints and other nuances, and ignoring these will either result in faulty quantum computation, or a computation that is modified and sub-optimal.*

Today at the First International Workshop on Quantum Software and Quantum Machine Learning (QSML), the Google AI Quantum team announced the public alpha of Cirq, an open source framework for NISQ computers. Cirq is focused on near-term questions and helping researchers understand whether NISQ quantum computers are capable of solving computational problems of practical importance. Cirq is licensed under Apache 2, and is free to be modified or embedded in any commercial or open source package.

Once installed, Cirq enables researchers to write quantum algorithms for specific quantum processors. Cirq gives users fine tuned control over quantum circuits, specifying gate behavior using native gates, placing these gates appropriately on the device, and scheduling the timing of these gates within the constraints of the quantum hardware. Data structures are optimized for writing and compiling these quantum circuits to allow users to get the most out of NISQ architectures. Cirq supports running these algorithms locally on a simulator, and is designed to easily integrate with future quantum hardware or larger simulators via the cloud.


We are also announcing the release of OpenFermion-Cirq, an example of a Cirq based application enabling near-term algorithms. OpenFermion is a platform for developing quantum algorithms for chemistry problems, and OpenFermion-Cirq is an open source library which compiles quantum simulation algorithms to Cirq. The new library uses the latest advances in building low depth quantum algorithms for quantum chemistry problems to enable users to go from the details of a chemical problem to highly optimized quantum circuits customized to run on particular hardware. For example, this library can be used to easily build quantum variational algorithms for simulating properties of molecules and complex materials.

Quantum computing will require strong cross-industry and academic collaborations if it is going to realize its full potential. In building Cirq, we worked with early testers to gain feedback and insight into algorithm design for NISQ computers. Below are some examples of Cirq work resulting from these early adopters:
To learn more about how Cirq is helping enable NISQ algorithms, please visit the links above where many of the adopters have provided example source code for their implementations.

Today, the Google AI Quantum team is using Cirq to create circuits that run on Google’s Bristlecone processor. In the future, we plan to make this processor available in the cloud, and Cirq will be the interface in which users write programs for this processor. In the meantime, we hope Cirq will improve the productivity of NISQ algorithm developers and researchers everywhere. Please check out the GitHub repositories for Cirq and OpenFermion-Cirq — pull requests welcome!

By Alan Ho, Product Lead and Dave Bacon, Software Lead, Google AI Quantum Team

Acknowledgements
We would like to thank Craig Gidney for leading the development of Cirq, Ryan Babbush and Kevin Sung for building OpenFermion-Cirq and a whole host of code contributors to both frameworks.



* An analogous situation is how early classical programmers needed to run complex programs in very small memory spaces by paying careful attention to the lowest level details of the hardware.

Introducing Data Transfer Project: an open source platform promoting universal data portability

In 2007, a small group of engineers in our Chicago office formed the Data Liberation Front, a team that believed consumers should have better tools to put their data where they want, when they want, and even move it to a different service. This idea, called “data portability,” gives people greater control of their information, and pushes us to develop great products because we know they can pack up and leave at any time.

In 2011, we launched Takeout, a new way for Google users to download or transfer a copy of the data they store or create in a variety of industry-standard formats. Since then, we've continued to invest in Takeout—we now call it Download Your Data—and today, our users can download a machine-readable copy of the data they have stored in 50+ Google products, with more on the way.

Now, we’re taking our commitment to portability a step further. In tandem with Microsoft, Twitter, and Facebook we’re announcing the Data Transfer Project, an open source initiative dedicated to developing tools that will enable consumers to transfer their data directly from one service to another, without needing to download and re-upload it. Download Your Data users can already do this; they can transfer their information directly to their Dropbox, Box, MS OneDrive, and Google Drive accounts today. With this project, the development of which we mentioned in our blog post about preparations for the GDPR, we’re looking forward to working with companies across the industry to bring this type of functionality to individuals across the web.

Our approach

The organizations involved with this project are developing tools that can convert any service's proprietary APIs to and from a small set of standardized data formats that can be used by anyone. This makes it possible to transfer data between any two providers using existing industry-standard infrastructure and authorization mechanisms, such as OAuth. So far, we have developed adapters for seven different service providers across five different types of consumer data; we think this demonstrates the viability of this approach to scale to a large number of use cases.

Consumers will benefit from improved flexibility and control over their data. They will be able to import their information into any participating service that offers compelling features—even brand new ones that could rely on powerful, cloud-based infrastructure rather than the consumers’ potentially limited bandwidth and capability to transfer files. Services will benefit as well, as they will be able to compete for users that can move their data more easily.

Protecting users’ data and keeping them in control

Data security and privacy are foundational to the design of the Data Transfer Project. Services must first agree to allow data transfer between them, and then they will require that individuals authenticate each account independently. All credentials and user data will be encrypted both in transit and at rest. The protocol uses a form of perfect forward secrecy where a new unique key is generated for each transfer. Additionally, the framework allows partners to support any authorization mechanism they choose. This enables partners to leverage their existing security infrastructure when authorizing accounts.

As it is an open source product, anyone can inspect the code to verify that data isn't being collected or used for profiling purposes. Tech savvy consumers are also free to download and run an instance of the framework themselves. Interested parties can learn more at the Data Transfer Project website, which explains the technical foundations behind the project and goes into greater detail on how it works.

How to get involved

It is very early days for the Data Transfer Project and we encourage the developer community to join us and help extend the platform to support many more data types, service providers, and hosting solutions.

The Data Transfer Project’s open source code can be found at datatransferproject.dev and you can learn more about Google’s approach to portability in our paper, where we describe our history with this topic and the values and principles that motivated us to invest in the Data Transfer Project. Our prototype already supports data transfer for several product verticals including: photos, mail, contacts, calendar, and tasks. These are enabled by existing, publicly available APIs from Google, Microsoft, Twitter, Flickr, Instagram, Remember the Milk, and Smugmug.

Data portability makes it easy for consumers to try new services and use the ones that they like best. We’re thrilled to help drive an initiative that incentivizes companies large and small to continue innovating across the internet. We’re just getting started and we’re looking forward to what comes next.

By Brian Willard, Software Engineer and Greg Fair, Product Manager

Automating your app releases with Google Play

Posted by Nicholas Lativy, Software Engineer

At Google I/O we shared how Google's own apps make use of Google Play for successful launches and updates and introduced the new Google Play Developer Publishing API Version 3.

The Publishing API enables you to integrate publishing operations into your existing release process or automated workflows by providing the ability to upload APKs and roll out releases. Here's an overview of some of the improvements you can now take advantage of in Version 3 of the API.

Releases in the API

The Publishing API now uses the release model you are familiar with from the Play Console.

{
  "track": "production",
  "releases": [
    {
      "name": "Release One", 
      "versionCodes": ["100"],
      "status": "completed"
    }
  ]
}

This gives you full control over releases via the API allowing a number of operations which were previously available only in the Play Console. For example, you can now control the name of releases created via the API, and we have now relaxed the constraints on what can be rolled out via the API to match the Play Console.

Additional testing tracks

The API now supports releasing to any of the testing tracks you have configured for your application as well as the production track. This makes it possible to configure your continuous integration system to push a new build to your internal test track as soon as it's ready for QA.

Staged rollout

Staged rollouts are the recommended way to deploy new versions of your app. They allow you to make your new release available to a small percentage of users and gradually increase this percentage as your confidence in the release grows.

Staged rollouts are now represented directly in the API as inProgress releases.

{
  "track": "production",
  "releases": [
    {
      "versionCodes": ["100"],
      "status": "completed"
    },
    {
      "versionCodes": ["200"],
      "status": "inProgress",
      "userFraction": 0.1
    }
  ]
}

You can now halt a staged rollout via the API by changing its status to halted. This makes it possible to automatically respond to any problems you detect while performing a rollout. If it turns out to be a false alarm, the API now also allows you to resume a halted release by changing its status back to inProgress.

Release notes

Release notes are a useful way to communicate to users new features you have added in a release. In V3 we have simplified how these are specified via the API by adding the releaseNotes field to release.

{
  "track": "production",
  "releases": [
    {
      "versionCodes": ["100"],
      "status": "completed",
      "releaseNotes": [
        {
          "language": "en-US",
          "text": "Now it's easier to specify release notes."
        },
        {
           "language": "it-IT",
           "text": "Ora è più semplice specificare le note sulla versione."
        }
    }
  ]
}

Draft releases

We know that while many developers are comfortable deploying test builds automatically, they like using the Play Console when rolling out to production.

So, in the V3 API we have added the ability to create and manage Draft Releases.

{
  "track": "production",
  "releases": [
    {
      "name": "Big Launch",
      "versionCodes": ["200"],
      "status": "draft"
    }
  ]
}

This allows you to upload APKs or App Bundles and create a draft release from your continuous integration system, and then have your product manager log in, check that everything looks good, and hit "Confirm and Rollout".

We hope you find these features useful and take advantage of them for successful launches and updates with Google Play. If you're interested in some of the other great tools for distributing your apps, check out the I/O sessions which have now been posted to the Android Developers YouTube Channel.

How useful did you find this blogpost?

OpenCensus’s journey ahead: platforms and languages

We recently blogged about the value of OpenCensus and how Google uses Census internally. Today, we want to share more about our long-term vision for OpenCensus.

The goal of OpenCensus is to be a ubiquitous observability framework that allows developers to automatically collect, aggregate, and export traces, metrics, and other telemetry from their applications. We plan on getting there by building easy-to-use libraries and automatically integrate with as many technologies and frameworks as possible.

Our roadmap has two themes: increased language, framework, and platform coverage, and the addition of more powerful features.Today, we’ll discuss the first theme of the increased coverage.

Increasing Coverage

More Language Coverage

In January, we released OpenCensus for Java, Go, and C++ as well as tracing support for Python, PHP, and Ruby. We’re about to start development of OpenCensus for Node.js and .NET, and you’ll see activity on these repositories ramp up in the coming quarter.

Integration with more Frameworks, Platforms, and Clients

We want to provide a great out-of-the-box experience, so we need to automatically capture traces and metrics with as little developer effort as possible. To achieve this, we’ll be creating integrations for popular web frameworks, RPC frameworks, and storage clients. This will enable automatic context propagation, span creation, and trace annotations, without requiring extra work on behalf of developers.

As a basic example, OpenCensus already integrates with Go’s default gRPC and HTTP handlers to generate spans (with relevant annotations) and to pass context.

More complex integrations will provide more information to developers. Here’s an example of a trace captured with our upcoming MongoDB instrumentation, shown on Stackdriver Trace and AWS X-Ray:
A MongoDB trace shown in Stackdriver Trace

The same trace captured in X-Ray

Istio

OpenCensus will soon have out-of-the-box tracing and metrics collection in Istio. We’re currently working through our initial designs and implementation for integrations with the Envoy Sidecar and Istio Mixer service. Our goal is to provide Istio users with a great out of box tracing and metrics collection experience.

Kubernetes

We have two primary use cases in mind for Kubernetes deployments: providing cluster-wide visibility via z-pages, and better labeling of traces, stats, and metrics. Cluster-wide z-pages will allow developers to view telemetry in real time across an entire Kubernetes deployment, independently of their back-end. This is incredibly useful when debugging immediate high-impact issues like service outages.

Client Application Support

OpenCensus currently provides observability into back-end services, however this doesn’t tell the whole story about end-to-end application performance. Throughout 2018, we plan to add instrumentation for client and front-end web applications, so developers can get traces that begin from customers’ devices and reflect actual perceived latency, and metrics captured from client code.

We aim to add support for instrumenting Android, iOS, and front-end JavaScript, though this list may grow or change. Expect to hear more about this later in 2018.

Next Up

Next week we’ll discuss some of the new features that we’re looking to bring to OpenCensus, including notable enhancements to the trace sampling logic.

None of this is possible without the support and participation from the community. Please check out our repository and start contributing; we welcome contributions of any size -- however you want to take part. You can join other developers and users on the OpenCensus Gitter channel. We’d love to hear from you!

By Pritam Shah and Morgan McLean, Census team

Open sourcing Seurat: bringing high-fidelity scenes to mobile VR

Crossposted from the Google Developers Blog

Great VR experiences make you feel like you’re really somewhere else. To create deeply immersive experiences, there are a lot of factors that need to come together: amazing graphics, spatialized audio, and the ability to move around and feel like the world is responding to you.

Last year at I/O, we announced Seurat as a powerful tool to help developers and creators bring high-fidelity graphics to standalone VR headsets with full positional tracking, like the Lenovo Mirage Solo with Daydream. Seurat is a scene simplification technology designed to process very complex 3D scenes into a representation that renders efficiently on mobile hardware. Here’s how ILMxLAB was able to use Seurat to bring an incredibly detailed ‘Rogue One: A Star Wars Story’ scene to a standalone VR experience.

Today, we’re open sourcing Seurat to the developer community. You can now use Seurat to bring visually stunning scenes to your own VR applications and have the flexibility to customize the tool for your own workflows.

Behind the scenes: how Seurat works

Seurat works by taking advantage of the fact that VR scenes are typically viewed from within a limited viewing region, and leverages this to optimize the geometry and textures in your scene. It takes RGBD images (color and depth) as input and generates a textured mesh, targeting a configurable number of triangles, texture size, and fill rate, to simplify scenes beyond what traditional methods can achieve.


To demonstrate what Seurat can do, here’s a snippet from Blade Runner: Revelations, which launched today with the Lenovo Mirage Solo.

Blade Runner: Revolution by Alcon Interactive and Seismic Games
The Blade Runner universe is known for its stunning worlds, and in Revelations, you get to unravel a mystery around fugitive Replicants in the futuristic but gritty streets. To create the look and feel for Revelations, Seismic used Seurat to bring a scene of 46.6 million triangles down to only 307,000, improving performance by more than 100x with almost no loss in visual quality:

Original scene:

Seurat-processed scene: 

If you’re interested in learning more about Seurat or trying it out yourself, visit the Seurat GitHub page to access the documentation and source code. We’re looking forward to seeing what you build!

By Manfred Ernst, Software Engineer

Open sourcing GTXiLib, an accessibility test automation framework for iOS

Google believes everyone should be able to access and enjoy the web. We share guidance on building accessible tech over at Google Accessibility and we recently launched a dedicated disability support team. Today, we’re excited to announce that we’ve open sourced GTXiLib, an accessibility test automation framework for iOS, under the Apache license.

We want our products to be accessible and automation, with frameworks like GTXiLib, is one of the ways we scale our accessibility testing. GTXiLib can automate the process of checking for some kinds of issues such as missing labels, hints, or low contrast text.

GTXiLib is written in Objective-C and will integrate with your existing XCTests to perform all the registered accessibility checks before the test tearDown. When the checks fail, the existing test fails as well. Fixing your tests will thus lead to better accessibility and your tests can catch new accessibility issues as well.
  • Reuse your tests: GTXiLib integrates into your existing functional tests, enhancing the value of any tests that you have or any that you write.
  • Incremental accessibility testing: GTXiLib can be installed onto a single test case, test class or a specific subset of tests giving you the freedom to add accessibility testing incrementally. This helped drive GTXiLib adoption in large projects at Google.
  • Author your own checks: GTXiLib has a simple API to create custom checks based on the specific needs of your app. For example, you can ensure every button in your app has an accessibilityHint using a custom check.
Do you also care about accessibility? Help us sharpen GTXiLib by suggesting a check or better yet, writing one. You can add GTXiLib to your project using CocoaPods or by using its Xcode project file.

We hope you find this useful and look forward to feedback and contributions from the community! Please check out the README for more information.

By Siddartha Janga, Google Central Accessibility Team 

The cpu_features library

"Write Once, Run Anywhere." That was the promise of Java back in the 1990s. You could write your Java code on one platform, and it would run on any CPU implementing a Java Virtual Machine.

But for developers who need to squeeze every bit of performance out of their applications, that's not enough. Since the dawn of computing, performance-minded programmers have used insights about hardware to fine tune their code.

Let's say you're working on code for which speed is paramount, perhaps a new video codec or a library to process tensors. There are individual instructions that will dramatically improve performance, like fused multiply-add, as well as entire instruction sets like SSE2 and AVX, that can give the critical portions of your code a speed boost.
Photo by Andrew Dunn, licensed CC-BY-SA-2.0.

Here's the problem: there's no way to know a priori which instructions your CPU supports. Identifying the CPU manufacturer isn't sufficient. For instance, Intel’s Haswell architecture supports the AVX2 instruction set, while Sandy Bridge doesn't. Some developers resort to desperate measures like reading /proc/cpuinfo to identify the CPU and then consulting hardcoded mappings of CPU IDs to instructions.

Enter cpu_features, a small, fast, and simple open source library to report CPU features at runtime. Written in C89 for maximum portability, it allocates no memory and is suitable for implementing fundamental functions and running in sandboxed environments.

The library currently supports x86, ARM/AArch64, and MIPS processors, and we'll be adding to it as the need arises. We also welcome contributions from others interested in making programs “write once, run fast everywhere.”

By Guillaume Chatelet, Google Compiler Research Team

OpenCensus: A Stats Collection and Distributed Tracing Framework

Today we’re pleased to announce the release of OpenCensus, a vendor-neutral open source library for metric collection and tracing. OpenCensus is built to add minimal overhead and be deployed fleet wide, especially for microservice-based architectures.

The Need for Instrumentation & Observability 

As a startup, often the focus is to get an initial version of the product out the door, rapidly prototype and iterate with customers. Most startups start out with monolithic applications as a simple model-view-controller (MVC) web application. As the customer base, code, and number of engineers increase, they migrate from monolithic architecture to a microservices architecture. A microservices architecture has its advantages, but often makes debugging more challenging as traditional debugging and monitoring tools don’t always work in these environments or are designed for monolithic use cases. When operating multiple microservices with strict service level objectives (SLOs), you need insights into the root cause of reliability and performance problems.

Not having proper instrumentation and observability can result in lost engineering hours, violated SLOs and frustrated customers. Instead, diagnostic data should be collected from across the stack. This data can be used for incident management to identify and debug potential bottlenecks or for system tuning and performance improvement.

OpenCensus

At Google scale, an instrumentation layer with minimal overhead is a requirement. As Google grew, we realized the importance of having a highly efficient tracing and stats instrumentation library that could be deployed fleet wide.

OpenCensus is the open source version of Google’s Census library, written based on years of optimization experience. It aims to make the collection and submission of app metrics and traces easier for developers. It is a vendor neutral, single distribution of libraries that automatically collects traces and metrics from your app, displays them locally, and sends them to analysis tools. OpenCensus currently supports Prometheus, SignalFX, Stackdriver and Zipkin.

Developers can use this powerful, out-of-the box library to instrument microservices and send data to any supported backend. For an Application Performance Management (APM) vendor, OpenCensus provides free instrumentation coverage with minimal work, and affords customers a simple setup experience.

Below are Stackdriver Trace and Monitor screenshots showing traces generated from a demo app, which calls Google’s Cloud Bigtable API and uses OpenCensus.



We’d love to hear your feedback on OpenCensus. Try using it in your app, tell us about your success story, and help by contributing to our existing language-specific libraries, or by creating one for an not-yet-supported language. You can also help us integrate OpenCensus with new APM tools!

We hope you find this as useful as we have. Visit opencensus.io for more information.

By Pritam Shah, Census team